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ABSTRACT
The ability of Shiga toxin-producing Escherichia coli (STEC) to cause severe illness
in humans is determined by multiple host factors and bacterial characteristics,
including Shiga toxin (Stx) subtype. Given the link between Stx2a subtype and
disease severity, we sought to identify the stx subtypes present in whole genome
sequences (WGS) of 444 isolates of STEC O157. Difficulties in assembling the stx
genes in some strains were overcome by using two complementary bioinformatics
methods: mapping and de novo assembly. We compared the WGS analysis with the
results obtained using a PCR approach and investigated the diversity within and
between the subtypes. All strains of STEC O157 in this study had stx1a, stx2a or stx2c
or a combination of these three genes. There was over 99% (442/444) concordance
between PCR and WGS. When common source strains were excluded, 236/349
strains of STEC O157 had multiple copies of different Stx subtypes and 54 had multi-
ple copies of the same Stx subtype. Of those strains harbouring multiple copies of the
same Stx subtype, 33 had variants between the alleles while 21 had identical copies.
Strains harbouring Stx2a only were most commonly found to have multiple alleles of
the same subtype (42%). Both the PCR and WGS approach to stx subtyping provided
a good level of sensitivity and specificity. In addition, the WGS data also showed there
were a significant proportion of strains harbouring multiple alleles of the same Stx
subtype associated with clinical disease in England.

Subjects Bioinformatics, Genetics, Genomics, Microbiology
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INTRODUCTION
Shiga toxin-producing Escherichia coli (STEC) are a rare but potentially fatal cause

of gastroenteritis. They are associated with a wide spectrum of disease ranging from

mild to bloody diarrhoea, through to haemorrhagic colitis and haemolytic uraemic

syndrome (HUS) (Pennington, 2010). The main reservoir of STEC in England is cattle,

although it is carried by other animals, mainly ruminants. Transmission to humans occurs

through direct or indirect contact with animals or their environments; consumption of

contaminated food or water, and through person-to-person contact. Each year, there are
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approximately 900 cases of STEC O157 in England confirmed by the Gastrointestinal

Bacteria Reference Unit (GBRU) at Public Health England.

The primary STEC virulence factor responsible for the most serious outcomes of human

infection is Shiga toxin (Stx), an AB5 toxin that targets cells expressing the glycolipid

globotriaosylceramide (Gb3), disrupting host protein synthesis and causing apoptotic

cell death (Ethelberg et al., 2004). Renal epithelial cell membranes are enriched for Gb3,

resulting in the kidneys bearing the brunt of Stx toxicity; in 5%–10% of cases, this leads

to the development of Hemolytic Uremic Syndrome (HUS) (Pennington, 2010). There are

two types of Stx: Stx1 and Stx2, and both have multiple subtypes. These subtypes can be

differentiated using a PCR targeted at the encoding genes described by Scheutz et al. (2012).

In addition, a web-based tool, VirulenceFinder, has been developed which uses a de novo

assembly followed by BLAST approach to identify subtypes of Stx (Joensen et al., 2014).

This system was shown to have good, but not perfect, agreement with PCR, although how

it handles strains that encode both stx2a and stx2c is uncertain as no strains that encoded

both these subtypes were examined (Joensen et al., 2014). The ability of STEC to cause

severe illness in humans is determined by multiple bacterial factors (in addition to host

factors), including Shiga toxin subtype. There is evidence that the Stx2a subtype is signifi-

cantly associated with progression to HUS (Persson et al., 2007; Luna-Gierke et al., 2014).

As part of a project investigating the utility of whole genome sequencing (WGS) for

public health surveillance and outbreak investigation of foodborne pathogens, high

throughput, short read Ilumina GAII sequence data for 444 strains of STEC O157 isolated

in England between 2009 and 2013 was obtained. We determined the presence, or absence,

of the Stx encoding genes stx1 and stx2 in all 444 isolates of STEC O157 from the genome

sequence data. Given the link between Stx subtype and disease severity, we also sought to

identify the stx subtypes present using bioinformatics methods and to compare the results

with those obtained using the PCR scheme of Scheutz et al. (2012).

