Cabrera, Juan J., Salas, Ana, Torres, María J., Bedmar, Eulogio J., Richardson, David J. ORCID: https://orcid.org/0000-0002-6847-1832, Gates, Andrew J. ORCID: https://orcid.org/0000-0002-4594-5038 and Delgado, María J. (2016) An integrated biochemical system for nitrate assimilation and nitric oxide detoxification in Bradyrhizobium japonicum. Biochemical Journal, 473 (3). pp. 297-309. ISSN 0264-6021
Preview |
PDF (BiochemJ_2016_473_3_297)
- Published Version
Available under License Creative Commons Attribution. Download (702kB) | Preview |
Abstract
Rhizobia are recognized to establish N2-fixing symbiotic interactions with legume plants. Bradyrhizobium japonicum, the symbiont of soybeans, can denitrify and grow under free-living conditions with nitrate (NO3−) or nitrite (NO2−) as sole nitrogen source. Unlike related bacteria that assimilate NO3−, genes encoding the assimilatory NO3− reductase (nasC) and NO2− reductase (nirA) in B. japonicum are located at distinct chromosomal loci. The nasC gene is located with genes encoding an ABC-type NO3− transporter, a major facilitator family NO3−/NO2− transporter (NarK), flavoprotein (Flp) and single-domain haemoglobin (termed Bjgb). However, nirA clusters with genes for a NO3−/NO2−-responsive regulator (NasS-NasT). In the present study, we demonstrate NasC and NirA are both key for NO3− assimilation and that growth with NO3−, but not NO2− requires flp, implying Flp may function as electron donor to NasC. In addition, bjgb and flp encode a nitric oxide (NO) detoxification system that functions to mitigate cytotoxic NO formed as a by-product of NO3− assimilation. Additional experiments reveal NasT is required for NO3−-responsive expression of the narK-bjgb-flp-nasC transcriptional unit and the nirA gene and that NasS is also involved in the regulatory control of this novel bipartite assimilatory NO3−/NO2− reductase pathway.
Item Type: | Article |
---|---|
Additional Information: | © 2016 Authors This is an open access article published by Portland Press Limited and distributed under the Creative Commons Attribution License 3.0. |
Uncontrolled Keywords: | nitrate reduction,nitrite reduction,nitric oxide reductase,bacterial hemoglobin,bacterial denitrification |
Faculty \ School: | Faculty of Science > School of Biological Sciences |
UEA Research Groups: | Faculty of Science > Research Groups > Molecular Microbiology Faculty of Science > Research Groups > Organisms and the Environment Faculty of Science > Research Centres > Centre for Molecular and Structural Biochemistry |
Depositing User: | Pure Connector |
Date Deposited: | 27 Jan 2016 11:00 |
Last Modified: | 04 May 2023 21:30 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/56786 |
DOI: | 10.1042/BJ20150880 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |