Insight into Shiga toxin genes encoded by Escherichia coli O157 from whole genome sequencing

Ashton, Philip M., Perry, Neil, Ellis, Richard, Petrovska, Liljana, Wain, John, Grant, Kathie A., Jenkins, Claire and Dallman, Tim J. (2015) Insight into Shiga toxin genes encoded by Escherichia coli O157 from whole genome sequencing. PeerJ, 3. ISSN 2167-8359

[img]
Preview
PDF (PeerJ_JWain_2015) - Published Version
Download (2MB) | Preview

Abstract

The ability of Shiga toxin-producing Escherichia coli (STEC) to cause severe illness in humans is determined by multiple host factors and bacterial characteristics, including Shiga toxin (Stx) subtype. Given the link between Stx2a subtype and disease severity, we sought to identify the stx subtypes present in whole genome sequences (WGS) of 444 isolates of STEC O157. Difficulties in assembling the stx genes in some strains were overcome by using two complementary bioinformatics methods: mapping and de novo assembly. We compared the WGS analysis with the results obtained using a PCR approach and investigated the diversity within and between the subtypes. All strains of STEC O157 in this study had stx1a, stx2a or stx2c or a combination of these three genes. There was over 99% (442/444) concordance between PCR and WGS. When common source strains were excluded, 236/349 strains of STEC O157 had multiple copies of different Stx subtypes and 54 had multiple copies of the same Stx subtype. Of those strains harbouring multiple copies of the same Stx subtype, 33 had variants between the alleles while 21 had identical copies. Strains harbouring Stx2a only were most commonly found to have multiple alleles of the same subtype (42%). Both the PCR and WGS approach to stx subtyping provided a good level of sensitivity and specificity. In addition, the WGS data also showed there were a significant proportion of strains harbouring multiple alleles of the same Stx subtype associated with clinical disease in England.

Item Type: Article
Additional Information: Copyright © 2015 Ashton et al. Licence: This is an open access article distributed under the terms of the Open Government License.
Uncontrolled Keywords: stx,genomics,sequencing,o157,e. coli
Faculty \ School: Faculty of Medicine and Health Sciences > Norwich Medical School
Depositing User: Pure Connector
Date Deposited: 17 Apr 2015 15:58
Last Modified: 22 Apr 2020 00:06
URI: https://ueaeprints.uea.ac.uk/id/eprint/53181
DOI: 10.7717/peerj.739

Actions (login required)

View Item View Item