WGS high throughput short read technologies are rapid and low cost compared to

Sanger sequencing, but it was recognised early on that assembling short reads would

be problematic (Chaisson, Pevzner & Tang, 2004). A major difficulty in assembly is the

presence of repeat sequences that are longer than the read length. Furthermore, the study

by Scheutz et al. (2012) clearly demonstrated that as well as a high level of similarity

between stx2a, stx2c and stx2d there is also considerable diversity within each of these

subtypes. The assembly of stx into one contig in strains of STEC O157 containing both

stx2a and stx2c is difficult because the regions of variation between these subtypes are

concentrated at the 5′ and 3′ ends of the coding DNA sequence (CDS), with a largely

homogenous region in the centre. Existing methods for subtyping stx from short read

data have not been tested against strains encoding stx2a and stx2c (Joensen et al., 2014).

This region of 100% identity is often longer than the typical read length of short read

sequencing technologies, so contiguous assembly of both subtypes relies on information

from the paired end reads, which has a limited ability to resolve repeats up to the average

fragment size (550–700 bp for Illumina Nextera mate-pair). The STEC O157 Sakai

reference genome encodes 18 pro-phage that show a large degree of modularity and
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similarity (Asadulghani et al., 2009); this further complicates assembly of these regions

(Hayashi et al., 2001). These difficulties have led to a relative paucity of data on the presence

of subtypes of Stx within the E. coli population despite large WGS projects.

In this study a dual bioinformatic approach was taken, using both mapping and

de novo assembly to determine stx subtype. The results of the bioinformatic analysis were

compared to the results from the PCR typing method (Scheutz et al., 2012). In addition,

the diversity within and between the stx subtype genes were investigated and evidence that

certain strains contained multiple copies of the same stx subtype was assessed.

METHODS
Strain selection
A total of 444 isolates of STEC O157 submitted to GBRU for confirmation and typing

were selected for sequencing, 365 from 2012 representing approximately one third of

the culture positive isolates (1,002 total isolates) received by the reference laboratory

that calendar year from laboratories in England, Wales and Northern Ireland, and 67

English historical isolates submitted to GBRU between 1990 and 2011 and 12 isolates from

2013. The collection contained strains from sporadic cases, known outbreaks, household

clusters, and serial strains isolated from the same patient. However, only sporadic strains

and a single strain from any related cases (e.g., household, outbreak) were included in the

diversity and multiple allele analysis. A total of 18 phage types were represented.

Sequencing
Genomic DNA was fragmented and tagged for multiplexing with Nextera XT DNA Sample

Preparation Kits (Illumina) and sequenced at the Animal Health Veterinary Laboratory

Agency (Weybridge) using the Illumina GAII platform with 2 × 150 bp reads. Multiplexing

allowed 96 samples to be sequenced per run. Sequencing data with a phred score below 30

or a read length below 50 were removed from the data set using Trimmomatic (Bolger,

Lohse & Usadel, 2014). FASTQ data is available from the NCBI Short Read Archive,

BioProject accession PRJNA248064.

Subtyping of stx by assembly
High quality reads were assembled using Velvet v1.2.03 (Zerbino & Birney, 2008) with

k-mer chosen using VelvetK (http://bioinformatics.net.au/software.velvetk.shtml).

The resulting contigs were then compared against a set of stx reference genes (stx1a,

L04539.1; 1c, Z36901.1; 1d, AY170851.1; 2a, X07865.1; 2b, X65949.1; 2c, AB071845.1;

2d, AY095209.1; 2e, AJ249351.2; 2f, AB472687.1; 2g, AY286000.1) using BLASTn within

the BioPython framework (Cock et al., 2009). Only matches with an E-value less than

1 × 10−20 were included in further analysis. For each strain, the length of the best-matched

sequence (in terms of the BLAST score) between the contigs and each stx reference gene

was calculated. For example where both stx2a and stx2c were present, there may be five

query sequences each of 600 bp. If three of them matched stx2a with the highest BLAST

score, and two of them matched stx2c with the best BLAST score, then stx2a would score

1,800 and stx2c would score 1,200.
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Subtyping of stx by mapping
An alignment of stx1a, stx1c, 1d, 2a, 2b, 2c, 2d, 2e, 2f and 2g sequences (taken from Scheutz

et al., 2012) was generated using ClustalW within the MEGA 5 software package (Tamura

et al., 2011). Three bases for each reference subtype that, when combined, had 100%

sensitivity and specificity for each subtype were identified. High quality sequencing reads

were mapped to a set of reference stx genes (same genes as BLAST approach described

above) using BWA-MEM (http://bio-bwa.sourceforge.net/). Reads that mapped to more

than one place in the reference set (i.e., ambiguous reads) were removed from the resultant

SAM file using Samtools (Li et al., 2009). If at least 10 reads and 90% of the total reads

concordantly mapped to all three discriminatory positions for a specific subtype, then a

positive match was returned for that subtype.

Determination of the presence of multiple alleles of the same stx
subtype by mapping depth
Multiple copies of the same stx allele could be identified using two complementary

approaches. In the first approach, reads were mapped to the stx reference genes, with

ambiguous mapping allowed. Then the coverage of each stx allele, which had been

identified by the mapping and assembly methods described above, was calculated using

the Samtools ‘depth’ option. A distribution of mapping depth in all the strains that were

positive for one particular Stx subtype was plotted revealing a bimodal distribution with

the higher mode approximately twice the lower mode. The lower mode represented strains

with only one copy of stx and the higher mode represented strains with multiple alleles

of stx. There was no bimodal distribution of mapping depth for strains that encoded

both stx2a and stx2c, due to the redundant mapping between these two subtypes. For

example, if a strain encoded stx2a only and mapped to an stx2c reference gene, it showed

approximately one third of the average coverage compared to if it were mapped to an stx2a

gene. This cross-mapping meant that multiple alleles of the same stx subtype could not be

detected in strains that encoded both stx2a and stx2c.

In the second approach, the bam file resulting from the mapping of the reads to the

stx reference set was parsed for mixed positions, with the minority variant present in at

least 25% of reads i.e., one position in the reference gene was mapped by two different

bases. Only strains that were known to encode only one of stx2a or stx2c from the

subtyping results were analysed, as the high similarity between stx2a and stx2c can result

in pseudo-mixed bases when compared with stx reference genes. If there were mixed bases

present in an alignment (where the depth was greater than 20x and minority variant

present in greater than 15% of reads), from a strain encoding only one of stx2a or stx2c,

the presence of multiple alleles of a specific stx subtype that vary by at least one base was

assumed to be present (Fig. S1).

Diversity of stx associated with STEC O157 in the England, Wales
and Northern Ireland
The stx genes that were successfully assembled into a single contig were extracted from

the de novo genome assemblies using BLAST and aligned. Only strains that subtyping
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Table 1 Comparison of stx2 subtyping of 444 strains by sequencing and PCR. Strains that had dis-
crepant results between sequencing and PCR were subjected to a ‘second pass’ PCR.

Subtype Sequencing
results

Subtyping PCR
results—1st pass

Subtyping PCR
results—2nd pass

2a 82 89 82

2c 194 196 196

2a/2c 167 155 166

No result 1 4 0

Total 444 444 444

had shown to encode one of stx2a or stx2c were included in this part of the study. At the

location where the complete sequence of both stxA and stxB, including the intergenic

region, was assembled into a single contig, the CDSs were aligned and represented in

minimum spanning trees generated using Bionumerics v6 (http://www.applied-maths.

com/bionumerics). Strains where the stxA and stxB subunits could not be assembled

into a single contig (e.g., due to the presence of multiple copies of the same stx subtype

with sequence variation between them), were aligned against a reference gene and the

resulting Sam file was parsed using custom python scripts to identify variant positions.

The sequences of stx1a, stx2a and stx2c present in the strains investigated here were

compared with a representative sample of stx subtype sequences in the National Centre for

Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov/) nucleotide database to

assess diversity and identify novel alleles.

Stx real-time qPCR and block-based subtyping PCR
DNA was prepared by inoculating single colonies into 490ul distilled water, which was then

boiled in a water bath for 10 min. The real-time qPCR described by the European Union

Reference Laboratory (EURL) for stx1 and stx2 was performed as previously described

(Jenkins et al., 2012). For the block-based subtyping PCR, DNA was amplified on a

block-based DNA Engine platform using the stx subtyping primers and amplification

parameters described by Scheutz et al. (2012). Amplified DNA was electrophoresed on a 2%

gel, stained with ethidium bromide and visualised with UV light.

RESULTS
Stx subtyping of 444 STEC O157 in the UK—comparison of NGS
and PCR
Subtyping results from PCR and WGS were identical in 422/444 strains (Table 1); there

was agreement for 85 stx2a encoding strains, 153 stx2a/stx2c strains and 187 stx2c strains.

When the subtyping PCR was repeated for the 22 discordant strains, results for 442/444

strains were identical. Of the two strains where PCR and sequencing were discordant, one

strain was positive for stx2c by PCR but no stx2c was identified in the sequencing data

by the bioinformatics algorithms described here, and one strain was positive for stx2a

by sequencing that was not detected by PCR. The strain that had a positive PCR result

for stx2c but no corresponding result in the WGS data had a very low level of mapping
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Table 2 Frequency of stx subtype profiles including stx1, derived from WGS analysis, not including
outbreak strains. When a multi subtype result has a ‘?,’ it indicates that the only evidence suggesting the
presence of multiple copies was the relative coverage (as opposed to having mixed positions as well).

stx profile Frequency

1a/2a 9

1a/2a/2c 3

1a/2c 64

1a/multi-stx2c? 10

2a 30

2a/2c 136

2c 51

multi-1a?/2c 9

multi-1a/2c 3

multi-stx2a 31

multi-stx2c?/multi-1a? 2

No stx detected 1

(54 reads, <7x average coverage) to stx2c. This was not enough to definitively identify

stx2c by either the mapping or assembly algorithms, although is indicative of its presence.

The stx2a gene sequence of the strain that was PCR negative but that had stx2a reads

identified in the WGS data was analysed for mutations in the primer binding sites, but

none were identified.

Detection of multiple alleles of stx
A subset of 349 sporadic strains of STEC O157 (i.e., not from same person, household

or outbreak) was investigated for the presence of multiple alleles of the same subtype

of stx. The detection of multiple copies of the same stx subtype was performed using

two complimentary methods (i) mapping and determining the short read coverage of a

particular stx subtype relative to the coverage of the whole genome and (ii) the detection

of mixed bases (coverage >20x, minority variant >15%, see Fig. S1) in an alignment to a

single reference gene.

The stx1a gene was detected in 6 different combinations with other subtypes/alleles,

in 100 strains from independent sources (Table 2). For clarity, the relative coverage of

stx1a in three of the observed combinations (totalling 77 strains) is presented (Fig. 1).

The relative coverage of stx1a in all 6 combinations observed in the 100 stx1a strains

can be seen in Fig. S2. In Fig. 1, a bimodal distribution was clear, with the higher mode

being approximately twice as high as the lower mode. There were 11 strains in the

higher mode (Fig. 1). When the stx1a alignments were examined for the presence of

mixed bases, there were 97 strains with no mixed bases and three strains that had at least

one mixed base position. The relative coverage was examined in the context of the presence

of mixed bases; strains with no mixed bases had a median relative coverage of 1.7x, whereas

strains with at least one mixed base had a mean coverage of 2.8x (Fig. 1). There were nine

strains without mixed bases that had relative stx1a coverage closer to the average of mixed
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Figure 1 Coverage of stx1a, normalised by whole genome coverage. Histogram of coverage of stx1a
normalised by whole genome coverage.

Figure 2 Coverage of stx2a, normalised by whole genome coverage. Histogram of coverage of stx2a
normalised by whole genome coverage.

base position strains than the average of no mixed bases suggesting that two identical

copies of the stx1a gene were present.

There were 210 isolates that encoded stx2a, either alone or in combination with other

subtypes (Table 2). For clarity, only the relative coverage of stx2a from the 73 strains that

encoded only stx2a were presented in Fig. 2 (the relative coverage of stx2a in all strains

which encoded this subtype can be seen in Fig. S3). Inspection of the distribution of

coverage of the short reads in stx2a revealed at least two modes within the relative coverage
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Figure 3 Coverage of stx2c, normalised by whole genome coverage. Histogram of coverage of stx2c
normalised by whole genome coverage.

of stx2a, with the upper mode (1.8x) being twice that of the lower (0.9x) (Fig. 2). Of the

70 strains that encoded stx2a but not stx2c, 31 (42%) had short read coverage in the upper

mode (1.8x), of which all 31 had mixed base positions in their alignments, indicating

the presence of two alleles of stx2a. When the mixed position data was compared with

the relative coverage distribution, the mean relative coverage of the strains with mixed

positions of stx2a was 1.9x, while the coverage in strains with no mixed positions was 0.75x

(Fig. 2). There were 1 (n = 29), 2 (n = 1) or 3 (n = 1) positions with mixed bases between

the alleles in the 31 strains with multiple copies.

The relative coverage of the 279 isolates that encoded stx2c was calculated. For clarity,

only the relative coverage of the 139 strains that encoded stx2c but not stx2a are presented

in Fig. 3. The relative coverage of stx2c in all 279 strains can be seen in the Supplemental

Information and analysis of the distribution of relative stx2c coverage showed that the

majority of these strains fell into an approximately normal distribution around 1x relative

coverage (Fig. 3). Twelve (8.6%) of the 139 strains had a relative coverage >1.5x but no

mixed base positions were found.

Diversity of stx associated with STEC O157 in the UK
The diversity of stx found in a subset of 349 sporadic strains of STEC O157 (i.e., not from

same person, household or outbreak) was investigated. Ninety-seven complete stx1a genes

from this study were compared with nine stx1a alleles from NCBI, and a total of 16 variant

positions were identified along the 1392 bp length of the gene. Of the five different alleles

present in the strains investigated here, three were not present in the NCBI database (as of

06/23/14, Fig. 4). The most frequently observed allele accounted for 76 (78.3%) of the 97

assembled stx1a genes from this study, while the second most frequently observed allele

accounted for 16 (16.5%) stx1a genes. Both the most frequently observed alleles had been

previously identified in E. coli O103:H2 (BAI33872.1) and E. coli O157:H7 (EF079675.1),
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Figure 4 Minimum spanning tree of stx1a. Red, previously identified and observed in this study;
purple, previously identified but not observed in this study; light blue, novel allele.

respectively. The five remaining stx1a genes comprised three different alleles, none of

which had been previously submitted to the NCBI database (as of 06/23/14), although they

were all within a single variant of previously observed alleles (Fig. 4).

The 38 fully assembled stx2a genes from this study were compared with 22 stx2a alleles

from the NCBI nucleotide database. There were a total of 48 variant positions in a 1,442 bp

alignment of the 59 stx2a genes that included 25 different alleles (Fig. 5). Of these 25

alleles, six were present in the strains investigated here. The most frequently observed

allele was a single variant from a stx2a allele observed in E. coli O157 (AF524944.1),
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Figure 5 Minimum spanning tree of stx2a. Colour as in Fig. 4.

E. coli O111 and E. coli O145 and was present in 18 (47.3%) of the strains in this study.

The second most frequently observed allele was present in 11 (28.5%) strains and was

widely distributed, including in Bacteriophage 933W (X07865). The other nine strains

represented four alleles, two of which had been identified before. The remaining allele

(from strain H124840173) was highly divergent from the other stx2a alleles, with six SNPs

compared to any previously identified stx2a gene and 11 variants compared to the closest

stx2a observed in this study. Interestingly, this strain was a sorbitol-fermenting (SF) STEC

O157, the only SF strains to be included in this study.
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Figure 6 Minimum spanning tree of stx2c. Colour as in Fig. 4.

There were 132 fully assembled stx2c genes from this study that were compared with

18 previously identified stx2c alleles from NCBI. There was a total of 59 variant positions

along the 1441 bp gene alignment of the 150 stx2c sequences, comprising 22 unique alleles,

of which seven were identified in the strains analysed here (Fig. 6). The most frequently

observed allele accounted for 115 (87.1%) of the 132 fully assembled stx2c genes. This

allele had been previously observed in a single E. coli O157:H- strain (AB015057.1). The 17

other stx2c genes represented six distinct alleles that, with one exception, were within two

variants of the most frequently observed allele (Fig. 6). There were two strains encoding

the most divergent observed stx2c allele, with six variant positions compared with the most

frequently observed allele. This divergent allele had been previously identified in E. coli

RM10648 (KF932369.1).

Although the complete gene sequence could not be determined for strains that had

more than one copy of a stx subtype, an alignment of the reads against a reference was

analysed to identify variant positions. Of the three strains with multiple alleles of stx1a, all

three had the same four variant positions. There was one SNP in all three multiple-stx1a

strains that was not previously identified in the stx1a sequences described above or in

the NCBI reference sequences. Of the 30 strains with multiple copies of stx2a, 28 had
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only a single variant position that was the same in all 28 strains and that had been

previously identified. Of the other two strains, one had the same SNP as the 28 other

mixed position strains and an additional SNP that had not been previously observed in the

strains described in this study above or in the NCBI reference strains. The final strain had

three unique mixed positions, all of which had been previously observed in this study.

DISCUSSION
In this study we have developed novel, robust and highly accurate methods for subtyping of

stx from short read sequence data, validating this method against PCR for 444 STEC O157

isolates. Furthermore, we have mined the WGS data to show that a significant proportion

of strains encode multiple copies of the same subtype of Shiga-toxin gene. The diversity of

stx genes from STEC O157 in England was also elucidated.

There was over 95% initial agreement (422 of 444 strains) between WGS subtyping and

PCR subtyping in determining subtypes of stx2, which shows that WGS is an acceptable

method for subtyping stx in O157. The strains where there were discrepancies between

WGS and PCR were subjected to a repeat subtyping PCR, after which all but two of

the discrepancies became concordant. One possible reason for the discrepancy between

the initial and repeat PCR results is the high stringency of the subtyping PCR. During

a multi-centre evaluation of the subtyping PCR, there were differences observed in the

subtyping results obtained between different laboratories, and these were ascribed to the

use of different reagents and thermocyclers, with the main source of variability thought

to be the use of different polymerase. While the taq polymerase recommended by Scheutz

et al. (2012) was used here, variations in other laboratory reagents and equipment may

have resulted in the discrepancies. The excellent concordance between the PCR and WGS

results, even despite the problems associated with analysis of homologous genes using

short read data, provides evidence of the accuracy of the bioinformatics algorithm showing

that WGS could replace PCR for subtyping.

