Alshaker, Heba, Krell, Jonathan, Frampton, Adam E., Waxman, Jonathan, Blyuss, Oleg, Zaikin, Alexey, Winkler, Mathias, Stebbing, Justin, Yaguee, Ernesto and Pchejetski, Dmitri (2014) Leptin induces upregulation of sphingosine kinase 1 in oestrogen receptor-negative breast cancer via Src family kinase-mediated, janus kinase 2-independent pathway. Breast Cancer Research, 16. ISSN 1465-542X
Preview |
PDF (Published manuscript)
- Published Version
Available under License Creative Commons Attribution. Download (2MB) | Preview |
Abstract
Introduction: Obesity is a known risk factor for breast cancer. Sphingosine kinase 1 (SK1) is an oncogenic lipid kinase that is overexpressed in breast tumours and linked with poor prognosis, however, its role in obesity-driven breast cancer was never elucidated. Methods: Human primary and secondary breast cancer tissues were analysed for SK1 and leptin receptor expression using quantitative real-time polymerase chain reaction (qRT-PCR) assay. Leptin-induced signalling was analysed in human oestrogen receptor (ER)-positive and negative breast cancer cells using Western blotting, qRT-PCR and radiolabelling assays. Results: Our findings show for the first time that human primary breast tumours and associated lymph node metastases exhibit a strong correlation between SK1 and leptin receptor expression (Pearson R = 0.78 and R = 0.77, respectively, P <0.001). Both these genes are elevated in metastases of ER-negative patients and show a significant increase in patients with higher body mass index (BMI). Leptin induces SK1 expression and activation in ER-negative breast cancer cell lines MDAMB-231 and BT-549, but not in ER-positive cell lines. Pharmacological inhibition and gene knockdown showed that leptin-induced SK1 activity and expression are mediated by activation of extracellular signal-regulated kinases 1/2 (ERK1/2) and Src family kinase (SFK) pathways, but not by the major pathways downstream of leptin receptor (LEPR) - janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3). Src-homology 2 domain-containing phosphatase 2 (SHP2) appeared to be key to SK1 activation, and may function as an adaptor protein between SFKs and LEPR. Importantly, leptin-induced breast cancer cell proliferation was abrogated by SK1-specific small interfering RNA (siRNA). Conclusions: Overall, our findings demonstrate a novel SFK/ERK1/2-mediated pathway that links leptin signalling and expression of oncogenic enzyme SK1 in breast tumours and suggest the potential significance of this pathway in ER-negative breast cancer.
Item Type: | Article |
---|---|
Additional Information: | This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
Uncontrolled Keywords: | sdg 3 - good health and well-being ,/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_being |
Faculty \ School: | Faculty of Medicine and Health Sciences > Norwich Medical School |
UEA Research Groups: | Faculty of Medicine and Health Sciences > Research Centres > Metabolic Health |
Depositing User: | Pure Connector |
Date Deposited: | 16 Dec 2014 10:04 |
Last Modified: | 06 Jun 2024 14:51 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/51523 |
DOI: | 10.1186/s13058-014-0426-6 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |