Molecule-based magnetic nanoparticles: Synthesis of cobalt hexacyanoferrate, cobalt pentacyanonitrosylferrate, and chromium hexacyanochromate coordination polymers in water-in-oil microemulsions

Vaucher, Sébastien, Fielden, John ORCID: https://orcid.org/0000-0001-5963-7792, Li, Mei, Dujardin, Erik and Mann, Stephen (2002) Molecule-based magnetic nanoparticles: Synthesis of cobalt hexacyanoferrate, cobalt pentacyanonitrosylferrate, and chromium hexacyanochromate coordination polymers in water-in-oil microemulsions. Nano Letters, 2 (3). pp. 225-229. ISSN 1530-6984

Full text not available from this repository. (Request a copy)

Abstract

Although considerable effort has been dedicated to the controlled synthesis of nanoparticles with classical inorganic structures, there are few reports on the formation of nanoscale materials based on supramolecular compounds such as transition metal coordination polymers. Here we describe the synthesis of crystalline nanoparticles of three different molecule-based magnetic materials, cobalt hexacyanoferrate, cobalt pentacyanonitrosylferrate, and chromium hexacyanochromate, by coprecipitation reactions involving mixtures of water-in-oil microemulsions. The cobalt-containing nanoparticles are regular in shape and size and have dimensions between 12 and 22 nm depending on the concentration of the reactants trapped within the water droplets. At sufficiently high particle concentrations, superlattice structures are formed by solvent evaporation. Growth of the nanoparticles occurs by interdroplet aggregation of primary clusters that are nucleated in the confined spaces of the microemulsion reaction field.

Item Type: Article
Faculty \ School: Faculty of Science > School of Chemistry
UEA Research Groups: Faculty of Science > Research Groups > Chemistry of Materials and Catalysis
Faculty of Science > Research Groups > Chemistry of Light and Energy
Faculty of Science > Research Groups > Energy Materials Laboratory
Depositing User: Users 2731 not found.
Date Deposited: 17 Oct 2012 12:17
Last Modified: 31 Oct 2023 01:41
URI: https://ueaeprints.uea.ac.uk/id/eprint/39966
DOI: 10.1021/nl0156538

Actions (login required)

View Item View Item