Briffa, Keith R., van der Schrier, Gerard and Jones, Philip D. ORCID: https://orcid.org/0000-0001-5032-5493 (2009) Wet and dry summers in Europe since 1750: Evidence of increasing drought. International Journal of Climatology, 29 (13). pp. 1894-1905. ISSN 1097-0088
Full text not available from this repository. (Request a copy)Abstract
Moisture availability across Europe is calculated based on 22 stations that have long instrumental records for precipitation and temperature. The metric used is the self-calibrating Palmer Drought Severity Index (scPDSI) which is based on soil moisture content. This quantity is calculated using a simplified water budget model, forced by historic records of precipitation and temperature data, where the latter are used in a simple parameterization for potential evaporation. The precipitation and temperature records are updated to include the 2003 summer and all records, except for one, span at least 200 years, with the record for Kew going back to 1697. The Kew record shows a significant clustering of dry summers in the most recent decade. When all the records are considered together, recent widespread drying is clearly apparent and highly significant in this long-term context. By substituting the 1961-1990 climatological monthly mean temperatures for the actual monthly means in the parameterization for potential evaporation, an estimate is made of the direct effect of temperature on drought. This analysis shows that a major influence on the trend toward drier summer conditions is the observed increase in temperatures. This effect is particularly strong in central Europe. Based on the 22 scPDSI records, a gridded scPDSI dataset covering a large part of Europe has been constructed and compared to a recent high-resolution scPDSI dataset spanning the twentieth century only. We again observe that a major cause for the large areal extent of summer drought in the last two decades is high temperatures. Temperatures in the 12 months preceding and including the summer of 2003 explain an increase in the areas experiencing slightly dry (or worse) conditions of 11.1%.
Item Type: | Article |
---|---|
Faculty \ School: | Faculty of Science > School of Environmental Sciences |
UEA Research Groups: | Faculty of Science > Research Groups > Climatic Research Unit Faculty of Science > Research Groups > Centre for Ocean and Atmospheric Sciences |
Depositing User: | Rosie Cullington |
Date Deposited: | 25 Jul 2011 14:03 |
Last Modified: | 15 Jun 2023 14:31 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/34105 |
DOI: | 10.1002/joc.1836 |
Actions (login required)
View Item |