Liu, Li, Yu, Mengyang and Shao, Ling (2015) Multiview alignment hashing for efficient image search. IEEE Transactions on Image Processing, 24 (3). pp. 956-966. ISSN 1057-7149
Full text not available from this repository.Abstract
Hashing is a popular and efficient method for nearest neighbor search in large-scale data spaces by embedding high-dimensional feature descriptors into a similarity preserving Hamming space with a low dimension. For most hashing methods, the performance of retrieval heavily depends on the choice of the high-dimensional feature descriptor. Furthermore, a single type of feature cannot be descriptive enough for different images when it is used for hashing. Thus, how to combine multiple representations for learning effective hashing functions is an imminent task. In this paper, we present a novel unsupervised multiview alignment hashing approach based on regularized kernel nonnegative matrix factorization, which can find a compact representation uncovering the hidden semantics and simultaneously respecting the joint probability distribution of data. In particular, we aim to seek a matrix factorization to effectively fuse the multiple information sources meanwhile discarding the feature redundancy. Since the raised problem is regarded as nonconvex and discrete, our objective function is then optimized via an alternate way with relaxation and converges to a locally optimal solution. After finding the low-dimensional representation, the hashing functions are finally obtained through multivariable logistic regression. The proposed method is systematically evaluated on three data sets: 1) Caltech-256; 2) CIFAR-10; and 3) CIFAR-20, and the results show that our method significantly outperforms the state-of-the-art multiview hashing techniques.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | alternate optimization,hashing,image similarity search,logistic regression,multiview,nmf |
Faculty \ School: | Faculty of Science > School of Computing Sciences |
Depositing User: | Pure Connector |
Date Deposited: | 16 Feb 2017 02:21 |
Last Modified: | 03 Jul 2023 10:30 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/62622 |
DOI: | 10.1109/TIP.2015.2390975 |
Actions (login required)
View Item |