Džamonja, Mirna and Juhász, István (2011) CH, a problem of Rolewicz and bidiscrete systems. Topology and its Applications, 158 (1). pp. 2485-2494. ISSN 1879-3207
Preview  | 
            
              
PDF (newbidiscretev9.pdf)
 Download (197kB) | Preview  | 
          
Abstract
We give a construction under CH of a non-metrizable compact Hausdorff space K such that any uncountable ‘nice’ semi-biorthogonal sequence in C(K) must be of a very specific kind. The space K has many nice properties, such as being hereditarily separable, hereditarily Lindelöf and a 2-to-1 continuous preimage of a metric space, and all Radon measures on K are separable. However K is not a Rosenthal compactum. We introduce the notion of a bidiscrete system in a compact space K. These are subsets of K2 which determine biorthogonal systems of a special kind in C(K) that we call nice. We note that for every infinite compact Hausdorff space K, the space C(K) has a bidiscrete system and hence a nice biorthogonal system of size d(K), the density of K.
| Item Type: | Article | 
|---|---|
| Faculty \ School: | Faculty of Science > School of Mathematics (former - to 2024) | 
| UEA Research Groups: | Faculty of Science > Research Groups > Logic (former - to 2024) Faculty of Science > Research Groups > Algebra, Number Theory, Logic, and Representations (ANTLR)  | 
        
| Depositing User: | Vishal Gautam | 
| Date Deposited: | 18 Mar 2011 10:19 | 
| Last Modified: | 12 Oct 2025 10:30 | 
| URI: | https://ueaeprints.uea.ac.uk/id/eprint/19972 | 
| DOI: | 10.1016/j.topol.2011.08.005 | 
Downloads
Downloads per month over past year
Actions (login required)
![]()  | 
        View Item | 
        
 Tools
 Tools