Grimaldi, Stéphane, Macmillan, Fraser ORCID: https://orcid.org/0000-0002-2410-4790, Ostermann, Thomas, Ludwig, Bernd, Michel, Hartmut and Prisner, Thomas (2001) QH.- ubisemiquinone radical in the bo3-type ubiquinol oxidase studied by pulsed electron paramagnetic resonance and hyperfine sublevel correlation spectroscopy. Biochemistry, 40 (4). pp. 1037-1043. ISSN 0006-2960
Full text not available from this repository.Abstract
The high-affinity Q(H) ubiquinone-binding site in the bo(3) ubiquinol oxidase from Escherichia coli has been characterized by an investigation of the native ubiquinone radical anion Q(H)(.-) by pulsed electron paramagnetic resonance (EPR) spectroscopy. One- and two-dimensional electron spin-echo envelope modulation (ESEEM) spectra reveal strong interactions of the unpaired electron of Q(H)(.-) with a nitrogen nucleus from the surrounding protein matrix. From analysis of the experimental data, the N-14 nuclear quadrupolar parameters have been determined: kappa = e(2)qQ/4h = 0.93 MHz and eta = 0.50. This assignment is confirmed by hyperfine sublevel correlation (HYSCORE) spectroscopy. On the basis of a comparison of these data with those obtained previously for other membrane-protein bound semiquinone radicals and model systems, this nucleus is assigned tu a protein backbone nitrogen. This result is discussed with regard to the location and potential function of Q(H) in the enzyme.
Item Type: | Article |
---|---|
Faculty \ School: | Faculty of Science > School of Chemistry (former - to 2024) |
UEA Research Groups: | Faculty of Science > Research Groups > Chemistry of Light and Energy Faculty of Science > Research Groups > Chemistry of Life Processes Faculty of Science > Research Centres > Centre for Molecular and Structural Biochemistry Faculty of Science > Research Groups > Biophysical Chemistry (former - to 2017) |
Depositing User: | Rachel Smith |
Date Deposited: | 19 Jul 2011 11:10 |
Last Modified: | 12 Nov 2024 00:36 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/33886 |
DOI: | 10.1021/bi001641+ |
Actions (login required)
View Item |