Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: Cancer therapy using a 'Trojan horse'

Wieder, Martina E., Hone, Duncan C., Cook, Michael J., Handsley, Madeleine M., Gavrilovic, Jelena ORCID: https://orcid.org/0000-0002-5312-1784 and Russell, David (2006) Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: Cancer therapy using a 'Trojan horse'. Photochemical & Photobiological Sciences, 5 (8). pp. 727-734. ISSN 1474-905X

Full text not available from this repository. (Request a copy)

Abstract

Phthalocyanine-nanoparticle conjugates have been designed and synthesised for the delivery of hydrophobic photosensitizers for photodynamic therapy (PDT) of cancer. The phthalocyanine photosensitizer stabilized gold nanoparticles have an average diameter of 2–4 nm. The synthetic strategy interdigitates a phase transfer reagent between phthalocyanine molecules on the particle surface that solubilises the hydrophobic photosensitizer in polar solvents enabling delivery of the nanoparticle conjugates to cells. The phthalocyanine is present in the monomeric form on the nanoparticle surface, absorbs radiation maximally at 695 nm and catalytically produces the cytotoxic species singlet oxygen with high efficiency. These properties suggest that the phthalocyanine-nanoparticle conjugates are ideally suited for PDT. In a process that can be considered as cancer therapy using a ‘Trojan horse’, when the nanoparticle conjugates are incubated with HeLa cells (a cervical cancer cell line), they are taken up thus delivering the phthalocyanine photosensitizer directly into the cell interior. Irradiation of the nanoparticle conjugates within the HeLa cells induced substantial cell mortality through the photodynamic production of singlet oxygen. The PDT efficiency of the nanoparticle conjugates, determined using colorimetric assay, was twice that obtained using the free phthalocyanine derivative. Following PDT with the nanoparticle conjugates, morphological changes to the HeLa cellular structure were indicative of cell mortality via apoptosis. Further evidence of apoptosis was provided through the bioluminescent assay detection of caspase 3/7. Our results suggest that gold nanoparticle conjugates are an excellent vehicle for the delivery of surface bound hydrophobic photosensitizers for efficacious photodynamic therapy of cultured tumour cells.

Item Type: Article
Uncontrolled Keywords: sdg 3 - good health and well-being ,/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_being
Faculty \ School: Faculty of Science > School of Chemistry (former - to 2024)
Faculty of Science > School of Biological Sciences
UEA Research Groups: Faculty of Science > Research Groups > Cells and Tissues
Faculty of Science > Research Groups > Physical and Analytical Chemistry (former - to 2017)
Depositing User: Vishal Gautam
Date Deposited: 01 Aug 2006
Last Modified: 24 Sep 2024 09:53
URI: https://ueaeprints.uea.ac.uk/id/eprint/17251
DOI: 10.1039/b602830f

Actions (login required)

View Item View Item