Eldridge, Tilly, Łangowski, Łukasz, Stacey, Nicola, Jantzen, Friederike, Moubayidin, Laila, Sicard, Adrien, Southam, Paul, Kennaway, Richard, Lenhard, Michael, Coen, Enrico S. and Østergaard, Lars (2016) Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy. Development, 143 (18). pp. 3394-3406. ISSN 0950-1991
Preview |
PDF (Published manuscript)
- Published Version
Available under License Creative Commons Attribution. Download (5MB) | Preview |
Abstract
Fruits exhibit a vast array of different 3D shapes, from simple spheres and cylinders to more complex curved forms; however, the mechanism by which growth is oriented and coordinated to generate this diversity of forms is unclear. Here, we compare the growth patterns and orientations for two very different fruit shapes in the Brassicaceae: the heart-shaped Capsella rubella silicle and the near-cylindrical Arabidopsis thaliana silique. We show, through a combination of clonal and morphological analyses, that the different shapes involve different patterns of anisotropic growth during three phases. These experimental data can be accounted for by a tissue-level model in which specified growth rates vary in space and time and are oriented by a proximodistal polarity field. The resulting tissue conflicts lead to deformation of the tissue as it grows. The model allows us to identify tissue-specific and temporally specific activities required to obtain the individual shapes. One such activity may be provided by the valve-identity gene FRUITFULL, which we show through comparative mutant analysis to modulate fruit shape during post-fertilisation growth of both species. Simple modulations of the model presented here can also broadly account for the variety of shapes in other Brassicaceae species, thus providing a simplified framework for fruit development and shape diversity.
Item Type: | Article |
---|---|
Additional Information: | © 2016. Published by The Company of Biologists Ltd This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
Uncontrolled Keywords: | brassicaceae,capsella,arabidopsis,fruit shape,modelling,anisotropic growth |
Faculty \ School: | Faculty of Science > School of Computing Sciences |
Related URLs: | |
Depositing User: | Pure Connector |
Date Deposited: | 30 Sep 2016 12:00 |
Last Modified: | 07 Nov 2024 00:42 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/60636 |
DOI: | 10.1242/dev.135327 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |