Size-dependent wet removal of black carbon in Canadian biomass burning plumes

Taylor, J. W., Allan, J. D., Allen, G., Coe, H., Williams, P. I., Flynn, M. J., Le Breton, M., Muller, J. B. A., Percival, C. J., Oram, D., Forster, Grant, Lee, J. D., Rickard, A. R. and Palmer, P. I. (2014) Size-dependent wet removal of black carbon in Canadian biomass burning plumes. pp. 19469-19513.

[thumbnail of Published_Version]
Preview
PDF (Published_Version) - Published Version
Available under License Creative Commons Attribution.

Download (3MB) | Preview

Abstract

Wet deposition is the dominant mechanism for removing black carbon (BC) from the atmosphere and is key in determining its atmospheric lifetime, vertical gradient and global transport. Despite the importance of BC in the climate system, especially in terms of its ability to modulate the radiative energy budget, there are few quantitative case studies of wet removal in ambient environments. We present a case study of BC wet removal by examining aerosol size distributions and BC coating properties sampled in three Canadian boreal biomass burning plumes, one of which passed through a precipitating cloud. This depleted the majority of the plume’s BC mass, and the largest and most coated BCcontaining particles were found to be preferentially removed, suggesting that nucleation scavenging was likely the dominant mechanism. Calculated single-scattering albedo (SSA) showed little variation, as a large number of non-BC particles were also present in the precipitation-affected plume. The remaining BC cores were smaller than those observed in previous studies of BC in post-precipitation outflow over Asia, possibly due to the thick coating by hydrophilic compounds associated with the Canadian biomass burning particles. This study provides measurements of BC size, mixing state and removal efficiency to constrain model parameterisations of BC wet removal in biomass burning regions, which will help to reduce uncertainty in radiative forcing calculations.

Item Type: Article
Uncontrolled Keywords: sdg 13 - climate action ,/dk/atira/pure/sustainabledevelopmentgoals/climate_action
Faculty \ School: Faculty of Science > School of Environmental Sciences
UEA Research Groups: Faculty of Science > Research Groups > Centre for Ocean and Atmospheric Sciences
Faculty of Science > Research Groups > Marine and Atmospheric Sciences (former - to 2017)
Faculty of Science > Research Groups > Atmospheric Chemistry (former - to 2018)
Depositing User: Pure Connector
Date Deposited: 15 Sep 2014 12:46
Last Modified: 11 Nov 2024 01:03
URI: https://ueaeprints.uea.ac.uk/id/eprint/50094
DOI: 10.5194/acpd-14-19469-2014

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item