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Abstract

A diverse array of micro- organisms can be found on food, including those that are pathogenic or resistant to antimicrobial 
drugs. Metagenomics involves extracting and sequencing the DNA of all micro- organisms on a sample, and here, we used 
a combination of culture and culture- independent approaches to investigate the microbial ecology of food to assess the 
potential application of metagenomics for the microbial surveillance of food. We cultured common foodborne pathogens and 
other organisms including Escherichia coli, Klebsiella/Raoultella spp., Salmonella spp. and Vibrio spp. from five different food 
commodities and compared their genomes to the microbial communities obtained by metagenomic sequencing following host 
(food) DNA depletion. The microbial populations of retail food were found to be predominated by psychrotrophic bacteria, 
driven by the cool temperatures in which the food products are stored. Pathogens accounted for a small percentage of the 
food metagenome compared to the psychrotrophic bacteria, and cultured pathogens were inconsistently identified in the 
metagenome data. The microbial composition of food varied amongst different commodities, and metagenomics was able 
to classify the taxonomic origin of 59% of antimicrobial resistance genes (ARGs) found on food to the genus level, but it was 
unclear what percentage of ARGs were associated with mobile genetic elements and thus transferable to other bacteria. 
Metagenomics may be used to survey the ARG burden, composition and carriage on foods to which consumers are exposed. 
However, food metagenomics, even after depleting host DNA, inconsistently identifies pathogens without enrichment or further 
bait capture.

Impact Statement

Multiple micro- organisms can be found on food, including those that are dangerous to humans and those that carry antimicrobial 
resistance genes. Metagenomics involves analyzing all the microbial DNA on a sample, and in this study, we compared the 
metagenomes of food samples with the genomes of pathogens cultured from the same samples to determine if metagenomics 
could be used for food pathogen surveillance. Retail food samples were predominated by psychrotrophic bacteria that thrive in 
the cool temperatures at which food is stored. Pathogens accounted for a small percentage of the food metagenome compared 
to the psychrotrophic bacteria, and cultured pathogens were inconsistently identified in the metagenome data. For 59% of 
antimicrobial resistance genes (ARGs) found on food, metagenomics could predict what bacterial genus to which they belonged. 
However, it was unclear what percentage of ARGs could easily be transferred between bacteria. Metagenomics may be used to 
survey the burden of ARG on food but is currently unable to identify food pathogens effectively.
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DATA SummARy
All raw reads generated as part of this study were uploaded to the Sequence Read Archive (SRA) under the following projects: 
PRJNA849983 (food metagenome Illumina), PRJNA1034280 (chicken metagenome PromethION), PRJNA1107355 (leafy greens, 
pork and salmon metagenome PromethION), PRJNA939716 (Salmonella Illumina), PRJNA1135353 (Klebsiella Illumina) and 
PRJNA1107692 (Escherichia coli and Vibrio Illumina). The R scripts used to analyse food metagenomes were uploaded to Zenodo:  
doi. org/ 10. 5281/ zenodo. 13995543.

InTRoDuCTIon
Global trade provides the opportunity to consume food from around the world, originating from a wide range of animals and 
plants and produced using a range of methods. A safe food chain relies on the identification and minimization of food pathogens 
[1] and the identification of other micro- organisms that may indirectly influence a consumer’s health, such as antimicrobial- 
resistant (AMR) bacteria [2]. New molecular techniques are being developed to identify micro- organisms quickly, such as 
loop- mediated isothermal amplification to detect food pathogens [3], and at higher resolution, such as metagenomics that can 
identify micro- organisms at the strain level [4], but their effectiveness needs to be assessed before their utility for food surveillance 
can be determined.

It is estimated that foodborne pathogens are responsible for 2.4 million infections in the UK each year, including well- known 
bacterial pathogens such as Campylobacter spp., Salmonella spp. and Listeria monocytogenes [5]. However, not all individuals 
with foodborne illness will seek medical attention, and fewer still will submit a clinical sample for testing [6, 7], preventing the 
causative agent and putative sources from being identified. Consumers are at risk when causative agents of foodborne illness 
remain undetected, typically due to traditional approaches being targeted to specific pathogens (e.g., culture- based, immunoassay 
and molecular methods) [1, 8] or new foodborne diseases emerging and not being recognized [9]. As such, methods that can 
identify all micro- organisms on food in a timely, accurate and reproducible manner are required.

Pathogen identity is not the only important factor for food safety, as not all pathogens within the same species represent the 
same risk to human health. Pathogenic bacteria often contain virulence genes that encode for molecules that help to colonize, 
move between and evade host defenses, as well as obtain nutrients from their environment [10]; virulence genes are often used 
to distinguish pathogenic and non- pathogenic strains [11]. For this reason, multiple molecular methods have been developed to 
identify these virulence genes and the pathogenic strains carrying them [12].

The human burden of foodborne disease is further compounded by AMR. Although many foodborne illnesses are self- limiting, 
severe infections can occur that may require antimicrobial treatment, which is complicated by AMR. Pathogens and non- 
pathogenic bacteria on food can also act as a reservoir of antimicrobial resistance genes (ARGs) [13].

Beyond this, metal- tolerance genes are often co- selected with ARGs [14], with metals often used in the agricultural and horticultural 
industries for their bactericidal and growth- promoting effects [15, 16]. Most studies of metal- tolerant bacteria on food focus on 
pathogens [17], although many of the non- pathogenic bacteria on food are known to be metal tolerant [18].

The gut microbiota consists of all the micro- organisms in the gastrointestinal tract and is influenced by diet [19]. The gut 
microbiota contain many metabolic pathways that can utilize and produce metabolites [20]. Collectively, the conserved sequences 
of reactions that encode for metabolite utilization or production are referred to as metabolic modules [21]. Food varies in chemical 
compositions, and certain macromolecules in food promote certain micro- organisms in the diet [19]. However, food may also 
influence the gut microbiota by introducing new strains that colonize the gut.

Previously, we developed a method for depleting host (food) DNA from food and applied it to 109 food samples [22]. In this 
study, for the 109 samples, we compared the genomes of cultured pathogens to the short- read metagenomes, supplementing a 
subset of samples with long- read metagenomes, with the purpose of obtaining a deeper understanding of the microbial ecology 
of foods and evaluating the usefulness of metagenomics in improving food surveillance and safety [23]. We also investigated 
microbial signatures amongst different food commodities and the ability of metagenomics to predict what bacteria contribute 
to the ARG reservoir on food.

mETHoDS
Samples
The 109 food metagenomes analyzed in this study had previously undergone host DNA depletion before they were sequenced 
on an Illumina NextSeq [22]. They consisted of 28 chicken, 24 leafy green, 15 pork, 18 prawn and 24 salmon samples and were 
collected at retail throughout Norfolk County of the UK, as previously described [22]. The food samples were collected on 14 
sampling trips, and a blank was run for each sampling trip that consisted of buffered peptone water that underwent the same 
host DNA depletion and sequencing was performed as for the food samples.
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Pathogen culturing
The food samples from which the metagenomes were extracted were also cultured for Escherichia coli, Klebsiella/Raoultella spp., 
Salmonella spp. and, in the case of seafood samples, Vibrio spp., as described previously [1]. Multiple isolates from each food 
sample were selected and analyzed further. For E. coli, up to four isolates per sample were analyzed; for Salmonella, up to eight 
isolates per sample were analyzed; and for Klebsiella/Raoultella and Vibrio, up to two isolates per sample were analyzed.

Genomes were extracted using the Maxwell RSC Cultured Cells DNA Kit (Promega, Madison, WI, USA). Libraries were created 
using the Nextera XT DNA Library Preparation Kit (Illumina, San Diego, CA, USA) and sequenced on a NextSeq 550 System 
(Illumina) as 150 bp paired- end reads.

Genomic Illumina reads were trimmed using fastp v0.19.5 [24] to trim reads with a minimum quality value of 20 and default other 
parameters. Trimmed genomic reads were assembled using SPAdes v3.11.1 [25] in ‘careful’ mode. The quality of the assemblies was 
assessed using QUAST v4.6.3 [26] and CheckM v1.1.2 [27] and by aligning reads to the assemblies using the Burrows–Wheeler 
aligner (BWA) v0.7.17 [28]. Assemblies were accepted if they consisted of less than 500 contigs that were over 500 bp and less 
than 50 duplicate genes and had a mean read depth of the 4 largest contigs above 30.

MLST v2.16.1 (https://github.com/tseemann/mlst) was used to predict the sequence types (STs) of the assembled genomes.

Assembly-independent metagenomics
The raw paired Illumina reads of the 109 food samples and 14 blanks that were previously sequenced at 8 GB per metagenome 
[22] were processed using fastp similar to genomes. The blanks had been spiked with PhiX, and these reads were filtered out 
using BBsplit v38.75 [29] and the phiX174 genome (SAMN04281799).

MetaPhlAn v2.6.0 [30] was used to predict the taxonomic origin of the trimmed reads and to identify if reads associated with the 
cultured pathogens could be detected. In R v4.1.2 [31], phyloseq v1.38.0 (https://github.com/joey711/phyloseq) was used to rarefy 
the samples to the minimum sample total read depth, and ALDEx2 v1.26.0 (https://github.com/ggloor/ALDEx2_dev) was used 
to identify taxa associated with food commodity using a generalized linear model, and the level of significance was adjusted for 
multiple comparisons using the Benjamini–Hochberg procedure. A large percentage of the blanks’ reads were classified as E. coli 
reads, likely because the PhiX they were spiked with originated from E. coli and PhiX read filtering did not remove all of them.

MetaMLST v1.2.2 [32] was used to identify bacterial STs in food metagenomes using the paired trimmed reads. The STs identified 
in metagenomes were compared to the STs of pathogens cultured from the same samples.

To identify pathogen genomes within metagenomes, trimmed metagenome Illumina reads were aligned to the assembled genomes 
using BWA, and the coverage was calculated using SAMtools v1.9 [33]. For each genome, the percentage of the assembly to which 
metagenomic reads were aligned was calculated.

Genome reconstruction and taxonomic and functional profiling of metagenomes
To investigate the differences in the food microbiota at the species level, MATAFILER was used to process metagenome raw reads, 
assemble metagenomes and reconstruct and dereplicate metagenome- assembled genomes (MAGs) [34]. Raw metagenomic reads 
were quality filtered using sdm v1.63 with default parameters [35]. Kraken2 [36] was used to remove metagenome reads associated 
with hosts using reference genomes of the organisms from which the food originated (Table S1, available in the online version 
of this article). Host- filtered metagenome reads were assembled using MEGAHIT v1.2.9 [37], and reads were back mapped to 
the assembly using Bowtie2 v2.3.4.1 [38]. Genes were predicted with Prodigal v2.6.1 with parameters ‘-p meta’ [39], and a gene 
catalogue clustered at 95% nt identity using MMseqs2 [40]. Matrix operations on the gene catalogue were carried out using rtk 
[41].

MAGs were calculated using SemiBin2 [42], and their completeness and contamination were estimated using CheckM2 [43]. Using 
a combination of genome bins (via canopy clusters [44] as implemented in canopy2, https://github.com/hildebra/canopy2) and 
SemiBin2 MAGs, high- quality MAGs (>80% completeness and <5% contamination) [34] were dereplicated using clusterMAGs 
(https://github.com/hildebra/clusterMAGs). The GTDB bacterial core genes were used to guide dereplication. The dereplication 
procedure uses a canopy clustering approach, requiring at least (weighted) >80% matching in marker genes between two MAGs 
to collapse into the same species. These dereplicated MAGs are referred to as metagenome species (MGSs). MGSs associated 
with individual food commodities were identified based on the relative abundance of the MGSs after rarefaction using ALDEx2 
as previously described.

To identify functional groups that differed between metagenomes, gene annotation was performed on the metagenome assemblies 
as described by Frioux et al. [45]. Briefly, the gene catalogue was annotated to the eggNOG database [46] using the BLASTPmodule 
of Diamond [47]. Higher- level Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO) categories were downloaded 
from the KEGG database [48]. The KO assignments were used to predict conserved sequences of reactions that make up metabolic 

https://github.com/tseemann/mlst
https://github.com/joey711/phyloseq
https://github.com/ggloor/ALDEx2_dev
https://github.com/hildebra/canopy2
https://github.com/hildebra/clusterMAGs
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modules represented using GOmixer [49, 50]. ALDEx2 was used to determine if food commodity was associated with the relative 
abundance of metabolic modules after rarefaction as described previously.

KMA v1.2.3t [51] was used to identify ARGs using the ResFinder v3.2 database [52] and virulence genes using the Virulence 
Finder Database (VFDB) v6.0 [53]. Lapidary v0.5.0 [54] was used to identify metal- tolerance genes using the BacMet database 
[55]. For AMR, virulence and metal- tolerance genes, 90% identity and 60% coverage cut- offs were used. The number of reads that 
aligned to these genes was compared to the number of post- host DNA- removed reads. phyloseq was used to rarefy the samples to 
the minimum sample post- host DNA- removed reads. ALDEx2 was used to look for an association between the genes of interest 
and food commodity as described previously.

Read depth and pathogen identification comparison
A linear regression model was used to determine if the number of sequenced microbial reads or relative abundance of pathogen 
was associated with the detection of pathogens. The outcome variable was the percentage of the pathogen genome assembly that 
reads from the associated metagenome aligned to using BWA, and the explanatory variables were the number of microbial reads 
(post- Kraken2 host removal), relative abundance of the specific pathogen (calculated by MetaPhlAn2) and the pathogen identity. 
A partial F- test was used to determine if pathogen identity significantly affected the model.

