Measuring club-sequences together with the continuum large

Asperó, David and Mota, Miguel Angel (2017) Measuring club-sequences together with the continuum large. Journal of Symbolic Logic, 82 (3). pp. 1066-1079. ISSN 0022-4812

[thumbnail of Accepted manuscript]
Preview
PDF (Accepted manuscript) - Accepted Version
Download (394kB) | Preview

Abstract

Measuring says that for every sequence $(C_\delta)_{\delta<\omega_1}$ with each $C_\delta$ being a closed subset of $\delta$ there is a club $C\subseteq\omega_1$ such that for every $\delta\in C$,a tail of $C\cap\delta$ is either contained in or disjoint from $C_\delta$. We answer a question of Justin Moore by building a forcing extension satisfying measuring together with $2^{\aleph_0}>\aleph_2$. The construction works over any model of ZFC + CH and can be described as a finite support forcing iteration with systems of countable models as side conditions and with symmetry constraints imposed on its initial segments. One interesting feature of this iteration is that it adds dominating functions $f:\omega_1\longrightarrow\omega_1$ mod. countable at each of its stages.

Item Type: Article
Uncontrolled Keywords: measuring,large continuum,iterated forcing with symmetric systems of models as side conditions
Faculty \ School: Faculty of Science > School of Mathematics (former - to 2024)
UEA Research Groups: Faculty of Science > Research Groups > Logic (former - to 2024)
Faculty of Science > Research Groups > Algebra, Logic & Number Theory
Depositing User: Pure Connector
Date Deposited: 13 Jan 2017 00:05
Last Modified: 07 Nov 2024 12:39
URI: https://ueaeprints.uea.ac.uk/id/eprint/62026
DOI: 10.1017/jsl.2017.4

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item