Gharghabi, Shaghayegh, Imani, Shima, Bagnall, Anthony, Darvishzadeh, Amirali and Keogh, Eamonn (2018) Matrix Profile XII: MPDist: A Novel Time Series Distance Measure to allow Data Mining in more Challenging Scenarios. In: IEEE International Conference on Data Mining. UNSPECIFIED, pp. 965-970.
Preview |
PDF (Accepted manuscript)
- Accepted Version
Download (491kB) | Preview |
Abstract
At their core, many time series data mining algorithms can be reduced to reasoning about the shapes of time series subsequences. This requires a distance measure, and most algorithms use Euclidean Distance or Dynamic Time Warping (DTW) as their core subroutine. We argue that these distance measures are not as robust as the community believes. The undue faith in these measures derives from an overreliance on benchmark datasets and self-selection bias. The community is reluctant to address more difficult domains, for which current distance measures are ill-suited. In this work, we introduce a novel distance measure MPdist. We show that our proposed distance measure is much more robust than current distance measures. Furthermore, it allows us to successfully mine datasets that would defeat any Euclidean or DTW distance-based algorithm. Additionally, we show that our distance measure can be computed so efficiently, it allows analytics on fast streams.
Item Type: | Book Section |
---|---|
Uncontrolled Keywords: | time series, distance measure, matrix profile |
Faculty \ School: | Faculty of Science > School of Computing Sciences |
UEA Research Groups: | Faculty of Science > Research Groups > Data Science and Statistics |
Depositing User: | LivePure Connector |
Date Deposited: | 11 Dec 2018 10:30 |
Last Modified: | 21 Oct 2022 20:30 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/69244 |
DOI: | 10.1109/ICDM.2018.00119 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |