Multimorbidity and health-related quality of life (HRQoL) in a nationally representative population sample: implications of count versus cluster method for defining multimorbidity on HRQoL

Wang, Lili, Palmer, Andrew J, Cocker, Fiona and Sanderson, Kristy ORCID: https://orcid.org/0000-0002-3132-2745 (2017) Multimorbidity and health-related quality of life (HRQoL) in a nationally representative population sample: implications of count versus cluster method for defining multimorbidity on HRQoL. Health and Quality of Life Outcomes, 15. ISSN 1477-7525

[thumbnail of Published manuscript]
Preview
PDF (Published manuscript) - Published Version
Available under License Creative Commons Attribution.

Download (468kB) | Preview

Abstract

Background: No universally accepted definition of multimorbidity (MM) exists, and implications of different definitions have not been explored. This study examined the performance of the count and cluster definitions of multimorbidity on the sociodemographic profile and health-related quality of life (HRQoL) in a general population. Methods: Data were derived from the nationally representative 2007 Australian National Survey of Mental Health and Wellbeing (n = 8841). The HRQoL scores were measured using the Assessment of Quality of Life (AQoL-4D) instrument. The simple count (2+ & 3+ conditions) and hierarchical cluster methods were used to define/identify clusters of multimorbidity. Linear regression was used to assess the associations between HRQoL and multimorbidity as defined by the different methods. Results: The assessment of multimorbidity, which was defined using the count method, resulting in the prevalence of 26% (MM2+) and 10.1% (MM3+). Statistically significant clusters identified through hierarchical cluster analysis included heart or circulatory conditions (CVD)/arthritis (cluster-1, 9%) and major depressive disorder (MDD)/anxiety (cluster-2, 4%). A sensitivity analysis suggested that the stability of the clusters resulted from hierarchical clustering. The sociodemographic profiles were similar between MM2+, MM3+ and cluster-1, but were different from cluster-2. HRQoL was negatively associated with MM2+ (β: −0.18, SE: −0.01, p < 0.001), MM3+ (β: −0.23, SE: −0.02, p < 0.001), cluster-1 (β: −0.10, SE: 0.01, p < 0.001) and cluster-2 (β: −0.36, SE: 0.01, p < 0.001). Conclusions: Our findings confirm the existence of an inverse relationship between multimorbidity and HRQoL in the Australian population and indicate that the hierarchical clustering approach is validated when the outcome of interest is HRQoL from this head-to-head comparison. Moreover, a simple count fails to identify if there are specific conditions of interest that are driving poorer HRQoL. Researchers should exercise caution when selecting a definition of multimorbidity because it may significantly influence the study outcomes.

Item Type: Article
Uncontrolled Keywords: multimorbidity,definition,aqol-4d,hierarchical cluster,health-related quality of life (hrqol),sdg 3 - good health and well-being ,/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_being
Faculty \ School: Faculty of Medicine and Health Sciences > School of Health Sciences
UEA Research Groups: Faculty of Medicine and Health Sciences > Research Groups > Health Promotion
Faculty of Medicine and Health Sciences > Research Centres > Lifespan Health
Related URLs:
Depositing User: Pure Connector
Date Deposited: 03 Feb 2017 03:29
Last Modified: 19 Oct 2023 01:55
URI: https://ueaeprints.uea.ac.uk/id/eprint/62287
DOI: 10.1186/s12955-016-0580-x

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item