Baake, Michael and Ward, Tom (2010) Planar dynamical systems with pure Lebesgue diffraction spectrum. Journal of Statistical Physics, 140 (1). pp. 90-102. ISSN 0022-4715
Full text not available from this repository.Abstract
We examine the diffraction properties of lattice dynamical systems of algebraic origin. It is well-known that diverse dynamical properties occur within this class. These include different orders of mixing (or higher-order correlations), the presence or absence of measure rigidity (restrictions on the set of possible shift-invariant ergodic measures to being those of algebraic origin), and different entropy ranks (which may be viewed as the maximal spatial dimension in which the system resembles an i.i.d. process). Despite these differences, it is shown that the resulting diffraction spectra are essentially indistinguishable, thus raising further difficulties for the inverse problem of structure determination from diffraction spectra. Some of them may be resolved on the level of higher-order correlation functions, which we also briefly compare.
Item Type: | Article |
---|---|
Faculty \ School: | Faculty of Science > School of Mathematics |
Related URLs: | |
Depositing User: | Vishal Gautam |
Date Deposited: | 18 Mar 2011 14:48 |
Last Modified: | 12 Jan 2024 01:21 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/19755 |
DOI: | 10.1007/s10955-010-9984-x |
Actions (login required)
View Item |