Using mapping coverage to detect multiple copies of the Stx phage has been described

previously using more challenging metagenome data (Loman et al., 2013). The novelty of

this work is to use the mapping coverage of stx relative to the average coverage of the whole

genome to identify strains encoding multiple alleles of the same stx subtype. There are

stx sequences in the NCBI database that indicate that multiple alleles of the same subtype

encoded by the same strain have been previously observed i.e., these sequences contain

ambiguous bases. However, the studies associated with these sequences make no mention

of the possibility of multiple alleles (De Baets et al., 2004; Lee et al., 2007; Asakura et al.,

2001; Hegde, Ballal & Shenoy, 2012). The presence of multiple alleles of the same stx type

has been previously identified by WGS (Eppinger et al., 2011); however, this is the first

study to present a large sale comparison of this method with PCR subtyping. Some of the

ambiguous positions in sequences in the NCBI database were the same positions in stx as

the mixed positions observed in this study, supporting the evidence that multiple alleles

exist and are present in the same strain. While mapping of short reads has been successful
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at detecting multiple copies of the same subtype, it has not been possible in strains that

encode stx2a and stx2c due to ambiguous mapping between these types (see Figs. S2–S4).

For characterisation of these stx2a/stx2c strains, and full characterisation of the insertion

sites and genomic context of the stx alleles in strains encoding multiple copies of the same

subtype, longer sequencing reads (from e.g. PacBio) are needed. There was also evidence

that some strains of STEC O157 encoded multiple alleles of both stx1a and stx2c; further

characterisation of these strains to determine whether they had a genetic determinant that

made Stx phage acquisition more likely would be interesting.

The functional implication of encoding multiple alleles of the same stx subtype remains

unclear. Three hypotheses to explain the 9% prevalence of strains encoding multiple alleles

of the same subtype are (i) these strains are more likely to cause symptomatic human

disease (ii) these strains have a fitness advantage which increases their chance of being

present in the environment (iii) carrying multiple alleles of the same subtype is ‘merely’ a

side effect of the recombinogenic capacity of Stx phage, which confers no phenotype. It is

interesting that while the multiple alleles of stx2a and stx2c always seem to have nucleotide

differences, this is a minority in the strains that encode multiple copies of stx1a. The close

sequence relationship between the multiple copies of the same subtypes raises the question

whether they are derived from multiple insertions by different Stx phage, or a phage or stx

gene duplication.

This study reports on the diversity of stx observed in STEC O157 in the UK (except

Scotland) between 1990 and 2013, with a focus on 2012. Although there are 10 described

subtypes of stx1 and stx2 combined (Scheutz et al., 2012), in an examination of 444

strains covering a wide temporal spread and range of phage types only three subtypes

(stx2a, stx2c and stx1a) were observed. Previous studies examining strains from cattle

and humans similarly found only stx2a, stx2c and stx1a (Mellor et al., 2013). The most

diverse stx identified here was stx2a, followed by stx1a and then stx2c (Figs. 4–6). The

majority of stx2c were of a single genotype, and all the novel alleles identified were within

a single SNP of the majority genotype. This difference in diversity observed between

stx2a and stx2c is interesting, considering that the background diversity of these two

subtypes is largely similar (Scheutz et al., 2012). Further studies in this laboratory aim

to determine the phylogenetic context of isolates encoding these two subtypes. This study

also described 10 novel alleles of stx, with the most diverse being an stx2a sequence 6 SNPs

from any previously described stx2a. The fact that this diverse stx was observed in a sorbitol

fermenting strain indicates that there may be a significant reservoir of stx diversity in other

serotypes of STEC. The majority of novel alleles had sequences that were single nucleotide

variants to previously described sequences.

This study is the first to describe stx subtyping by both PCR and WGS methods in a large

number of strains of STEC O157. Both the PCR and WGS approaches to stx subtyping

provided a good level of sensitivity and specificity. The WGS data also showed that a

significant proportion of strains of STEC O157 harbour multiple alleles of the same

Stx subtype. The functional significance of multiple alleles of the same subtype remains

unclear, although this is the subject of ongoing work. Furthermore, the WGS analysis
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highlighted 10 novel alleles of stx identified in this study and enabled us to study the

diversity of stx sequences in a population of STEC O157 associated with clinical disease

in England.
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