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Abstract 

Porous materials find application in separation, storage and catalysis. We report a 

crystalline porous solid formed by coordination of metal centres with a glycylserine dipeptide. 

We prove experimentally that the structure evolves from a solvated porous into a non-porous 

state as result of ordered displacive and conformational changes of the peptide that suppress 

the void space in response to environmental pressure. This cooperative closure, which recalls 

the folding of proteins, retains order in three-dimensions and is driven by the hydroxyl groups 

acting as H-bond donors in the peptide sequence through the serine residue. This ordered 

closure is also displayed by multipeptide solid solutions in which the combination of different 

sequences of amino acids controls their guest response in a non-linear way. This functional 

control can be compared to the effect of single point mutations in proteins, where the 

exchange of single amino acids can radically alter structure and function. 

 

Introduction 

Metal-Organic Frameworks (MOFs) are a class of crystalline, microporous materials built 

up from the combination of metal ions or clusters with organic linkers. 1  Their intrinsic 

porosity and the presence of metal sites confer interesting properties on these solids of use in 

gas storage and separation,2,3 heterogeneous catalysis,4,5 drug delivery6 or sensing,7,8 amongst 

a range of applications. Furthermore, their rich structural diversity, generally controlled by the 

topology and denticity of the organic synthon, enables access to pores of variable size 9,10 or 

fine-tuning of their physical behaviour by the introduction of functional organic sites (FOS) 

that decorate the pore walls and tune the guest-to-framework interaction.11 These systems thus 

offer chemically controllable ordered porosity because of the functional role of the organic 

linker in determining the internal surface chemistry and the structural response to guests. 

Biologically derived linkers such as amino acids (aa’s)12 or nucleobases13 have proven 

successful in the synthesis of MOFs. 14  These molecules afford extensive chemical 

functionality, including chirality and versatile metal binding modes. Peptides are a 

particularly diverse set of candidate linkers within this class because of the array of sidechain 

chemistries and the role of amino acid residue sequence in controlling their behaviour. 

Peptides differ from classical rigid aromatic-based MOF linkers in the extensive 

conformational space accessible through low-energy torsions. Such modes enable protein 

folding, which can take place in an ordered manner between well-defined structures involving 

large atomic displacements, in response to environmental changes.15 The torsional manifold 

of the peptide chains, controlled by the nature and sequence of the amino acid residues, 



allows the required conformations to be accessed, thereby enabling key biochemical 

processes. As the torsional response of an oligopeptide chain, though by definition less 

complex than that of a protein, is also controlled by the amino acid sequence, there is an 

opportunity to use these motions, and any translational displacements they may enable, to 

control the guest response of a MOF. The disordered torsional response of GA in Zn(Gly-

Ala)2 closes the pore space upon guest removal.16 Here, changes in the torsions of the peptide 

linker adapt the pore morphology in response to the presence of guests. This contrasts with 

the classical rigid behaviour of Zn(Gly-Thr)2,
17 which is a robust permanently porous material 

whose structure is invariant to the presence or nature of guests. Unlike Gly-Ala (GA), Gly-

Thr (GT) is conformationally invariant, as it forms a chelate to Zn2+ and establishes additional 

H-bonds mediated by the –OH groups in the Thr side-chain which are of course inaccessible 

to the -CH3 of Ala. These examples demonstrate the critical role of the sidechain in 

controlling how the torsional degrees of freedom can be deployed in response to 

environmental changes. Exploiting the torsional space accessible to the peptide linker within 

an open framework to induce an ordered and controlled structural response to guests more 

directly analogous to the changes undergone by proteins remains a challenge. We show that 

changing one dipeptide residue in the linker to form Gly-Ser (GS) allows ordered torsional 

change and displacement upon guest loss to effect reversible closure of the pores controlled 

by the side chain hydrogen bonding in Zn(Gly-Ser)2 and coupled to large ordered 

displacements of the peptide linkers that reversibly suppresses 90% of the initial pore volume. 

The Ser sidechain retains the –OH functionality of Thr but the change from a secondary to a 

primary alcohol is sufficient to produce this dramatic change in guest response. The 

construction of multiple GlyX dipeptide frameworks from the three X residues whose 

sidechains each impose distinct functions is then demonstrated to control the overall 

cooperative MOF response in a tuneable way via peptide torsions and sidechain chemistry, 

attaining responses that are not linear combinations of the end-member single peptide 

materials. The incorporation of multiple peptides in an MOF framework to control function 

has analogy with the role of the much more complex and better-ordered amino acid sequences 

in controlling protein behaviour. 

 

Results and discussion 

Solvothermal reaction of zinc (II) nitrate with glycylserine in a methanolic solution slightly 

basified with NaOH(aq) 1M yields prismatic colorless crystals of [Zn(Gly-Ser)2]•2CH3OH 

(ZnGS2), which crystallize in the chiral monoclinic space group P21212 (Flack 

parameter=0.00(2)). ZnGS2 is isostructural to [Zn(Gly-Ala)2]•(solvent) (ZnGA2),
16 and can be 

described as a chemically modified analogue that incorporates hydroxyl (–OH) groups in the 

α-carbon position of the C-terminus residue of the oligopeptide. The primary –OH sidechain 

thus imposes a different structure than that found for the Thr secondary –OH in Zn(Gly-Thr)2 

(ZnGT2).
17 ZnGS2 is a 2D layered MOF built from the stacking of neutral [Zn(Gly-Ser)2] 

square-like sheets. The sheets are formed by tetrahedral Zn2+ ions that are linked to four 

peptides acting as µ2-bridges. Following the same metal-to-peptide connectivity displayed by 

ZnGA2, each peptide binds two metal ions through the terminal amino and the monodentate 

carboxylate groups from the N-term Gly and C-term Ser residues, respectively, imposing 

intralayer metal-to-metal separations of 10.1615(5) (edge) and 14.0129(10) & 14.6036(10)Å 

(diagonal) (Fig.1a,b). The dipeptide GS adopts a conformation with torsion angles of -

140.0(3) and 166.0(3)º for glycyl (Φ) and serine (), respectively (SI22). The orientation of 

the –OH group from the Ser sidechain is determined by H-bonding to the MeOH guest 

(O1A···H9A, 1.92601(9)Å; Fig.SI10). This is quite different from ZnGA2 or ZnGT2 where 

the absence (GA) or ability of -OH groups from Thr to form more favourable inter and 

intraframework H-bonds with C-term carboxylate and N-term amino groups prevent guest-to-



framework sidechain H-bonds (Fig.SI11). The [Zn(Gly-Ser)2] layers are stacked along the c 

axis in an ..AA.. pattern controlled by interlayer H-bonds between peptides in neighbouring 

layers in a β–sheet mode (Fig.1c), affording isolated 1D channels occupied by MeOH guests. 

Removal of the guest generates 1D channels that are oriented along [001] and give a 

solvent accessible volume of 27.7% (267.6Å3 at 100K per unit cell; Fig.1d & SI23). This 

value is larger than the 13.6% reported for ZnGT2, but almost equivalent to that of 

isostructural ZnGA2 (30%), despite the bulkier nature of the –CH2OH side chain of L-serine 

over the –CH3 group in L-alanine. The sidechain has a more pronounced impact though on 

the morphology of the channels. Connolly surfaces display periodic constrictions as result of 

the orientation of the –OH groups from opposite dipeptides in the layer, which point towards 

the centre of the channels and impose a more acute bilobal “hourglass” shape on the void 

space than in ZnGA2 (Fig.1e). 

CHN and thermogravimetric analyses (TGA) reveal the presence of two MeOH molecules 

per unit formula in the as-made solid (SI12), in good agreement with the composition refined 

from the SCXR data. Phase purity of solvated ZnGS2 is confirmed by powder X-ray 

diffraction (PXRD; Fig.5e). 

