Edward, Dominic A. and Chapman, Tracey (2012) Sex-specific effects of developmental environment on reproductive trait expression in Drosophila melanogaster. Ecology and Evolution, 2 (7). pp. 1362-1370. ISSN 2045-7758
Full text not available from this repository. (Request a copy)Abstract
Variation in the expression of reproductive traits provides the raw material upon which sexual selection can act. It is therefore important to understand how key factors such as environmental variation influence the expression of reproductive traits, as these will have a fundamental effect on the evolution of mating systems. It is also important to consider the effects of environmental variation upon reproductive traits in both sexes and to make comparisons with the environment to which the organism is adapted. In this study, we addressed these issues in a systematic study of the effect of a key environmental factor, variation in larval density, on reproductive trait expression in male and female Drosophila melanogaster. To do this, we compared reproductive trait expression when flies were reared under controlled conditions at eight different larval densities that covered a 20-fold range. Then, to place these results in a relevant context, we compared the results to those from flies sourced directly from stock cages. Many reproductive traits were surprisingly insensitive to variation in larval density. A notable exception was nonlinear variation in female fecundity. In contrast, we found much bigger differences in comparisons with flies from stock cages—including differences in body size, latency to mate, copulation duration, fecundity, and male share of paternity in a competitive environment. For a number of traits, even densities of 1000 larvae per vial (125 larvae per mL of food) did not phenocopy stock cage individuals. This study reveals novel patterns of sex-specific sensitivity to environmental variation that will influence the strength of sexual selection. It also illustrates the importance of comparisons with the environment to which individuals are adapted.
Item Type: | Article |
---|---|
Faculty \ School: | Faculty of Science > School of Biological Sciences |
UEA Research Groups: | Faculty of Science > Research Centres > Centre for Ecology, Evolution and Conservation Faculty of Science > Research Groups > Organisms and the Environment |
Depositing User: | Sophie Buckingham |
Date Deposited: | 17 Apr 2013 14:55 |
Last Modified: | 14 May 2023 23:54 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/42144 |
DOI: | 10.1002/ece3.243 |
Actions (login required)
View Item |