Doi-Peliti path integral methods for stochastic systems with partial exclusion

Greenman, Chris D. (2018) Doi-Peliti path integral methods for stochastic systems with partial exclusion. Physica A: Statistical Mechanics and Its Applications, 505. pp. 211-221. ISSN 0378-4371

[img] PDF (Accepted manuscript) - Submitted Version
Restricted to Repository staff only until 31 December 2099.

Download (671kB) | Request a copy
[img]
Preview
PDF (Accepted manuscript) - Submitted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (668kB) | Preview

Abstract

Doi-Peliti methods are developed for stochastic models with finite maximum occupation numbers per site. We provide a generalized framework for the different Fock spaces reported in the literature. Paragrassmannian techniques are then utilized to construct path integral formulations of factorial moments. We show that for many models of interest, a Magnus expansion is required to construct a suitable action, meaning actions containing a finite number of terms are not always feasible. However, for such systems, perturbative techniques are still viable, and for some examples, including carrying capacity population dynamics, and diffusion with partial exclusion, the expansions are exactly summable.

Item Type: Article
Uncontrolled Keywords: doi-peliti,path integral,partial exclusion,carrying capacity,population dynamics
Faculty \ School: Faculty of Science > School of Computing Sciences

University of East Anglia > Faculty of Science > Research Groups > Computational Biology (subgroups are shown below) > Analysis and models of genomic variation
Depositing User: Pure Connector
Date Deposited: 28 Mar 2018 16:30
Last Modified: 22 May 2020 23:54
URI: https://ueaeprints.uea.ac.uk/id/eprint/66647
DOI: 10.1016/j.physa.2018.03.045

Actions (login required)

View Item View Item