Modelling energy metabolism of Friesians in Kenya smallholdings shows how heat stress and energy deficit constrain milk yield and cow replacement rate

King, J. M., Parsons, D. J., Turnpenny, J. R., Nyangaga, J., Bakari, P. and Wathes, C. M. (2006) Modelling energy metabolism of Friesians in Kenya smallholdings shows how heat stress and energy deficit constrain milk yield and cow replacement rate. Animal Science, 82 (5). pp. 705-716. ISSN 1357-7298

Full text not available from this repository.

Abstract

The 2002 World Summit on Sustainable Development focussed attention on agricultural sustainability and biodiversity in developing countries. These goals are relevant for livestock production in Kenya, where development agencies encourage resource-poor smallholders to acquire large, exotic, high-yielding dairy cows, despite their poor performance, revealed in recent surveys in the highlands and at the coast. The performance of the cows is not in question. The debate relates to the diagnosis of the causes, their treatment and the prognosis for the production system. To improve our understanding of the dynamics of the system, models of nutrition and energy, modified for the tropics, were used to measure the thermal responses over 24 h of six pure or crossbred Friesians at a mean lactation of 54 (s.d. 21·6) days, in separate zero-grazing units. Four smallholdings were on the hot, humid coast and two in the cooler highlands. The output of the model runs was related to the subsequent lactation, calving interval and profitability of the cows. The model showed that the thermal load caused moderate stress for all cows during the day, which became severe in the sun in the highlands, but the drop in air temperature, from 27°C to 13°C, at night dissipated the gain in body heat. At the coast, where the night temperature remained above 24°C and relative humidity above 0-85, there was no remission of heat stress for cows with a milk yield greater than 11 Vday. The lactation curve, in all cows, declined from an initial peak to a low profile of 5 Vday. Cows in both regions with initial yields above 20 Vday had the steepest decline and longest calving intervals (457 to 662 days). They had the largest lactation yields and lowest direct cost per litre, but their poor breeding record reduced cull sales and increased replacement cost, raising the total cost per litre. By contrast, the cow with the lowest daily and lactation yield had the highest direct cost, but lowest total cost per litre, because she produced 2 heifer calves at an interval of only 317 days. These case studies serve as a reminder that, where heat load depresses appetite or poor food cannot support lactation, the energy deficit and stress reduces cow fertility, fitness, and longevity, so that she fails to breed a heifer replacement during her shortened productive life. The model predicted that food intake, depressed by heat stress, would not support a milk yield above 14 Vday and 3000 1 per annum at the coast, and 22 Vday and 5000 1 per annum in the highlands. Therefore, although appearing profitable in the short term, the current policy of promoting cows with higher yields than the climate and production system can support, is unsustainable. This outcome has implications for smallholder dairy development policy in Kenya, and probably elsewhere in the tropics. Instead, one should reconsider smaller exotic breeds and crossbreds with improved indigenous dairy cows whose overall productivity from milk yield, fecundity, longevity, and disease tolerance 50 years ago was better than that of the modern Holstein-Friesian in a Kenya smallholding.

Item Type: Article
Uncontrolled Keywords: dairy cows,development policy,small farms,tropical africa,bos,friesia,sdg 13 - climate action ,/dk/atira/pure/sustainabledevelopmentgoals/climate_action
Faculty \ School: Faculty of Science > School of Environmental Sciences
UEA Research Groups: Faculty of Arts and Humanities > Research Groups > Policy & Politics
Faculty of Science > Research Groups > Science, Society and Sustainability
Faculty of Arts and Humanities > Research Groups > Political, Social and International Studies
University of East Anglia Schools > Faculty of Science > Tyndall Centre for Climate Change Research
Faculty of Science > Research Centres > Tyndall Centre for Climate Change Research
Faculty of Social Sciences > Research Centres > Centre for Competition Policy
Depositing User: Pure Connector
Date Deposited: 03 Dec 2013 15:02
Last Modified: 20 Oct 2023 00:56
URI: https://ueaeprints.uea.ac.uk/id/eprint/45015
DOI: 10.1079/ASC200689

Actions (login required)

View Item View Item