ZnGS2 thus has the same structure as ZnGA2 but with different sidechain functionality, 

suggesting that multiple peptide linkers could be used in the construction of a single 

framework through the formation of solid solutions using all three dipeptide linkers. Multiple 

topologically similar linkers have been used to form solid solutions in classical rigid MOF 

systems18,19,20,21. We accessed the solid solutions Zn(XxY1-x)2 (X,Y=GA,GS,GT; 0x1) and 

Zn(GA0.33GS0.33GT0.33)2 using the synthesis procedure for the single peptides modified to 

afford peptide solutions as reagents and thus enable high-throughput synthesis (SI1). Lightly 

basified methanolic solutions containing the peptides and the metal precursor were dispensed 

with a liquid handling robot to guarantee high reproducibility and better control of the 

experimental ratio of the linkers in the reaction mixture. Solvothermal reaction yields 

colorless crystals with yields from 65 to 80%. The experimental ratio of dipeptides in the 

isolated solids was assessed with 1H-NMR of the solutions obtained from digesting freshly 

made crystals in D2O. The values summarized in SI14 are in good agreement with the 

theoretical ratio present in the starting solutions. This suggests that there is no preferential 

affinity of the metal for any of the dipeptides and that dipeptide connectors are perfectly 

suited for the synthesis of multiple-linker MOFs. Bulk phase purity was confirmed with 

PXRD (SI35-48). All compounds are isostructural with ZnGX2 (X=Ala,Ser) or ZnGT2 

(Fig.SI49), with the topology of the framework being fixed by the relative peptide-to-peptide 

ratio. Whereas GA(33):GS(33):GT(33) and all GA:GS ratios result in ZnGS2-like topologies, 

the introduction of GT drives the formation of solids with the ZnGT2 structure for levels of 

GT doping  75% in the GA:GT family and  50% in the GS:GT series, with the ZnGS2 

structure adopted at lower substitution levels. The formation of the ZnGS2 structure between 

isostructural GA and GS frameworks is unsurprising, but the higher GA than GS 

concentration required to sustain this topology in the presence of GT demonstrates the role of 

the GS to guest hydrogen bonding in favouring the formation of this structure. The methyl of 

the Ala sidechain is less effective in overcoming the structure direction by the Thr sidechain 

alcohol as it makes weaker and less directional intermolecular interactions. The successful 

synthesis of solid solutions extends the range of functionality displayed by the pore walls in 

the two distinct structures. SCXR analyses of as-made crystals of ZnGA(50)GS(50), 

ZnGA(50)GT(50) and ZnGS(50)GT(50) (SI15-18) reveal that the distinct functionalities are 

homogeneously distributed across the backbone of the multipeptide MOFs. They show local 

crystallographic disorder affecting the α-carbon position of the C-terminal amino acid as 

result of the distinct side-chains born by each GlyX dipeptide, with good agreement between 

the refined occupancy factors used to model the disorder and the experimental linker ratio 



extracted from NMR analysis. This is also the case for ZnGS(75)GT(25), which is 

isostructural with ZnGS2. 

Examination of the guest response of Zn-GS(75)GT(25) demonstrates the effect of the 

hydrogen bonding from the OH sidechains on the behaviour of the ZnGS2 structure. Removal 

of guests from isostructural ZnGA2 produces extensive local torsional disorder of the GlyAla 

dipeptide as shown by solid-state 13C cross-polarization/magic angle spinning nuclear 

magnetic resonance (CP/MAS NMR).16 Desolvation of ZnGS(75)GT(25) is also possible, but 

here NMR demonstrates the extremely ordered nature of the solvated and desolvated states at 

a local level (Fig.2a). The solvated solid displays equivalent environments for the GS/GT 

amino acids at 179.3, 171.1 and 44.3 ppm that can be assigned to carboxylate, carbonyl and 

the –CH2- group adjacent to the amine. Resonances in a 3:1 ratio at 65.4, 55.1, 68.8 and 57.9 

ppm are attributed to the inequivalent –CH2- and –CH- groups in the GS and GT amino acids 

respectively, consistent with the GS(75):GT(25) ratio. The presence of MeOH is confirmed 

by the resonance at 50 ppm. The remaining peak at 19.2 ppm is assigned to –CH3 from the 

GT side chain. The MeOH resonance is no longer present in the desolvated state and confirms 

successful removal of solvent. New resonances at 48.2 and 22.4 ppm can be attributed to –

CH2- and –CH3 environments in different orientation/bonding modes to those in present in the 

solvated state. Figures 2b,c display the 13C CP/MAS and corresponding PXRD patterns 

monitoring the progressive changes coupled to desolvation. Upon solvent removal, the MeOH 

resonance gradually decreases, whilst resonances attributed to the desolvated configuration 

increase. These intermediate configurations are a mixture of locally ordered solvated and 

desolvated states. This is in good agreement with the evolution of the PXRD patterns upon 

guest removal, with the guest-free state retaining similar scattering power and thus 

crystallinity to the as-grown material consistent with the order seen locally, demonstrating the 

homogeneous bulk nature of the desolvation process. 

The enhanced local order and crystallinity of guest-free ZnGS(75)GT(25) allows the 

desolvation process to be followed with synchrotron single-crystal X-ray variable-temperature 

(SCXR-VT), in contrast to the loss of single crystal diffraction from ZnGA2 upon guest loss. 

After collecting diffraction data for the as-made solvated material at 100K, the crystal was 

heated to 480K to remove all solvent molecules and cooled to 100K for data collection of the 

desolvated material. Removal of the guest molecules triggers a cooperative single-crystal-to-

single-crystal (SCTSC) rearrangement of the framework from an “open” (O) solvated into a 

“closed” (C) desolvated state (Fig.3). The hydrogen bonds to the serine sidechain OH are lost 

upon methanol removal, leaving unoccupied channels across which this uncompensated H-

bonding capacity is held apart by the walls, which consist of flexible peptide linkers. The 

resulting porosity is closed and the lost hydrogen bonding restored simultaneously by 

torsional changes of the Gly-Ser linker which enable large translational ordered displacements 

of the peptides. These processes occur cooperatively to retain order both within and between 

the layers. Whilst C retains the overall metal-to-peptide connectivity of O and displays 

analogous ..AA.. packing of the layers with equivalent interlayer H-bonds that mediate an 

interlayer separation of 4.837(5)Å (cf. 4.7401(3)Å for O), the edge and diagonal distances 

separating the metal centers across the opposite sides of the channels within the layers 

themselves decreases by 0.9, 2.7 (d1) & 0.1Å (d2), respectively, and the unit cell volume is 

reduced by 180Å3 (18.6%). This transformation is enabled by the torsional flexibility of GS, 

which folds to occupy the empty space left by the solvent molecules. The conformation of the 

peptide changes from Φ = -137.612(2) &  = 167.4872(8)º in O to -132.5(12)º and -77.4(14)º 

in C, indicating that the folding of the framework is controlled by the rotation of the N-term 

Gly aa () whilst leaving Φ almost unchanged. This is coupled to a translational 

displacement that compresses the distance between the centroids of the peptides on opposing 

channel walls by 22.0% (c1) whilst leaving c2 almost unchanged (-0.96%). This compression, 

which reduces the void space in C to 2.9% well below the solvent accessible volume of 



27.7% in O, reaches 42.3% when defined as the closest distance separating C3 atoms from 

opposite amide groups in the unit cell and 60% if considering O11···H9 distances between 

the atoms involved in host-guest/host-host H-bond formation. The torsion enables the 

displacement of the two opposite faces of the channel towards each other by allowing the two 

OH groups to move past each other, which would not be possible with a simple displacement. 

This increases the density of the structure, and restores the hydrogen bonding lost by removal 

of the initial methanol guests. This specific conformational change upon guest loss is intrinsic 

to the introduction of Ser into the dipeptide sequence, as it is driven by the energetically 

favorable formation of intralayer H-bonds between the side chain hydroxyl and the terminal 

carboxylate groups of C-terminal residues from peptides on opposite faces of the channel wall 

in C (O11···H9, 1.9622(18)Å), that energetically counterbalances the breaking of H-bonds 

between the framework and the guest in O. The combination of torsion and displacement is an 

ordered variant of the disordered closure mechanism proposed for ZnGA2, driven by the 

specific directional hydrogen bonding afforded by the serine sidechain and the need to engage 

these groups in hydrogen bonding. This affords a mechanically stable long-range ordered 

closed state giving single crystal diffraction, which enables the structure of the closed state to 

be determined unambiguously. Refinement of the PXRD pattern of desolvated ZnGS2 

confirms that it is isostructural to the “closed” state of ZnGS(75)GT(25) and so the structure 

of the single-peptide phase follows an equivalent structural evolution from porous/open to 

non-porous/closed as result of dynamical ordered closure upon desolvation. 

To understand the evolution in the conformational state of GS that directs its cooperative 

folding between the ordered, structurally well-defined O and C states, we simulated this 

process by modelling the removal of methanol molecules from an equilibrated solvated 

structure with Molecular Dynamics (MD; Fig.4 & SI30). Closing of the structure proceeds via 

a metastable intermediate configuration (I) located between O and C. First, in less than 1ps, 

all dipeptides cooperatively adopt conformation I characterized by Φ = - 129.4 &  = -158.0º 

as –OH groups in Ser take the space previously occupied by methanol molecules. This 

enables formation of intralayer H-bonds between –OH groups in Ser and the C-term 

carboxylate group from neighbouring peptides (O···H, 1.88Å), reminiscent of those in C, and 

is facilitated by changes in orientation of the amine group and valence angles around Zn2+. 

This folding is also coupled to a displacement of the peptides that squeezes the void space to 

6.5% and reduces the distance separating opposite peptides to 5.28Å (cf. 9.223(6) and 

5.21(3)Å for O & C). In a second stage, the metastable state I gradually evolves to C with all 

dipeptides adopting their closed conformation over a time of 300ps without the cooperative 

simultaneous adoption of this state that characterises the transition from O to I. The presence 

of the OH groups in GS enables ordered closure of the structure, producing a narrower 

conformational distribution (Fig.SI30d) than that adapted by GA in the disordered ZnGA2 

(Fig.SI31d) where the –CH3 group cannot provide equivalent strong and directional hydrogen 

bonding interactions. 

To verify the details of the collapse pathway we conducted DFT calculations of single unit 

cells with all possible combinations of GS linker conformations seen in states I and C. This 

confirmed the existence of the metastable state I seen in MD and that higher fractions of C-

like conformations lead to more compact and more energetically favourable structures as 

shown in Fig.4d. The DFT optimization of a unit cell of O after removal of the methanol 

molecules reveals that the resultant empty structure is energetically unfavourable due to 

breaking of the H-bonds with the guests. This demonstrates that folding of ZnGS2 is driven by 

the formation of intraframework H-bonds followed by the relaxation of thermally accessible 

metastable configurations into the global energy minimum state, C.  

Side-chain-enabled ordered closure of the framework. The effect of the OH sidechains 

extends to the multipeptide MOFs (Fig.5). The dipeptide combinations affording ZnGT2-type 

topologies remain structurally unchanged after solvent removal and display classical Type I 



CO2 adsorption at 195K (Type Rp; rigid porous). As illustrated in Fig.5b, this behavior is 

equivalent to that reported for the single-peptide ZnGT2 phase and is determined by the 

robustness of the frameworks, which remain intact upon evacuation. Micropore volumes, 

calculated for the maximum uptake at 1bar, vary from 0.112 to 0.109 cm3.g-1 (SI66) and are 

consistent with the value of 0.093cm3.g-1 calculated from the crystal structure of desolvated 

ZnGT2.
17 Isosteric heats of adsorption (Qst) were calculated by fitting the adsorption branches 

at 273 and 298K to a virial-type expression.22  Values at zero coverage suggest that the 

frameworks display a higher affinity for CO2 at increasing levels of GT doping. 

All of the solids adopting the GS/GA structure undergo dynamical ordered closure upon 

guest loss. Even 10% GS substitution into ZnGA2 is sufficient to drive ordered closure by 

nucleating the cooperative torsional change required through hydrogen bonding. Within this 

flexible (F) class, there are two categories of behavior. Structures adopting this topology 

where all the dipeptides have hydrogen bonding sidechains (GS, GS:GT for GS  50%) 

remain closed to CO2 at pressures up to 15 bar (the highest measured), in contrast to ZnGA2 

which admits CO2 above a gate pressure of 0.2 bar at 195K and 2 bar at 273K. The interaction 

of CO2 molecules with ZnGS2 (and the isostructural all-OH sidechain materials) is not strong 

enough to break the sidechain to carboxylate H-bonds stabilizing the closed state and trigger 

the re-opening of the pores up to 15 bar at 273K. However, exposure to the polar guest MeOH 

results in uptake to re-form the open structure driven by the formation of sidechain–guest H-

bonds (Fig.5e). These materials are classified as flexible non-porous FnpCO2 in recognition of 

their closure to CO2 over the studied conditions. 

In contrast, Zn(GS/GA)2-structured materials containing GA will adsorb CO2 above a 

temperature-dependent gate pressure Pgo which is controlled by the amount of GA present. 

This is consistent with the methyl sidechain of GA disrupting the H bonding network 

sufficiently to permit opening of the structure in the presence of CO2, which has weaker 

guest-host interactions than the H-bonding methanol which is required to open the all-H-

bonded sidechain GS/GT materials with this structure. Comparison of the experimental CO2 

isotherms of ZnGA2, ZnGA(75)GS(25) and ZnGA(75)GT(25) at 195K (Fig.5c) reveals an 

increased gate pressure from 35mbar (ZnGA2) to 125 and 240mbar. This gate pressure is 

higher for an equivalent amount of GT than GS, demonstrating that H-bonding involving Thr 

is more effective in closing the structure than that involving Ser. By comparing the chemical 

potential of CO2 at Pgo for the GA:GS dyad, we found that, compared to ZnGA2, the 

additional free energy required to open the closed structure increases linearly with the content 

of GS (SI33). This gives rise to an exponential dependence of Pgo with the concentration of 

GS shown in Fig.5d. The model predicts that ZnGS2 will remain closed up to an inaccessible 

Pgo of 17 bar at 195K, consistent with the observed behavior. These materials are denoted as 

FpCO2 (flexible porous to CO2). 

The distinct structural responses to CO2 of the all H-bonding sidechain FnpCO2 materials 

and the –CH3 sidechain-containing FpCO2 compounds was demonstrated by in-situ gas-cell 

synchrotron PXRD measurements on increasing the CO2 pressure to 10 bar and then 

decreasing it (Fig.5f) on two compositions that are isostructural when desolvated as both 

adopt the C structure of ZnGS2: the FnpCO2 ZnGS(75)GT(25) and the FpCO2 ZnGA(75)GT(25). 

The PXRD pattern of the ZnGS(75)GT(25) remains unchanged for the whole interval of 

pressures studied confirming that the structure remains closed up to 10 bar, in good agreement 

with the sorption measurements. In contrast, ZnGA(75)GT(25) displays a progressive re-

opening of the structure upon gas loading, reaching approximately 50% conversion at 10 bar 

and approximately 90% at 15 bar (Fig.SI68). Reduction of the pressure from 15 bar leads to 

reversible closure of the structure. These data show that the ordered torsional changes closing 

the porosity can be reversed by CO2 above a gate pressure to open the structure when methyl 

sidechains disrupt the hydrogen bonding pattern responsible for stabilising the closed 

structure, but not when there is a complete set of sidechain to C-terminal carboxylate 



hydrogen bonds favouring the closure structure of every potential guest location. The 

interactions between the sidechains within the solid solution structures produce synergic 

effects that give guest response which is not a linear combination of the two end-members 

e.g. both ZnGA2 and ZnGT2 are open to CO2 at 195K at pressures below 0.2 bar (ZnGT2 is 

open at all pressures) but ZnGA(50)GT(50) is closed up to the maximum measured pressure 

of 15 bar because the GA concentration drives the material into the GA/GS structure type, and 

the GT imposes ordered closure upon guest loss into the GS C structure which is locked 

closed by the Thr-based sidechain to carboxylate hydrogen bonding. The GA thus changes the 

GT-based structure to a GA-based one, and the GT imposes non-GA properties to give a non-

linear change in performance with respect to the end-member compounds. 

The torsional degrees of freedom of the GS dipeptide reposition the OH-bearing sidechain 

of the Ser residue to enable a large translational displacement of the peptide. These coupled 

motions form a hydrogen bond that closes the structure of ZnGS2 on guest loss in an ordered 

manner driven by this conformational change, affording a mechanically stable and 

translationally symmetric closed state where the lost hydrogen bonding to the guest is 

compensated by the new host-host interaction. This contrasts with the disordered closure of 

ZnGA2 where the absence of directional bonding associated with the methyl sidechain of Ala 

offers no unique closure path. The strength of the resulting hydrogen bond makes the 

structure openable only by polar guests rather than the CO2-accessible porosity offered by the 

isostructural ZnGA2 and the rigid ZnGT2, demonstrating the changes in function associated 

with a difference in one amino acid residue that result from coupling of sidechain 

functionality to torsional changes. Crystallinity is retained despite these large displacements 

due to the ordered nature of the closure favoured by the directional nature of the hydrogen 

bonds that drive it. In proteins, coupled torsional and translational displacements are 

associated with folding into conformations appropriate for a given environment and function, 

and single point mutations can radically alter structure and function. For example, the 

Drosophila GABA receptor displays insecticide resistance when Ala is exchanged with Ser 

whilst this is reduced by Thr to Ala mutation. 23,24 The sidechain control of ZnXY2 dipeptide 

framework function permits the tuning of their properties over a wide range through the 

formation of multipeptide solid solutions which display non-linear property variations due to 

synergic interactions between the functional groups on the constituent peptides, setting the 

challenge of ordering the assembly of these multiple peptides within solids to access new 

properties. 
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Figure 1. Structure of as-made ZnGS2 (a) Chemical structure of the peptide, tetrahedral 

coordination of the Zn (II) ion and peptide-to-metal connectivity in the solvated structure of 

[Zn(Gly-Ser)2]. (b) Square-like structure viewed along the c axis. The resulting pockets are 

filled with methanol molecules in the solvated material. See SI25 for a theoretical description 

of the location of MeOH molecules in the structures of solvated GS2 and GA2.(c) ß-sheet 

packing of the layers as imposed by the H-bonds (represented by red dashed lines) involving. 

N-H and C=O groups from neighboring layers (d) One-dimensional channels running parallel 

to [001]. (e) Bilobal “hourglass” shaped pore imposed by the projection of the hydroxyl 

groups from the –CH2OH side chain of the L-serine units. Zn, dark blue; O, red; C, grey; N, 

blue; H, white. 

 

 



Figure 2. Ordered nature of the local environment in solvated and desolvated 

ZnGS(75)GT(25) (a) Solid-state 13C CP/MAS NMR of as-made (top) and desolvated 

(bottom) ZnGS(75)GS(25) at room temperature that confirm the preservation of local order 

upon solvent removal. The table summarizes the assignment of the spectra (see text for more 

details). Evolution of the 13C CP/MAS NMR spectra (b) and PXRD (c) of ZnGS(75)GS(25) 

upon progressive solvent removal: as-made (100% open), overnight evacuation at room 

temperature (83.9(4)% open), evacuation at 60ºC for 48hrs (14.8(7)% open) and evacuation 

at 60ºC for 48hrs under N2 followed by packing in the glove box (0% open). Observed 

(black), calculated (red) and difference (grey) profiles from Rietveld refinement used to 

calculate the relative phase percentages are shown (see SI4 for more details). Tick marks 

indicate the Bragg reflections for the “open” (blue) and “closed” (black) structures. Most 

intense diffraction lines characteristic of the “open” and “closed” states are highlighted in 

grey. 

 

 

 



Figure 3. Structure of desolvated ZnGS(75)GT(25) and metrics of the SCTSC 

transformation (a) Tetrahedral coordination of the Zn (II) ion and peptide-to-metal 

connectivity upon solvent removal in ZnGS(75)GT(25). New intralayer H-bonds formed upon 

the framework closure are highlighted as dashed red lines. (b) Rectangle-like structure of the 

neutral layers along the c axis. (c) ß-sheet packing of the layers as imposed by the H-bonds 

involving N-H and C=O groups from neighboring layers which are preserved upon guest loss 

(dashed bonds in blue). (d) Metrics of the SCTSC open-to-close transformation highlighting 

the changes in the intercation distances -edge (orange) & diagonals d1 & d2 (purple)- and 

peptide-to-peptide separation defined as: distance between peptides’ centroids from opposing 

walls (c1 & c2; green), closest distance separating C3 atoms from opposite amide groups (blue) 

and O11···H9 distances between the atoms involved in host-guest/host-host H-bond 

formation (red). Zn, dark blue; O, red; C, grey; N, blue; H, white. For clarity we have not 

distinguished between the positions of the sidechain –H and –CH3 substituents associated 

with the GS and GT residues. 

 



 



Figure 4. Computational modeling of the cooperative peptide folding closure mechanism (a) 

Comparison of the structure of ZnGS(75)GT(25) in the open (O), intermediate (I) and closed (C) 

states displaying the folding of the peptide coupled to reduction of the porosity shown by 

representation of the Connolly surfaces. O and C correspond to SCXR-VT experiments whilst I was 

identified in MD simulations of the guest-loss and closure process. The change in the peptide 

translational state has been defined as the closest distance separating C3 atoms from opposite amide 

groups in the unit cell. (b) Overlaid representation of the different conformations adopted by the GS 

dipeptide upon ordered closure. (c) Overlaid free energy profiles in the (,) plane calculated from 

MD simulations of the C and O phases in equilibrium. There is a single energy minimum in phase O, 

whereas both conformations I (metastable) and C (stable) can be observed for phase C. The contour 

lines correspond to 1, 2 and 3 kBT at 298K. (d) Relative energies and the distance separating opposite 

peptides in a unit cell containing 4 GS peptides in different conformations calculated with DFT. C, I 

and O denote unit cells with all 4 peptides in respectively closed, intermediate and open conformation, 

while numbers correspond to the number of intermediate peptides present for mixed I/C states. See 

SI26 for more details. 

 



Figure 5. Porosity and powder diffraction data of ZnGS2 and multiple peptide MOFs (a) 

Ternary diagram summarizing the overall structure and highlighting the three different types 

of CO2 porosity in the multipeptide MOFs as controlled by the relative dipeptide-to-dipeptide 

ratios: rigid porous (Rp, black), flexible non-porous to CO2 (FnpCO2, grey) and flexible porous 

to CO2 (FpCO2, color gradient is connected to variation in the gate opening pressure). Filled 

dots and squares stand for Zn(GS/GA)2 and ZnGT2 topologies, respectively. (b) CO2 

isotherms at 195K of the Rp: ZnGA(25)GT(75) (circles), ZnGS(50)GT(50) (triangles) and 

ZnGS(25)GT(75) (squares). Inset: Isosteric heats of adsorption calculated from the adsorption 

branches at 273 and 298K with a virial-type expression. (c) CO2 isotherms at 195K of ZnGA2 

(circles) and the FpCO2: ZnGA(90)GS(10) (triangles), ZnGA(75)GS(25) (squares), 

ZnGA(75)GT(25) (tilted triangles), ZnGA(60)GS(40) (diamonds) and Zn-GA(50)GS(50) 

(inverted triangles). Filled and empty symbols stand for adsorption and desorption, 

respectively. (d) Variation of Pgo with GA doping for the GA:GS dyad. Inset displays the 

linear regime followed by the additional free energy required to open the closed structure with 

GS%. Red solid lines stand for the best fit of the experimental data to the theoretical model 

described in SI33. (e) PXRD patterns of ZnGS2: as-made (red), after overnight evacuation 

(black) and after controlled exposure to MeOH vapors (blue). (f) In-situ Synchrotron PXRD 

of a) FpCO2 ZnGA(75)GT(25) and b) FnpCO2 ZnGS(75)GT(25). Samples were measured as-

made (red), desolvated (black) and under a pressure of approximately 10 bar CO2 (green). 

Powder diffraction data is shown as a function of scattering vector, Q = 4sinθ/λ. See SI4 for 

details and SI34-48 for refinement of the PXRD data and calculated unit cell parameters. 

Most intense diffraction lines characteristic of the “open” and “closed” states are highlighted 

in gray. 
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