Oscillatory Flow near a stagnation point

Blyth, M. G. and Hall, P. (2003) Oscillatory Flow near a stagnation point. SIAM Journal on Applied Mathematics (SIAP), 63 (5). pp. 1604-1614. ISSN 0036-1399

Full text not available from this repository.

Abstract

The classical Hiemenz solution describes incompressible two-dimensional stagnation point flow at a solid wall. We consider an unsteady version of this problem, examining particularly the response close to the wall when the solution at infinity is modulated in time by a periodic factor of specified amplitude and frequency. While this problem has already been tackled in the literature for general frequency in cases when the amplitude of the time-periodic factor is either large or small, we compute the flow for arbitrary values of both these parameters. For any given amplitude, we find that there exists a threshold frequency above which the flow is regular and periodic, with the same period as the modulation factor, and beneath which the solution terminates in a finite time singularity. The dividing line in parameter space between these two possibilities is identified and favorably compared with the predictions of asymptotic analyses in the small and large frequency limits.

Item Type: Article
Faculty \ School: Faculty of Science > School of Mathematics (former - to 2024)
UEA Research Groups: Faculty of Science > Research Groups > Fluid and Solid Mechanics (former - to 2024)
Faculty of Science > Research Groups > Fluids & Structures
Depositing User: Vishal Gautam
Date Deposited: 18 Mar 2011 10:11
Last Modified: 07 Nov 2024 12:35
URI: https://ueaeprints.uea.ac.uk/id/eprint/19798
DOI: 10.1137/S0036139902408175

Actions (login required)

View Item View Item