The relationship between age, neural differentiation, and memory performance

Koen, Joshua D., Hauck, Nedra and Rugg, Michael D. (2019) The relationship between age, neural differentiation, and memory performance. The Journal of Neuroscience, 39 (1). pp. 149-162. ISSN 0270-6474

[thumbnail of Accepted manuscript]
Preview
PDF (Accepted manuscript) - Accepted Version
Download (7MB) | Preview

Abstract

Healthy aging is associated with decreased neural selectivity (dedifferentiation) in category-selective cortical regions. This finding has prompted the suggestion that dedifferentiation contributes to age-related cognitive decline. Consistent with this possibility, dedifferentiation has been reported to negatively correlate with fluid intelligence in older adults. Here, we examined whether dedifferentiation is associated with performance in another cognitive domain—episodic memory—that is also highly vulnerable to aging. Given the proposed role of dedifferentiation in age-related cognitive decline, we predicted there would be a stronger link between dedifferentiation and episodic memory performance in older than in younger adults. Young (18–30 years) and older (64–75 years) male and female humans underwent fMRI scanning while viewing images of objects and scenes before a subsequent recognition memory test. We computed a differentiation index in two regions of interest (ROIs): parahippocampal place area (PPA) and lateral occipital complex (LOC). This index quantified the selectivity of the BOLD response to preferred versus nonpreferred category of an ROI (scenes for PPA, objects for LOC). The differentiation index in the PPA, but not the LOC, was lower in older than in younger adults. Additionally, the PPA differentiation index predicted recognition memory performance for the studied items. This relationship was independent of and not moderated by age. The PPA differentiation index also predicted performance on a latent “fluency” factor derived from a neuropsychological test battery; this relationship was also age invariant. These findings suggest that two independent factors, one associated with age, and the other with cognitive performance, influence neural differentiation.

Item Type: Article
Uncontrolled Keywords: dedifferentiation,lateral occipital complex,neural selectivity,older adults,parahippocampal place area,recognition memory,neuroscience(all) ,/dk/atira/pure/subjectarea/asjc/2800
Faculty \ School: Faculty of Social Sciences > School of Psychology
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 12 Nov 2018 16:30
Last Modified: 05 May 2024 01:40
URI: https://ueaeprints.uea.ac.uk/id/eprint/68860
DOI: 10.1523/JNEUROSCI.1498-18.2018

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item