Kong, Wei-Na, Cui, Yanmei, Fu, Yu-Jian, Lei, Yuhua, Ci, Yunzhe, Bao, Yongping ORCID: https://orcid.org/0000-0002-6425-0370, Zhao, Shuqiang, Xie, Lide, Chang, Yan-Zhong and Zhao, Shu-E (2018) The α1‐adrenergic receptor is involved in hepcidin upregulation induced by adrenaline and norepinephrine via the STAT3 pathway. Journal of Cellular Biochemistry, 119 (7). pp. 5517-5527. ISSN 0730-2312
Preview |
PDF (Accepted manuscript)
- Accepted Version
Available under License Creative Commons Attribution Non-commercial. Download (789kB) | Preview |
Abstract
Elevated body iron stores are associated with hypertension progression, while hypertension is associated with elevated plasma catecholamine levels in patients. However, there is a gap in our understanding of the connection between catecholamines and iron regulation. Hepcidin is a key iron‐regulatory hormone, which maintains body iron balance. In the present study, we investigated the effects of adrenaline (AD) and norepinephrine (NE) on hepatic hepcidin regulation. Mice were treated with AD, NE, phenylephrine (PE, α1‐adrenergic receptor agonist), prazosin (PZ, α1‐adrenergic receptor antagonist), and/or propranolol (Pro, β‐adrenergic receptor antagonist). The levels of hepcidin, as well as signal transducer and activator of transcription 3 (STAT3), ferroportin 1 (FPN1), and ferritin‐light (Ft‐L) protein in the liver or spleen, were assessed. Six hours after AD, NE, or PE treatment, hepatic hepcidin mRNA levels increased. Pretreatment with PZ, but not Pro, abolished the effects of AD or NE on STAT3 phosphorylation and hepatic hepcidin expression. When mice were treated with AD or NE continuously for 7 days, an increase in hepatic hepcidin mRNA levels and serum hepcidin concentration was also observed. Meanwhile, the expected downstream effects of elevated hepcidin, namely decreased FPN1 expression and increased Ft‐L protein and non‐heme iron concentrations in the spleen, were observed after the continuous AD or NE treatments. Taken together, we found that AD or NE increase hepatic hepcidin expression via the α1‐adrenergic receptor and STAT3 pathways in mice. The elevated hepatic hepcidin decreased FPN1 levels in the spleen, likely causing the increased iron accumulation in the spleen.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | adrenaline,α1-adrenergic receptor,hepcidin,norepinephrine,stat3 |
Faculty \ School: | Faculty of Medicine and Health Sciences > Norwich Medical School |
UEA Research Groups: | Faculty of Medicine and Health Sciences > Research Groups > Nutrition and Preventive Medicine Faculty of Medicine and Health Sciences > Research Groups > Cancer Studies Faculty of Medicine and Health Sciences > Research Centres > Lifespan Health Faculty of Medicine and Health Sciences > Research Centres > Metabolic Health |
Depositing User: | Pure Connector |
Date Deposited: | 29 Jan 2018 17:30 |
Last Modified: | 13 Nov 2023 17:42 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/66130 |
DOI: | 10.1002/jcb.26715 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |