The development of modulated, quasi-isothermal and ultraslow thermal methods as a means of characterizing the α to γ indomethacin polymorphic transformation

Qi, Sheng ORCID: https://orcid.org/0000-0003-1872-9572 and Craig, Duncan (2012) The development of modulated, quasi-isothermal and ultraslow thermal methods as a means of characterizing the α to γ indomethacin polymorphic transformation. Molecular Pharmaceutics, 9 (5). pp. 1087-1099. ISSN 1543-8384

Full text not available from this repository.

Abstract

While polymorphism remains a key issue within the pharmaceutical and related industries, the understanding of the transformation process itself remains relatively poorly understood. In this study we use a combination of conventional and modulated temperature differential scanning calorimetry (MTDSC), quasi-isothermal MTDSC (Qi-MTDSC) and ultraslow heating rate MTDSC as a novel means of investigating the temperature-induced α to γ transformation in indomethacin, using hot stage microscopy and variable temperature attenuated total reflectance FTIR spectroscopy as supportive techniques. In particular, we utilize the ability of MTDSC to measure subtle heat capacity changes through the transformation, we examine the use of Lissajous analysis of the modulated heating signal itself (both scanning and quasi-isothermal) and finally we investigate the use of ultraslow heating rates (down to 0.04 °C/min) so as to facilitate examination of the melt-crystallization process at a scanning rate whereby kinetic hindrance becomes negligible. Indomethacin was prepared in the metastable α and stable γ forms using standard approaches. Samples were studied using conventional DSC, Qi-MTDSC (involving holding and modulating the sample at a series of incremental temperature steps) and ultraslow MTDSC. All studies were conducted using a Q-1000 MTDSC using crimped pans, following standard calibration procedures. Conventional DSC at 10 °C/min showed the expected single melting responses for the α and γ forms, while MTDSC at slower rates indicated the presence of a melt-crystallization process. Quasi-isothermal studies allowed the heat capacity to be estimated as a function of time, while the associated Lissajous analysis demonstrated distortion of the elliptical response as a result of the kinetic events involved. Ultraslow heating resulted in superimposition of the melting and crystallization processes, resulting in a discrete thermal event that was enthalpically equivalent to the difference between the two processes. It is suggested that these combined thermal methods allow the conversion to be profiled in a manner which facilitates both kinetic and thermodynamic analysis of the transformation.

Item Type: Article
Faculty \ School: Faculty of Science > School of Pharmacy (former - to 2024)
UEA Research Groups: Faculty of Science > Research Groups > Pharmaceutical Materials and Soft Matter
Faculty of Science > Research Groups > Drug Delivery and Pharmaceutical Materials (former - to 2017)
Depositing User: Users 2731 not found.
Date Deposited: 10 Oct 2012 09:38
Last Modified: 24 Sep 2024 08:56
URI: https://ueaeprints.uea.ac.uk/id/eprint/39830
DOI: 10.1021/mp2003412

Actions (login required)

View Item View Item