Causes of robust seasonal land precipitation changes

Polson, Debbie, Hegerl, Gabriele C., Zhang, Xuebin and Osborn, Timothy J. ORCID: https://orcid.org/0000-0001-8425-6799 (2013) Causes of robust seasonal land precipitation changes. Journal of Climate, 26 (17). pp. 6698-6715. ISSN 0894-8755

Full text not available from this repository. (Request a copy)

Abstract

Historical simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5) archive are used to calculate the zonal-mean change in seasonal land precipitation for the second half of the twentieth century in response to a range of external forcings, including anthropogenic and natural forcings combined (ALL), greenhouse gas forcing, anthropogenic aerosol forcing, anthropogenic forcings combined, and natural forcing. These simulated patterns of change are used as fingerprints in a detection and attribution study applied to four different gridded observational datasets of global land precipitation from 1951 to 2005. There are large differences in the spatial and temporal coverage in the observational datasets. Yet despite these differences, the zonal-mean patterns of change are mostly consistent except at latitudes where spatial coverage is limited. The results show some differences between datasets, but the influence of external forcings is robustly detected in March-May, December-February, and for annual changes for the three datasets more suitable for studying changes. For June-August and September-November, external forcing is only detected for the dataset that includes only long-term stations. Fingerprints for combinations of forcings that include the effect of greenhouse gases are similarly detectable to those for ALL forcings, suggesting that greenhouse gas influence drives the detectable features of the ALL forcing fingerprint. Fingerprints of only natural or only anthropogenic aerosol forcing are not detected. This, together with two-fingerprint results, suggests that at least some of the detected change in zonal land precipitation can be attributed to human influences.

Item Type: Article
Faculty \ School: Faculty of Science > School of Environmental Sciences
University of East Anglia Research Groups/Centres > Theme - ClimateUEA
UEA Research Groups: Faculty of Science > Research Groups > Climatic Research Unit
Faculty of Science > Research Groups > Centre for Ocean and Atmospheric Sciences
Related URLs:
Depositing User: Pure Connector
Date Deposited: 09 Jun 2014 21:08
Last Modified: 13 Jun 2023 08:15
URI: https://ueaeprints.uea.ac.uk/id/eprint/47887
DOI: 10.1175/JCLI-D-12-00474.1

Actions (login required)

View Item View Item