Long-read analysis
For the 24 food metagenomes that had a DNA concentration above 30 ng µl−1, libraries were formed using the Ligation Sequencing 
Kit (SQK- LSK110) (Oxford Nanopore Technologies, Oxford, UK) and barcoded using Native Barcoding Expansion 1–12 (EXP- 
NBD104) and 13–24 (EXP- NBD114) (Oxford Nanopore Technologies). These libraries were sequenced on a PromethION (Oxford 
Nanopore Technologies) at a target depth of 8 GB per metagenome. Bases were called using Guppy v6.2.1 (https://nanoporetech. 
com/document/Guppy-protocol) with super accuracy basecalling. The raw long reads were trimmed using NanoFilt v0.1.0 
(https://github.com/wdecoster/nanofilt). Hybrid assemblies with trimmed long and short reads were assembled using OPERA- MS 
v0.9.0 [56].

ARGs, virulence genes and plasmid replicons were identified in hybrid assemblies using Abricate v1.01 (https://github.com/ 
tseemann/abricate) with the ResFinder v3.6, VFDB v2.0.4 and PlasmidFinder v2.1.3 [57] databases, respectively. Metal- tolerance 
genes were identified using TBLASTN v2.14.0 [58] and the BacMet v2.0 database. For Abricate and TBLASTN, 90% identity and 
60% coverage cut- offs were used. For ARG-, metal- tolerance- and virulence- containing contigs, the gene of interest was blocked 
out and the taxonomic origin of the contigs was predicted using Kraken v2.1.1 [36] and the maxikraken2_1903_140 GB databases. 
ISEscan v1.7.2.3 [59] was used to identify insertion sequences (ISs), and those classified as ‘complete’ were investigated further. 
Genes of interest within 10 kbp of ISs were classified as associated with ISs.

The percentage of the metagenome comprised of each gene of interest was calculated by multiplying the gene length by the mean 
Illumina read depth of the contigs on which the genes were located and dividing by the number of post- host DNA- removed 
sequenced bases of the metagenome.

To measure the accuracy of contig- based gene taxonomic classifications, the analysis was repeated on the genomes of the bacteria 
cultured from the same samples as the metagenomes, including masking the genes of interest, except with 90% identity and 
coverage cut- offs. The bacterial genomes sequenced in this study consisted of well- described pathogens, whilst the metagenomes 
contained many poorly described micro- organisms. A lower coverage cut- off was used when identifying genes of interest in 
metagenomes (60%) compared to genomes in case the poorly described pathogens contained genes distantly related to those in 
the gene databases and would be missed with a stricter coverage cut- off [60].

RESuLTS
metagenome-genome comparisons
Analyses of the metagenomic reads from food samples using MetaPhlAn2 revealed a large amount of variation in the microbial 
composition of food (Fig. 1); the most abundant genera were Pseudomonas (39%), Acinetobacter (14%), Psychrobacter (6.8%), 
Shewanella (5.6%) and Carnobacterium (5.0%). For each sampling run, different batches of buffered peptone water and other 
reagents were used as sampling took place over a 7- month period, explaining the differences in the microbial composition of 
the blanks.

To test the ability of metagenomics to accurately detect pathogens on food, we cultured specific pathogenic bacteria from the 109 
food samples. Culturing results varied amongst different food commodities (Table S2), as described in previous work [1]. Of the 
109 food samples tested, 62% were positive for E. coli, 31% for Klebsiella/Raoultella and 2.8% for Salmonella through culture. Of 
the 42 seafood samples tested, 26% were positive for Vibrio through culture. For 98% of metagenomes, the relative abundance 
of pathogens was less than 10% compared to the other micro- organisms in the metagenome, regardless of whether or not the 

https://nanoporetech.com/document/Guppy-protocol
https://nanoporetech.com/document/Guppy-protocol
https://github.com/wdecoster/nanofilt
https://github.com/tseemann/abricate
https://github.com/tseemann/abricate
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Fig. 1. Barplots of the microbial reads classified at the genus level for the blanks (a), chicken (b), leafy green (c), pork (d), prawn (e) and salmon (f) 
samples for 109 short- read sequenced metagenomes and 14 blanks. The top 40 most common genera were coloured, and the rest were combined 
into an ‘other’ category.
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pathogen was recovered from the sample through culture. The exception was a chicken and a pork sample, where the relative 
abundance of E. coli was 49% and 27 %, respectively. E. coli was cultured from these samples (Fig. S1).

The ability of metagenomes to detect low- abundant pathogens was measured by investigating if MetaPhlAn2 found any reads of 
the pathogens cultured from food. When compared to culture results, MetaPhlAn2 was 0–38% sensitive and 78–100% specific 
for the different pathogens investigated (Table S3).

After removing host reads from the food metagenomes, three metagenomes (one chicken and two prawn samples) had too few 
reads for subsequent assemblies. These samples were excluded from further analysis.

For the isolated pathogens, the associated metagenomes aligned to 6.3–99.9% of their genome assemblies (Fig. 2). The percentage 
of the genome assembly identified was positively associated with the number of microbial reads sequenced (linear regression: 
P=3.3×10−4) and the relative abundance of the specific pathogen compared to other micro- organisms in the metagenome (linear 
regression: P=7.3×10−16). Pathogen identity was also associated with the percentage of the genome assembly identified (partial 
F- test: P=0.011). The pork metagenome consisting of 27% E. coli microbial reads had three E. coli isolates cultured from it that 
belonged to ST 2967, and 99.9% of their assemblies were identified via metagenomic sequencing. The chicken sample consisting 
of 49% E. coli microbial reads had three E. coli isolates cultured from it that belonged to different STs, 57, 131 and 8611, and 
89.5–99.6% of their assemblies were identified in the metagenome. For the rest of the pathogens cultured from food, 6–98% of 
their genome assemblies were found in the associated metagenome.

MetaMLST was used to identify STs in the metagenomes and was able to identify STs of at least 1 bacterial species in 21 of the 
109 food samples analyzed (Table S4). However, most of the STs were unknown, with only three known STs identified. The only 
known pathogen ST identified was E. coli ST 353. This was identified in the chicken metagenome where this species comprised 
49% of the microbial reads, but none of the E. coli isolates cultured from this sample belonged to this ST.

Fig. 2. Percentage of genome assemblies of pathogens cultured from food identified by the associated short- read sequenced metagenome, separated 
by food commodity and coloured by taxa.
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Fig. 3. Number (a) and percentage (b) of metabolic modules identified amongst 106 short- read sequenced food metagenomes whose assemblies 
passed quality control and that significantly differed between samples from different food commodities.
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metagenomic microbial composition and metabolic modules
Metagenomic sequences were further processed using MATAFILER [34] to reconstruct de novo MGSs associated with food 
commodity. MGS analysis identified 111 taxa at the species level across the 106 food metagenomes with sufficient host- removed 
reads to assemble that were each represented by at least one high- quality reference MAG (>80% completeness and <5% 
contamination). MGS relative abundance analysis using ALDEx2 identified five taxa that differed between food commodities. 
Compared to other food commodities, leafy greens were associated with a higher relative abundance of Pantoea agglomerans; 
chicken and pork were associated with a higher relative abundance of Brochothrix thermosphacta, Pseudomonas paraversuta and 
Pseudomonas weihenstephanensis; and chicken, pork and salmon were associated with a higher relative abundance of Acinetobacter 
harbinensis (Fig. S3). Using non- metric multidimensional scaling, there was some overlap amongst chicken, pork, prawn and 
salmon samples, whilst leafy green samples clustered separately to the other food commodities (Fig. S4). Additional taxa were 

Fig. 4. Percentage of metagenomes comprised of antimicrobial resistance (AMR) (a), metal- tolerance (b) and virulence (c) genes identified in 24 long- 
read metagenome assemblies and coloured by the predicted taxa at the genus level.
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associated with food commodity when reads were taxonomically classified using MetaPhlAn, although MetaPhlAn struggled to 
classify some taxa at the species level (Fig. S5).

Metabolic analysis identified 131 metabolic modules in the food metagenomes. Thirty- two modules significantly differed between 
food commodities (Fig. S6). The 131 metabolic modules were classified into 14 functional groups, and the metabolic modules 
that differed amongst food commodities were not associated with functional group (Fisher’s exact test: P=0.183) (Fig. 3). Leafy 
green samples had a higher relative abundance of pectin degradation compared to other food commodities.

Fig. 5. Percentage of AMR, metal- tolerance and virulence genes in the presence of different insertion sequence types for the 24 long- read food 
metagenomes.

Fig. 6. Size distribution of antimicrobial resistance (AMR) (a, d, g, j), metal- tolerance (b, e, h, k) and virulence (c, f, i, l) gene- containing contigs (a–c) for 
24 long- read sequenced food metagenomes, separated by whether they were classified at the genus level (d–f), contained insertion sequences (ISs) 
(g–i) or contained plasmid replicons (j–l).
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ARG analysis identified 368 ARGs across the food metagenomes. Comparisons of ARG concentration within the food metagenome 
identified three that significantly differed between food commodities (Fig. S7). blaERP- 1 was associated with a higher concentration 
in leafy greens; tet(L) in chicken and pork; and tet(39) in chicken, pork and salmon.

Virulence gene analysis identified 922 virulence genes across the food metagenomes. Five virulence genes significantly differed 
between food commodities: mrkA, mrkB, mrkC, mrkD and mrkF were associated with a higher concentration in chicken, pork 
and salmon samples (Fig. S8). These genes are associated with bacterial fimbriae and biofilm formation. The VFDB associates 
each virulence gene with a specific pathogen; for each pathogen cultured, the culture status was compared with the detection 
of one or more virulence genes associated with that pathogen. When compared to culture results, virulence gene detection was 
0–71% sensitive and 11–94% specific for the pathogens investigated (Table S5).

Metal- tolerance gene analysis identified 413 metal- tolerance genes across the food metagenomes. A total of 125 metal- tolerance 
genes significantly differed between food commodities, of which 65 were associated with tolerance to multiple compounds (Fig. 
S9). These genes were associated with tolerance to 61 compounds, most commonly with tolerance to mercury (Fig. S10).

Long-read metagenomes
Long- read sequencing was applied to 24 metagenomes to improve metagenome assembly length and help taxonomically 
investigate ARGs, along with metal- tolerance and virulence genes. Long- read sequencing was applied to 7 chicken, 11 leafy 
green, 5 pork and 1 salmon samples. Hybrid long- and short- read assembled metagenomes had a mean N50 value of 17 981 bp 
(range: 3760–41 102 bp) and a mean largest contig of 1 258 817 bp (range: 365 137–4 020 681 bp).

ARGs comprised 0–0.009% of the metagenome, metal- tolerance genes 0.005–0.3% of the metagenome and virulence genes 
0–0.03% of metagenomes (Fig. 4). The taxonomic origin was predicted for 59% of AMR, 68% of metal- tolerance and 96% of 
virulence genes at the genus level, but greater percentages were predicted at higher taxon levels (Fig. S11). The genera most 
commonly found with ARGs were Aeromonas (18%), Shewanella (9.4%), Acinetobacter (9.2%) and Carnobacterium (6.0%). 
Amongst the 24 hybrid metagenomes, 66 unique ARGs were identified and 35 were identified in multiple contigs. Of those 
identified multiple times, eight were consistently found with the same genus and four were found with different genera (Fig. 
S12). The genus most commonly found with metal- tolerance genes was Pseudomonas (41%), and that most commonly found 
with virulence genes was Yersinia (93%).

Amongst the 24 hybrid assembled metagenomes, 173–1303 (mean=680) ISs and 0–47 (mean=12) plasmid replicons were 
identified. Using a 10 000 bp cut- off, 16% (sample range: 0–49%) of ARGs were associated with ISs, as were 13% (sample range: 
0–77%) of metal- tolerance genes and 1.8% (sample range: 0–100%) of virulence genes. ARGs were most commonly associated 
with IS3 (3.7%; sample range: 0–39%), IS4 (3.9%; sample range: 0–25%), IS5 (2.9 %; sample range: 0–36%), IS6/IS26 (4.6%; sample 
range: 0–15%) and IS30 (3.9%; sample range: 0–17%) (Fig. 5). 6.0 % (sample range: 0–52%) of ARGs, 0.07% of metal- tolerance 
genes (sample range: 0–0.77%) and no virulence genes were found on the same contig as a plasmid replicon.

The ARG- containing contigs were 479–485 710 bp (mean: 37 227 bp) in length, metal- tolerance gene- containing contigs were 
202–2 849 978 bp (mean: 65 141 bp) in length and virulence gene- containing contigs were 273–665 242 bp (mean: 85 980 bp) in 
length (Fig. 6). Above 10 000 bp, the origin of most contigs was predicted at the genus level. There was no association between 
taxonomic classification at the genus level and being associated with an IS for ARG- containing (Fisher’s exact test: P=0.53), 
metal- tolerance- containing (Fisher’s exact test: P=0.18) or virulence- containing (Fisher’s exact test: P=1.0) contigs.

To validate the taxonomic classification of metagenomic elements of interest, the analysis was repeated on the cultured isolate 
genomes where the taxonomy was known. None of the genome contigs containing AMR, metal- tolerance or virulence genes 
were misclassified, but only 17% of ARGs, 11% of metal- tolerance genes and 12% of virulence genes were classified at the genus 
level (Figs S13–S15). However, the percentage of genes classified at the genus level differed between the pathogens cultured for 
the genes of interest investigated (Fisher’s exact text: P<1×10−8, 1×10−8 and 1×10−8, respectively), and larger percentages of genes 
were classified at higher taxon levels.

DISCuSSIon
Metagenomics has the potential to revolutionize food safety diagnostics, allowing for the identification and typing of 
pathogens and tracking AMR in a matter of hours or at most days [23]. However, by comparing the genomes of pathogens 
cultured from food samples to the metagenomic detection of the same pathogens, we demonstrate that it is currently not 
practical in all scenarios. Its ability to detect the presence of pathogens or genetic traits, which may be in low abundance, 
must be evaluated before it should be applied to food surveillance.

A wide range of micro- organisms were found on food that varied in abundance, but the predominating micro- organisms 
belonged to the Acinetobacter, Carnobacterium, Pseudomonas, Psychrobacter and Shewanella genera. These bacteria are mostly 
psychrotrophic, able to replicate on food when refrigerated. We also investigated the ability of metagenomics to detect the 
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presence of particular bacteria relevant to food safety (E. coli, Klebsiella/Raoultella, Salmonella and Vibrio), whose presence 
was confirmed through a culture- based approach. A pork and a chicken sample had a large percentage of E. coli reads in 
their metagenome, and from the E. coli cultured from these samples, we were able to identify >99% of the genomes of the E. 
coli cultured from the pork sample and >99% of the genome of one of the E. coli isolate genomes cultured from the chicken 
sample. The chicken sample had a diverse population of E. coli present, as indicated by the multiple E. coli STs we cultured 
from the sample, and our ST analysis of the metagenomic reads indicated that we did not isolate the most prominent E. 
coli ST. Therefore, if there is a diverse population of a bacterial species, then metagenomics will likely identify the most 
prominent strain, which may be missed if culturing methodologies involve an enrichment step and isolating a small number 
of colonies. However, for the remaining samples, the cultured pathogens comprised less than 10% of the micro- organism 
reads on food, and the percentage of their genomes identified in metagenomes varied from 6 to 98%. In addition, investigating 
low- abundant pathogens in metagenomes by the presence of any reads classified as belonging to pathogens was not a very 
sensitive approach when compared to culture results, nor was searching metagenomes for virulence genes associated with 
pathogens. Therefore, our results indicate that efficient identification and metagenomic characterization of pathogens on 
food require either (a) deeper metagenomic sequencing or (b) specific enrichment of pathogens or their DNA.

The number of microbial reads sequenced in a food metagenome is dependent on the overall sequencing depth and the 
amount of host DNA removed prior to sequencing. The food metagenomes analysed in this study had undergone host 
DNA depletion, but the method used worked better for certain food commodities over others [22], leaving variation in the 
number of microbial reads. The percentage of the pathogen genomes identified in the associated metagenomes was related to 
the number of microbial reads sequenced. However, the linear regression results indicate that 4.1×106 additional microbial 
reads need to be sequenced in the metagenome to increase the percentage of pathogen assembly in the metagenome by 1%. 
Therefore, the read depth would need to be magnitudes higher to ensure the sensitive identification of pathogens on food. 
Previously, shotgun metagenomics was used to detect Brucella in host DNA- depleted raw milk samples [61]. However, 
the raw food commodities in our study likely have higher concentrations of non- pathogenic micro- organisms than raw 
milk, explaining its inability to detect culturable pathogens in many samples. Leonard et al. [62] were able to detect Shiga 
toxin- producing E. coli on spinach, but only after an 8- h enrichment that significantly altered the microbiota. Therefore, 
on food samples with a large concentration of non- pathogens present, pathogen enrichment by growing the pathogens or 
rejecting host DNA through approaches such as Oxford Nanopore adaptive sequencing [63] is required. However, both 
enrichment approaches will alter the relative abundance of micro- organisms in the microbiota, preventing analyses that 
rely on abundance.

Virulence genes encode microbial components that are often required for pathogens to cause infections [10]. The short- read 
analysis identified 922 virulence genes in the food metagenomes, but only 5 significantly differed amongst food commodities, 
which were associated with chicken, pork and salmon. These virulence genes are associated with Klebsiella pneumoniae in 
the VFDB but have been isolated from other bacteria, such as Pseudomonas from food [64]. For 24 metagenomes, we also 
had long- read sequences supplementing the short- read sequences. Most virulence genes in these samples were associated 
with Yersinia, in concordance with our previous study that demonstrated the presence of Yersinia enterocolitica on 76–80% 
of meat and seafood samples [65], but almost all isolates belonged to the non- pathogenic biotype 1A. These virulence genes 
could also belong to other Yersinia species, such as Yersinia intermedia or Yersinia ruckeri for which we identified MGSs in 
some of the food metagenomes, but no human clinical infections have been found associated with these species [66].

Pathogens are not the only risk to humans on food, as food can also carry micro- organisms that are resistant to antimicrobial 
drugs. Hybrid metagenome analysis predicted that most ARGs which could be associated with specific bacterial hosts 
originated from potential opportunistic pathogens (e.g. Acinetobacter and Aeromonas) and environmental organisms (e.g. 
Carnobacterium and Shewanella). However, there were a large number of ARGs whose taxonomic origin we could not predict, 
and when the approach was applied to the genomes of cultured bacteria, there was a lot of variation between the percentage 
of genes classified and the pathogen cultured, suggesting that this approach may be better at predicting the origin of ARGs 
belonging to some taxa compared to others. ARG databases are also biased towards culturable and/or pathogenic bacteria 
[67], and these databases need to be extended to be relevant to other bacterial species. The taxonomic predictions also do 
not take into consideration if ARGs are transferable to other bacteria, which is relevant for the assessment of potential risk 
to human health.

One way to evaluate the potential mobility of ARGs is to assess their proximity to ISs. These genetic elements facilitate 
the movement of genes around and between genomes, including ARGs [68]. In the 24 metagenomes which had long- read 
sequences in addition to short- read sequences, 16% of ARGs were associated with ISs and the most common IS types were 
IS3, IS4, IS5, IS6/IS26 and IS30. Most of these IS types have been found to be highly or variably associated with ARGs in 
bacterial pathogens and in animal and environmental metagenomes [69]. In addition, 6% of ARGs were found on plasmid 
replicon- containing contigs. The small number of ARGs associated with ISs and plasmids could suggest that only a small 
percentage of the ARGs on food are transmissible to other bacteria but is more likely due to the fragmented metagenome 
assemblies. Even with long- read sequencing, metagenomic analysis could not assemble all chromosomes and plasmids 
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into single contigs, leaving many of the ARGs on small contigs, and neither their bacterial host nor genomic location 
(chromosome, plasmid or other mobile genetic element) could be determined. However, even if all plasmids were assembled 
into single contigs, we may still struggle to identify the origin of the plasmid if it is associated with a wide range of bacteria. 
High- throughput chromosome conformation capture techniques crosslink sections of DNA that interact with each other 
before sequencing, allowing the identification of chromosomes and plasmids from the same cell [70], and may be required 
for plasmid taxonomic classification on food. When looking at specific ARGs, we identified some that were unlikely to be 
mobile, such as the blaA and vatF genes, which were predicted to be from Yersinia and are found in the chromosome of 
this bacterial genus [71, 72]. However, four ARGs were associated with multiple bacterial genera and therefore likely to be 
mobile. Overall, this suggests that at least 32% (range: 0–100% amongst food samples) of ARGs in the food metagenome 
are mobile, as they are either associated with an IS, plasmid replicon or multiple genera. However, there was also a sample 
bias in this analysis, as long- read sequencing requires a higher DNA concentration than short- read sequencing, preventing 
long- read sequencing of samples with low DNA concentrations, as was observed for most seafood samples examined in 
this study [22].

Non- pathogenic bacteria on food are not just potential AMR carriers; they may also be beneficial to human health [73]. 
There is a large amount of variation in the nutrients and macromolecules found in food [74], which likely leads to the 
selection of micro- organisms that contain metabolic modules that allow them to utilize these nutrients and macromolecules. 
Most of the foods analyzed here are likely to be cooked prior to consumption, limiting the exposure of consumers to the 
micro- organisms identified. However, for leafy greens, there is likely to be little processing, and diets rich in leafy greens are 
likely to expose consumers to micro- organisms associated with specific carbohydrate degradation modules, such as pectin 
degradation. Pectins are polysaccharides found in many fruits and vegetables that are indigestible by human enzymes [75] 
but can be fermented in the gastrointestinal tract into products such as short- chain fatty acid (SCFA) [76], mostly in the large 
intestine [77]. Along with being a type of dietary fibre, pectins promote gastrointestinal health by promoting pectinolytic 
micro- organisms that can ferment pectin [78] and the immune- modulatory role of the SCFA produced [79]. Leafy greens 
may therefore be beneficial to the human diet by providing consumers with pectin and the micro- organisms to utilize them. 
Further work is required to identify the micro- organisms responsible for these modules on food and if they can colonize 
the gastrointestinal tract.

Outside of health risks and benefits, micro- organisms on food can also cause spoilage [80]. Pseudomonas is one of the main 
microbial causes of food spoilage [81] and is the predominant bacterial genus found on retail food [22]. Previously, we tested 
32 food samples for Pseudomonas, including 8 that had their metagenomes sequenced and were included as part of this study, 
and identified a diverse population of this genus on food [64]. Metal- tolerance genes were most commonly associated with 
Pseudomonas, but this is likely because of how prevalent Pseudomonas is on food. In this study, we identified Pseudomonas 
species significantly differed between food commodities. Future work is required to determine how food spoilage alters the 
populations of different Pseudomonas species on food.

Consumer health relies on safe food. The microbial communities on retail food are predominated by psychrotrophic bacteria 
that benefit from the cool temperatures at which food is stored. Therefore, consistent identification of pathogens that are 
not adapted to thrive in cold conditions and thus comprise a small percentage of the overall microbial community on food 
will require methods that can enrich relevant bacteria and/or selectively sequence their genetic elements. The microbial 
composition of food varies amongst different commodities, and food metagenomics can predict the taxonomic origin of 
many ARGs on food at the genus level, but further work is required to determine what percentage of the ARGs on food is 
associated with mobile genetic elements and thus transferable to other bacteria. Food metagenomics could then be used 
to investigate what AMR bacteria consumers are exposed to on food, but currently, it is unable to consistently identify 
pathogens without enrichment.
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