On the enantioselectivity of aziridination of styrene catalysed by copper triflate and copper-exchanged zeolite Y: consequences of the phase behaviour of enantiomeric mixtures of N-arene-sulfonyl-2-phenylaziridines

Jeffs, Laura, Arquier, Damien, Kariuki, Benson, Bethell, Donald, Bulman Page, Philip C. and Hutchings, Graham J. (2011) On the enantioselectivity of aziridination of styrene catalysed by copper triflate and copper-exchanged zeolite Y: consequences of the phase behaviour of enantiomeric mixtures of N-arene-sulfonyl-2-phenylaziridines. Organic & Biomolecular Chemistry, 9 (4). pp. 1079-1084. ISSN 1477-0539

Full text not available from this repository.

Abstract

By synthesising S-2-phenyl-N-(4-nitrophenyl)aziridine from S-phenylglycinol, it has been demonstrated that the aziridination of styrene by [N-(4-nitrobenzenesulfonyl)imino]phenyliodinane (nosyliminophenyliodinane, PhINNs) in the presence of S,S-2,2'-isopropylidene-bis(4-phenyl-2-oxazoline), catalysed by copper(II) triflate in CH3CN solution or heterogeneously by CuHY, has predominantly an R-configuration. The enantioselectivity of the aziridination of styrene by [N-arenesulfonylimino]-phenyliodinanes catalysed by copper-exchanged zeolite Y (CuHY), in conjunction with a chiral bis-oxazoline ligand, has been re-examined. In the case of PhINNs, it is shown that the product mixture of enantiomeric aziridines, on treatment with hexane, gives rise to a solid phase of low enantiomeric excess (ee) and a solution phase of high ee. Separation of the solid phase and recrystallisation afforded a true racemate (racemic compound), which has been confirmed by X-ray crystallography. The aziridine obtained from the solution phase could be recrystallised to produce the pure enantiomer originally in excess. A consequence of the new findings is that previous reports on the enantioselectivity of copper-catalysed aziridination, both in heterogeneous and homogeneous conditions, should be regarded with caution if the analytical procedure involved HPLC with injection of the enantiomeric mixture in a hexane-rich solvent. Such a method has been used in previous work from this laboratory, but has also been used elsewhere, following the procedure developed by Evans and co-workers when the (homogeneous) copper-catalysed aziridination by PhINTs was first discovered. Evidently, the change of substituent in the benzenesulfonyl group reduces the solubility in hexane, affording a solution phase of enhanced ee.

Item Type: Article
Faculty \ School: Faculty of Science > School of Chemistry (former - to 2024)
UEA Research Groups: Faculty of Science > Research Groups > Synthetic Chemistry (former - to 2017)
Faculty of Science > Research Groups > Chemistry of Materials and Catalysis
Depositing User: Rachel Smith
Date Deposited: 22 Mar 2011 11:54
Last Modified: 24 Sep 2024 09:04
URI: https://ueaeprints.uea.ac.uk/id/eprint/26853
DOI: 10.1039/C0OB00724B

Actions (login required)

View Item View Item