Džamonja, Mirna and Väänänen, Jouko (2011) Chain models, trees of singular cardinality and dynamic EF games. Journal of Mathematical Logic (jml), 11 (1). pp. 61-85. ISSN 0219-0613
Preview |
PDF (latest6.pdf)
- Accepted Version
Download (277kB) | Preview |
Abstract
Let κ be a singular cardinal. Karp's notion of a chain model of size ? is defined to be an ordinary model of size κ along with a decomposition of it into an increasing union of length cf(κ). With a notion of satisfaction and (chain)-isomorphism such models give an infinitary logic largely mimicking first order logic. In this paper we associate to this logic a notion of a dynamic EF-game which gauges when two chain models are chain-isomorphic. To this game is associated a tree which is a tree of size κ with no κ-branches (even no cf(κ)-branches). The measure of how non-isomorphic the models are is reflected by a certain order on these trees, called reduction. We study the collection of trees of size κ with no κ-branches under this notion and prove that when cf(κ) = ω this collection is rather regular; in particular it has universality number exactly κ+. Such trees are then used to develop a descriptive set theory of the space cf(κ)κ.The main result of the paper gives in the case of κ strong limit singular an exact connection between the descriptive set-theoretic complexity of the chain isomorphism orbit of a model, the reduction order on the trees and winning strategies in the corresponding dynamic EF games. In particular we obtain a neat analog of the notion of Scott watershed from the Scott analysis of countable models.
Item Type: | Article |
---|---|
Faculty \ School: | Faculty of Science > School of Mathematics |
UEA Research Groups: | Faculty of Science > Research Groups > Logic |
Depositing User: | Vishal Gautam |
Date Deposited: | 18 Mar 2011 10:19 |
Last Modified: | 15 Dec 2022 01:23 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/19971 |
DOI: | 10.1142/S0219061311001006 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |