Sensitivity of simulated summer monsoonal precipitation in Langtang Valley, Himalaya, to cloud microphysics schemes in WRF

Orr, A., Listowski, C., Couttet, M., Collier, E., Immerzeel, W., Deb, P. and Bannister, D. (2017) Sensitivity of simulated summer monsoonal precipitation in Langtang Valley, Himalaya, to cloud microphysics schemes in WRF. Journal of Geophysical Research: Atmospheres, 122 (12). pp. 6298-6318. ISSN 2169-897X

[thumbnail of Published manuscript]
Preview
PDF (Published manuscript) - Published Version
Available under License Creative Commons Attribution.

Download (4MB) | Preview

Abstract

A better understanding of regional‐scale precipitation patterns in the Himalayan region is required to increase our knowledge of the impacts of climate change on downstream water availability. This study examines the impact of four cloud microphysical schemes (Thompson, Morrison, Weather Research and Forecasting (WRF) single‐moment 5‐class, and WRF double‐moment 6‐class) on summer monsoon precipitation in the Langtang Valley in the central Nepalese Himalayas, as simulated by the WRF model at 1 km grid spacing for a 10 day period in July 2012. The model results are evaluated through a comparison with surface precipitation and radiation measurements made at two observation sites. Additional understanding is gained from a detailed examination of the microphysical characteristics simulated by each scheme, which are compared with measurements using a spaceborne radar/lidar cloud product. Also examined are the roles of large‐ and small‐scale forcings. In general, the schemes are able to capture the timing of surface precipitation better than the actual amounts in the Langtang Valley, which are predominately underestimated, with the Morrison scheme showing the best agreement with the measured values. The schemes all show a large positive bias in incoming radiation. Analysis of the radar/lidar cloud product and hydrometeors from each of the schemes suggests that “cold‐rain” processes are a key precipitation formation mechanism, which is also well represented by the Morrison scheme. As well as microphysical structure, both large‐scale and localized forcings are also important for determining surface precipitation.

Item Type: Article
Uncontrolled Keywords: microphysics,langtang valley,wrf,precipitation,himalayas,sdg 13 - climate action ,/dk/atira/pure/sustainabledevelopmentgoals/climate_action
Faculty \ School: Faculty of Science > School of Environmental Sciences
Depositing User: LivePure Connector
Date Deposited: 01 Aug 2018 15:30
Last Modified: 22 Oct 2022 04:02
URI: https://ueaeprints.uea.ac.uk/id/eprint/67932
DOI: 10.1002/2016JD025801

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item