Decorin suppresses transforming growth factor-beta-induced expression of plasminogen activator inhibitor-1 in human mesangial cells through a mechanism that involves Ca2+-dependent phosphorylation of Smad2 at serine-240.

Abdel-Wahab, Nadia, Wicks, Stephen J., Mason, Roger M. and Chantry, Andrew (2002) Decorin suppresses transforming growth factor-beta-induced expression of plasminogen activator inhibitor-1 in human mesangial cells through a mechanism that involves Ca2+-dependent phosphorylation of Smad2 at serine-240. Biochemical Journal, 362 (3). pp. 643-649. ISSN 0264-6021

Full text not available from this repository. (Request a copy)

Abstract

Transforming growth factor-b (TGFb) is a key mediator of extracellular matrix (ECM) accumulation in sclerotic kidney diseases such as diabetic nephropathy. One of the main target cells for TGFb in the kidney are glomerular mesangial cells, which respond by increasing expression of ECM proteins, such as collagens, laminin and fibronectin, while suppressing the expression of ECM-degrading proteases and increasing the synthesis of ECM protease inhibitors, including plasminogen activator inhibitor-1. Previous studies have shown that exposure of mesangial cells to chronic high-glucose conditions, such as those seen in diabetes, increases ECM deposition in a mechanism involving glucose-mediated up-regulation of TGFb expression. Naturally occurring inhibitors of this TGFb-dependent fibrotic response include decorin, a small leucine-rich proteoglycan. While the mechanism by which TGFb stimulates gene expression via the Smad signal-transduction pathway is becoming clear, the precise mechanism by which decorin may impinge upon TGFb activity remains to be established. In this study, for the first time we provide evidence that decorin can disrupt glucose- and TGFb/Smad-dependent transcriptional events in human mesangial cells through a mechanism that involves an increase in Ca2+ signalling, the activation of Ca2+/calmodulin-dependent protein kinase II and ensuing phosphorylation of Smad2 at Ser-240. We show that decorin also induces Ser-240 phospho-Smad hetero-oligomerization with Smad4 and the nuclear localization of this complex independently of TGFb receptor activation. Thus, in human mesangial cells, the mechanism of decorin-mediated inhibition of TGFb signalling may involve activation of Ca2+ signalling, the subsequent phosphorylation of Smad2 at a key regulatory site, and the sequestration of Smad4 in the nucleus.

Item Type: Article
Uncontrolled Keywords: sdg 3 - good health and well-being ,/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_being
Faculty \ School: Faculty of Science > School of Biological Sciences
UEA Research Groups: Faculty of Science > Research Groups > Cells and Tissues
Depositing User: EPrints Services
Date Deposited: 01 Oct 2010 13:36
Last Modified: 22 Apr 2023 23:37
URI: https://ueaeprints.uea.ac.uk/id/eprint/381
DOI: 10.1042/0264-6021:3620643

Actions (login required)

View Item View Item