Reactivity of silyl-substituted allyl compounds with group 4, 5, 9, and 10 metals: Routes to eta(3)-allyls, alkylidenes, and sec-alkyl carbocations

Schormann, Mark, Garratt, Shaun and Bochmann, Manfred ORCID: https://orcid.org/0000-0001-7736-5428 (2005) Reactivity of silyl-substituted allyl compounds with group 4, 5, 9, and 10 metals: Routes to eta(3)-allyls, alkylidenes, and sec-alkyl carbocations. Organometallics, 24 (7). pp. 1718-1724. ISSN 0276-7333

Full text not available from this repository. (Request a copy)

Abstract

Whereas the reaction of alkali-metal salts of silyl-allyls E+[C3H3(SiMe3)(2)-1,3](-) (E = Li, K) with group 4 and group 5 metal halides gave intractable reduction products, Co(acac)(3) and Ni(acac)(2) reacted with K[C3H3(SiMe3)(2)-1,3] to give Co{eta(3)-C3H3(SiMe3)(2)-1,3}(2) (1) and Ni-{eta(3)-C3H3(SiMe3)(2)-1,3}(2) (2), respectively. The reaction of K[C3H3(SiMe3)(2)-1,3] with Me3SnCl afforded Me3SiCH=CHCH(SiMe3)(SnMe3) (3), which reacted cleanly with TaCl5 to give {eta(3)-C3H3(SiMe3)(2)-1,3}TaCl4 (4). Treatment of this complex with tetramethylethylenediamine led to HCl abstraction, and the allyl complex was transformed into the vinyl-alkylidene compound Me3SiCH=CHC(SiMe3)=TaCl3(TMEDA) (5). Whereas in the case of TaCl5 dehalostannylation was facile, the reaction of 3 with ZrCl4 and HFCl4 took a different course, leading instead to the addition of Me3Sn+ to 3 to give [HC{CH(SiMe3)(SnMe3)}(2)](+)[M2Cl9](-) (6, M = Zr; 7, M = Hf), the first examples of isolable sec-alkyl carbocations. These salts are surprisingly thermally stable and melt > 100 degrees C; this stability is largely due to delocalization of the positive charge over the two tin atoms. The crystal structures of 1, 2, and 5-7 are reported.

Item Type: Article
Faculty \ School: Faculty of Science > School of Chemistry
UEA Research Groups: Faculty of Science > Research Groups > Synthetic Chemistry (former - to 2017)
Faculty of Science > Research Groups > Chemistry of Light and Energy
Faculty of Science > Research Groups > Chemistry of Materials and Catalysis
Depositing User: Rachel Smith
Date Deposited: 16 Jun 2011 13:51
Last Modified: 24 Oct 2022 02:26
URI: https://ueaeprints.uea.ac.uk/id/eprint/32756
DOI: 10.1021/om0491692

Actions (login required)

View Item View Item