Martí-Gastaldo, Carlos, Antypov, Dmytro, Warren, John, Briggs, Michael, Chater, Philip A., Wiper, Paul V., Miller, Gordon J., Khimyak, Yaroslav ORCID: https://orcid.org/0000-0003-0424-4128, Darling, George R., Berry, Neil G. and Rosseinsky, Matthew J. (2014) Sidechain control of porosity closure in multiple peptide-based porous materials by cooperative folding. Nature Chemistry, 6 (4). pp. 343-351. ISSN 1755-4330
Preview |
PDF (Y. Khimyak - Nature_Chemistry_submitted text)
- Accepted Version
Download (1MB) | Preview |
Abstract
Porous materials find application in separation, storage and catalysis. We report a crystalline porous solid formed by coordination of metal centres with a glycylserine dipeptide. We prove experimentally that the structure evolves from a solvated porous into a non-porous state as result of ordered displacive and conformational changes of the peptide that suppress the void space in response to environmental pressure. This cooperative closure, which recalls the folding of proteins, retains order in three-dimensions and is driven by the hydroxyl groups acting as H-bond donors in the peptide sequence through the serine residue. This ordered closure is also displayed by multipeptide solid solutions in which the combination of different sequences of amino acids controls their guest response in a non-linear way. This functional control can be compared to the effect of single point mutations in proteins, where the exchange of single amino acids can radically alter structure and function
Item Type: | Article |
---|---|
Faculty \ School: | Faculty of Science > School of Pharmacy (former - to 2024) |
UEA Research Groups: | Faculty of Science > Research Groups > Drug Delivery and Pharmaceutical Materials (former - to 2017) Faculty of Science > Research Groups > Pharmaceutical Materials and Soft Matter |
Depositing User: | Pure Connector |
Date Deposited: | 23 Dec 2015 12:44 |
Last Modified: | 08 Sep 2024 09:32 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/55878 |
DOI: | 10.1038/NCHEM.1871 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |