Interaction of nitric oxide with cytochrome P450BM3

Quaroni, Luca G., Seward, Harriet E., McLean, Kirsty J., Girvan, Hazel M., Ost, Tobias W. B., Noble, Michael A., Kelly, Sharon M., Price, Nicholas C., Cheesman, Myles R., Smith, W. Ewen and Munro, Andrew W. (2004) Interaction of nitric oxide with cytochrome P450BM3. Biochemistry, 43 (51). pp. 16416-16431. ISSN 0006-2960

Full text not available from this repository. (Request a copy)

Abstract

The interaction of nitric oxide with cytochrome P450 BM3 from Bacillus megaterium has been analyzed by spectroscopic techniques and enzyme assays. Nitric oxide ligates tightly to the ferric heme iron, inducing large changes in each of the main visible bands of the heme and inhibiting the fatty acid hydroxylase function of the protein. However, the ferrous adduct is unstable under aerobic conditions, and activity recovers rapidly after addition of NADPH to the flavocytochrome due to reduction of the heme via the reductase domain and displacement of the ligand. The visible spectral properties revert to that of the oxidized resting form. Aerobic reduction of the nitrosyl complex of the BM3 holoenzyme or heme domain by sodium dithionite also displaces the ligand. A single electron reduction destabilizes the ferric-nitrosyl complex such that nitric oxide is released directly, as shown by the trapping of released nitric oxide. Aerobically and in the absence of exogenous reductant, nitric oxide dissociates completely from the P450 over periods of several minutes. However, recovery of the nativelike visible spectrum is accompanied by alterations in the catalytic activity of the enzyme and changes in the resonance Raman spectrum. Specifically, resonance Raman spectroscopy identifies the presence of internally located nitrated tyrosine residue(s) following treatment with nitric oxide. Analysis of a Y51F mutant indicates that this is the major nitration target under these conditions. While wild-type P450 BM3 does not form an aerobically stable ferrous-nitrosyl complex, a site-directed mutant of P450 BM3 (F393H) does form an isolatable ferrous-nitrosyl complex, providing strong evidence for the role of this residue in controlling the electronic properties of the heme iron. We report here the spectroscopic characterization of the ferric- and ferrous-nitrosyl complexes of P450 BM3 and describe the use of resonance Raman spectroscopy to identify nitrated tyrosine residue(s) in the enzyme. Nitration of tyrosine in P450 BM3 may exemplify a typical mechanism by which the ubiquitous messenger molecule nitric oxide exerts a regulatory function over the cytochromes P450.

Item Type: Article
Faculty \ School: Faculty of Science > School of Chemistry
UEA Research Groups: Faculty of Science > Research Groups > Biophysical Chemistry (former - to 2017)
Faculty of Science > Research Groups > Chemistry of Life Processes
Faculty of Science > Research Centres > Centre for Molecular and Structural Biochemistry
Faculty of Science > Research Groups > Chemistry of Light and Energy
Depositing User: Rachel Smith
Date Deposited: 10 May 2011 10:38
Last Modified: 24 Oct 2022 02:45
URI: https://ueaeprints.uea.ac.uk/id/eprint/30091
DOI: 10.1021/bi049163g

Actions (login required)

View Item View Item