Predictors of 25(OH)D half-life and plasma 25(OH)D concentration in The Gambia and the UK

Jones, K S, Assar, S, Vanderschueren, D, Bouillon, R, Prentice, A and Schoenmakers, I (2015) Predictors of 25(OH)D half-life and plasma 25(OH)D concentration in The Gambia and the UK. Osteoporosis International, 26 (3). pp. 1137-46. ISSN 0937-941X

[thumbnail of Published manuscript]
Preview
PDF (Published manuscript) - Published Version
Download (238kB) | Preview

Abstract

Summary: Predictors of 25(OH)D3 half-life were factors associated with vitamin D metabolism, but were different between people in The Gambia and the UK. Country was the strongest predictor of plasma 25(OH)D concentration, probably as a marker of UVB exposure. 25(OH)D3 half-life may be applied as a tool to investigate vitamin D expenditure.  Introduction: The aim of this study was to investigate predictors of 25(OH)D3 half-life and plasma 25(OH)D concentration.  Methods: Plasma half-life of an oral tracer dose of deuterated-25(OH)D3 was measured in healthy men aged 24–39 years, resident in The Gambia, West Africa (n = 18) and in the UK during the winter (n = 18), countries that differ in calcium intake and vitamin D status. Plasma and urinary markers of vitamin D, calcium, phosphate and bone metabolism, nutrient intakes and anthropometry were measured.  Results: Normally distributed data are presented as mean (SD) and non-normal data as geometric mean (95 % CI). Gambian compared to UK men had higher plasma concentrations of 25(OH)D (69 (13) vs. 29 (11) nmol/L; P < 0.0001); 1,25(OH)2D (181 (165, 197) vs. 120 (109, 132) pmol/L; P < 0.01); and parathyroid hormone (PTH) (50 (42, 60) vs. 33 (27, 39); P < 0.0001). There was no difference in 25(OH)D3 half-life (14.7 (3.5) days vs. 15.6 (2.5) days) between countries (P = 0.2). In multivariate analyses, 25(OH)D, 1,25(OH)2D, vitamin D binding protein and albumin-adjusted calcium (Caalb) explained 79 % of variance in 25(OH)D3 half-life in Gambians, but no significant predictors were found in UK participants. For the countries combined, Caalb, PTH and plasma phosphate explained 39 % of half-life variability. 1,25(OH)2D, weight, PTH and country explained 81 % of variability in 25(OH)D concentration; however, country alone explained 74 %.  Conclusion: Factors known to affect 25(OH)D metabolism predict 25(OH)D3 half-life, but these differed between countries. Country predicted 25(OH)D, probably as a proxy measure for UVB exposure and vitamin D supply. This study supports the use of 25(OH)D half-life to investigate vitamin D metabolism.

Item Type: Article
Additional Information: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
Uncontrolled Keywords: 24,25(oh)2d,gambia,half-life,vitamin d binding protein,vitamin d metabolism
Faculty \ School: Faculty of Medicine and Health Sciences > Norwich Medical School
UEA Research Groups: Faculty of Medicine and Health Sciences > Research Groups > Musculoskeletal Medicine
Faculty of Medicine and Health Sciences > Research Groups > Nutrition and Preventive Medicine
Depositing User: Pure Connector
Date Deposited: 24 Sep 2016 00:50
Last Modified: 22 Oct 2022 01:31
URI: https://ueaeprints.uea.ac.uk/id/eprint/60240
DOI: 10.1007/s00198-014-2905-0

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item