McGenity, Terry J., Crombie, Andrew T. and Murrell, J. Colin (2018) Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth. The ISME Journal, 12 (4). 931–941. ISSN 1751-7362
Preview |
PDF (Published manuscript)
- Published Version
Available under License Creative Commons Attribution. Download (1MB) | Preview |
Abstract
Isoprene (2-methyl-1,3-butadiene), the most abundantly produced biogenic volatile organic compound (BVOC) on Earth, is highly reactive and can have diverse and often detrimental atmospheric effects, which impact on climate and health. Most isoprene is produced by terrestrial plants, but (micro)algal production is important in aquatic environments, and the relative bacterial contribution remains unknown. Soils are a sink for isoprene, and bacteria that can use isoprene as a carbon and energy source have been cultivated and also identified using cultivation-independent methods from soils, leaves and coastal/marine environments. Bacteria belonging to the Actinobacteria are most frequently isolated and identified, and Proteobacteria have also been shown to degrade isoprene. In the freshwater-sediment isolate, Rhodococcus strain AD45, initial oxidation of isoprene to 1,2-epoxy-isoprene is catalyzed by a multicomponent isoprene monooxygenase encoded by the genes isoABCDEF. The resultant epoxide is converted to a glutathione conjugate by a glutathione S-transferase encoded by isoI, and further degraded by enzymes encoded by isoGHJ. Genome sequence analysis of actinobacterial isolates belonging to the genera Rhodococcus, Mycobacterium and Gordonia has revealed that isoABCDEF and isoGHIJ are linked in an operon, either on a plasmid or the chromosome. In Rhodococcus strain AD45 both isoprene and epoxy-isoprene induce a high level of transcription of 22 contiguous genes, including isoABCDEF and isoGHIJ. Sequence analysis of the isoA gene, encoding the large subunit of the oxygenase component of isoprene monooxygenase, from isolates has facilitated the development of PCR primers that are proving valuable in investigating the ecology of uncultivated isoprene-degrading bacteria.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | sdg 13 - climate action,sdg 14 - life below water ,/dk/atira/pure/sustainabledevelopmentgoals/climate_action |
Faculty \ School: | Faculty of Science > School of Biological Sciences Faculty of Science > School of Environmental Sciences University of East Anglia Research Groups/Centres > Theme - ClimateUEA |
UEA Research Groups: | Faculty of Science > Research Centres > Centre for Ecology, Evolution and Conservation Faculty of Science > Research Groups > Environmental Biology Faculty of Science > Research Groups > Molecular Microbiology |
Related URLs: | |
Depositing User: | Pure Connector |
Date Deposited: | 05 Mar 2018 13:30 |
Last Modified: | 20 Mar 2023 14:43 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/66436 |
DOI: | 10.1038/s41396-018-0072-6 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |