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Abstract
The body of work on mathematical models of measurement known as ‘measure-
ment theory’ is not yet adequately understood from a philosophical standpoint. Re-
cent evaluations of measurement theory (in this paper I focus on Heilmann (Philos-
ophy of Science 82:787–797, 2015); Philippi (Philosophy of Science 88:929-939, 
2021); Tal (Perspectives on Science 29:701–741, 2021)) have dislocated it from 
the context of scientific enquiry, making it harder to appreciate its motivations and 
connection with experimental and theoretical work. This paper seeks to clarify what 
measurement theory is and does, offering a mathematically more nuanced account 
of its results than currently available in the philosophical literature.

1 Three dislocations of measurement theory

The second half of the xx century saw the rise of sustained interest, on the part of phi-
losophers and mathematical modellers alike, in the mathematical dimension of mea-
surement. For mathematical modellers, a fundamental motivation came from the need 
to introduce viable scaling methods into the social sciences, especially psychology.

This motivation led to a simple formal programme chronologically situated 
between Suppes (1951) and (Krantz et al., 1971), with Suppes and Zinnes (1963) its 
first comprehensive survey.

The formal programme in question may be outlined with the help of a simple 
example. Suppose an agent is asked to rank a finite set of items A = {a1, . . . , an} 
according to preference, breaking ties. This ranking describes a finite linear order, 
designated by the symbol ≺. Each item in A can be assigned a positive rational num-
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ber in such a manner that the ordering of numbers according to magnitude reflects the 
agent’s preference ranking.

To see how, pick a a1 ∈ A and assign it the positive rational r. Then pick a2 
and check whether the experimental subject prefers it to a1. If a2 is preferred, it is 
assigned r + 1/2, otherwise it is assigned r/2. Next, a3 is taken into account. If a3 is 
preferred to one but not the other of a1, a2, then it is assigned the arithmetical mean 
of the numbers assigned to a1, a2, and so on.

By viewing the assignment to each aj  of a unique number rj  as a function f  with 
domain A and codomain Q, we see that f  satisfies the following equivalence:

ai ≺ aj  iff f (a1) < f(aj).
The last condition tells us that f  is a strong homomorphism (a homomorphism 

only satisfies the left-to-right direction of the equivalence).1 It is easy to see that, if 
G is an arbitrary, strictly increasing permutation of the rational numbers, then the 
composition G ◦ f  is also a strong homomorphism.

In 1963, Suppes and Zinnes systematically gave formal conditions for a wide 
range of psychological traits that, if satisfied, would imply the existence of a strong 
homomorphism from each trait, described as a set-theoretic structure, to a structured 
numerical set.2 Such strong homomorphisms are also known as representations or, 
more suggestively, measurement scales. The next step in the formal programme sur-
veyed by Suppes and Zinnes consisted in describing the totality of available measure-
ment scales in terms of ‘scale transformations’, i.e. structure-preserving bijections of 
the numerical codomain common to all homomorphic embeddings.

The programme articulated by Suppes and Zinnes may be called representa-
tional, on account of its exclusive interest in families of homomorphic embeddings 
from a class of structures defined by a set-theoretic predicate into a fixed numeri-
cal structure. (Adams, 1966) was the first philosophical attempt at critically evaluat-
ing such a formal approach to measurement, which that paper explicitly qualified as 
representational.

Since 1971, however, measurement-theoretic enquiries have integrated early work 
into a significantly more sophisticated and flexible body of mathematical results, 
which is largely, though not entirely, discussed in the three-volume work Founda-
tions of Measurement (Krantz et al., 1971; Luce et al 1990).

The shift occurred between the early and later phase of measurement theory has 
not been accompanied by a satisfactory philosophical understanding of what the 
later measurement-theoretic results accomplish and of their function within scientific 
enquiry.

Recent interest in evaluating measurement theory and its significance has led to 
various, more or less critical, attempts at portraying this research programme. In 

1 In more general terms, a strong homomorphism strongly preserves relations, as well as functions and con-
stants. If, for instance, h : X → Y  is a strong homomorphism and X, Y  are endowed with the respective 
n-ary relations RX , RY , then for any x1, . . . , xn, R(x1, . . . , xn) iff RY (h(x1), . . . , h(xn)). Func-
tions are preserved in an entirely analogous manner (for any k-ary function fX  on X , think of equa-
tions of the form fX(x1, . . . xk) = xk+1 as relations on X) and the constants of X  are sent by h into 
constants of Y .

2 In the above toy example, the requisite formal conditions are the transitivity, trichotomy and irreflexivity 
of ≺.
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this paper I consider three accounts and critical discussions of measurement the-
ory, namely (Heilmann, 2015), (Philippi, 2021) and (Tal, 2021). These discussions 
illustrate three philosophical ways of dislocating measurement theory from its place 
within scientific enquiry. I find it convenient to qualify them a descriptive dislocation 
(Heilmann, 2015), a normative dislocation (Philippi, 2021) and a methodological 
dislocation (Tal, 2021).

The first dislocation consists in an account of measurement theory that severs 
it from its originating scientific motivations and regards it primarily as a cluster of 
purely formal results. The second dislocation consists in viewing measurement the-
ory as a source of extrinsic norms imposed on the working scientist. The third dislo-
cation consists in viewing measurement theory as the mathematical formulation of an 
implausible scaling methodology.

Because the papers referred to contain discussions of important aspects of mea-
surement theory, but do not show a sufficiently nuanced appreciation of its leading 
problems, results, or their key consequences, it seems important to correct the critical 
evaluations they contain.

This paper is entirely devoted to providing a corrective to the dislocations 
described. I will do it in three stages, marked by pairs of consecutive sections. In 
Sects. 2 and 3, I clarify the central purpose of measurement theory and the range of 
strategies used in pursuing it, for the sake of correcting the descriptive dislocation 
effected in (Heilmann, 2015). In Sects. 4 and 5, I illustrate a classification programme 
from measurement theory in order to correct the normative dislocation effected in 
Heilmann (2021), and concerning the normative impact of a formal classification 
programme on scientific practice. In Sects. 6 and 7, I clarify what contact measure-
ment theory makes with experimental work, especially in social science, and with 
theoretical work, especially in physical science, in order to correct the methodologi-
cal dislocation effected in (Tal, 2021). In particular, I show that the methodological 
tenets presumed by Tal to be an inextricable part of measurement theory can be fully 
disassociated from it.

As the brief synopsis sketched suggests, this paper is not only a critical study of 
important contributions from the philosophical literature. It is also an attempt to offer 
a concise account of many sophisticated dimensions of measurement-theoretic work, 
which, to the best of my knowledge, are not yet appreciated in philosophical work.

2 Measurement theory: codification

The descriptive dislocation of measurement theory found in (Heilmann, 2015) can 
properly be discussed only against a sufficiently detailed, independently available, 
account of the central purpose of measurement theory. This purpose will be discussed 
in the present section. It is, in short, the symbolic codification of empirical content. 
As aptly noted by E. Adams:

At least one very important reason for introducing measurement procedures is 
to provide systematic objective indices of phenomena. Numbers may enter into 
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the reports of applying measurement procedures but this is not essential to their 
function as indices (Adams (1966: 142).

The above quote makes two highly significant points. The first point is that the means 
of codification is not bound to be a homomorphism. The second point is that codes 
do not have to be numbers. What is of central importance is only that it should be 
possible to decode the empirical content that has been codified. Only in this sense can 
the codification provide ‘systematic objective indices’ of phenomena.

Before I proceed any further, I wish to clarify the use of the word ‘codification’ 
in this section. This term is chosen in a sense closely connected with that current in 
the branch of information theory known as ‘coding theory’. What coding theorists 
study is the operation of sending and receiving messages transmitted through a noisy 
channel. In our context noise is not important, but the acts of coding and decoding 
are. To see why, let me illustrate the transmission of empirical information by means 
of a toy example.

Suppose the position of three islands in a bounded region at sea, known to sender 
and receiver, is to be transmitted. An encoding could be achieved by splitting a map 
of the relevant area into 35 sectors and sending a binary string whose thirty-five digits 
are 0’s or 1’s. Once received the string might be decoded as a drawing of a 5 × 7 grid 
in which the islands are positioned by the three occurrences of 1 in the given string. 
Decoding consists in finding the prime decomposition of the string’s length and using 
the factors so obtained, in increasing order (corresponding to: rows; columns), to 
draw the map, marking the squares or ‘pixels’ that correspond to occurrences of 1.

The example just given is relevant for two reasons. First, because it suggests that 
we do not have to use a structure-preserving map to retrieve empirical content from 
information transmitted in numerical format. Second, because it indicates how we 
might view the strong homomorphisms used in measurement theory as special cases 
of encoders. Let me clarify this latter point by referring again to the example from 
Sect. 1: if someone was presented with the values f(ai), f(aj) and knew that they 
came from a psychological experiment concerning preference rankings, knowing that 
f  is an order-homomorphism would be enough to indicate that, by checking the rela-
tive ordering of the numbers f(ai), f(aj), one could retrieve the preference ranking 
of ai, aj .

The two key points I wish to make in this section are: (i) that measurement theory 
works with codifications of empirical content, only some of which are obtained via 
strong homomorphisms; (ii) that measurement theory does not restrict its scale values 
to numbers.

Both points will be relevant to discussing (Heilmann, 2015), as we shall see. For 
now I only wish to stress that (i) is the reason why I prefer to adopt the denomination 
‘measurement theory’ rather than the more common ‘representational measurement 
theory’ (often reduced to the acronym RTM). I see the latter as a subprogramme of 
measurement theory3, but by no means as the whole of measurement theory.

3 RTM has been so understood by its practitioners. For instance, (Narens, 2002a) gives abstract conditions 
under which an abstract notion of ‘codifying content’ specialises to invariance under scale transforma-
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Codifications other than homomorphisms appear in various measurement-theo-
retic contexts. I describe three below.

1. Homogeneous linear inequalities: Krantz et al (1971: 59–70) contains a study 
of measurement contexts in which a linear model implies a finite system of 
equalities or inequalities in n unknowns. The numerical scaling goal is to solve 
such a system of equalities and inequalities, assumed to be of the form:

 

n∑
j=1

αijxi > 0 i = 1, . . . , m′;
n∑

j=1
βkjxi = 0 k = 1, . . . , m′′,

with αij , βkj  integers. In such cases solvability depends on geometrical consid-
erations involving the subspaces of Rn generated by the integer-valued vectors 
involved. No class of structures needs to be declared for scaling values to be 
obtained: solutions to the system of equalities and inequalities may be deter-
mined algorithmically. A fortiori, no representation theorem guaranteeing the 
embeddability of a class of structures into a numerical model is called for.

2. Conjoint measurement: Conjoint measurement, discussed in chapter 6 of 
(Krantz et al., 1971), arises when, instead of ranking individual items, as in the 
toy example from Sect. 1, an experimenter wishes to rank ‘compound’ items, 
which may be viewed as ordered tuples.

 A concrete illustration is afforded by the scaling of rats’ problem-solving per-
formance relative to food deprivation d, food reward k and prior learning h, as 
originally investigated in Hull (1952) and Spence (1956). Performance is then 
abstractly typified by a set of triples of the form (d, k, h). Comparisons of perfor-
mance levels rank triples. If the relation ≺−  is the performance ranking, an abstract, 

qualitative model of performance may be described as a pair 
⟨

D × K × H, ≺−
⟩

, 

whose domain is a set of performance triples.

 As Krantz et al. (1971: 316–317) remarks, Hull (1956) suggests that performance 
level rankings are numerically codified by the condition:

 (d, k, h) ≺− (d′, k′, h′) iff [ϕD(d) + ϕK(k)]ϕH(h) ≤ [ϕD(d′) + ϕK(k′)]ϕH(h′),

 where ϕD, ϕK , ϕH  are three distinct measurement scales. If performance levels 
satisfy the formal conditions discussed in Krantz et al (1971: 348), they may 
be modelled as a conjoint structure ⟨D × K × H, ≺− ⟩, which admits the above 
numerical encoding.

 The encoding relates a Cartesian product endowed with a binary relation to the 
ordered ring of the real numbers. It is worth noting that such a Cartesian prod-
uct – referred to as a conjoint structure if it satisfies suitable conditions – is not 

tion, a criterion associated with the representational approach. Other abstract notions of ‘codifying con-
tent’ are available. A range of them is discussed in (Narens, 2002b).
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a structure in the model-theoretic sense. Its presentation as an ordering ⟨A, ≺− ⟩ 
hides the fact that A results from the application of set-theoretic constructors 
(iterated powerset and union) to D, K, H. This is important because the internal 
set-theoretic structure of A enters its numerical codification.

 When we regard ⟨A, ≺− ⟩ as a model-theoretic structure, and set:

 Φ(d, k, h) = [ϕD(d) + ϕK(k)]ϕH(h),

then Φ is an order-homomorphism between a conjoint structure and the struc-
ture ⟨R, ≤⟩. Triples are treated as individuals, with no regard to their internal 
structure.
When, on the other hand, we consider the full ordered ring structure on the reals, 
we note that it allows us to define a six-place relation whose arguments are values 
of ϕD, ϕH , ϕK . This six-place relation is what provides an insight into the fact 
that the ordered triples in A have a component-wise structure. Since the con-
joint structure carries no such relation, we are not in presence of a homomorphic 
embedding. Rather a triple of homomorphisms (which is not itself a homomor-
phism in the given context) is used to codify the behaviour of structured triples.
In this case, as already noted in Adams (1979: 216), we move beyond a purely 
representational standpoint.
More general polynomial functions of any finite number of scales are also pos-
sible. It is such functions that codify relations over tuples in conjoint measure-
ment, not homomorphisms.

3. Expected utility: In chapter 8 of (Krantz et al., 1971), expected utility structures 
are discussed. These involve assigning utility values to gambles, ranked accord-
ing to preference. The expected utility setup has no natural rendering in terms of 
structures and homomorphisms.

 To see this, note that Krantz et al. (1971: 381) call an expected utility structure a 
6-tuple of the form: ⟨X, E , N , C, D, ≺− ⟩.

 Here X  is a sample space, E  is its associated algebra of sets, N  a subset of E . If 
X  is not finite, an expected utility ‘structure’ is not a structure in the model-the-
oretic sense, i.e. a set equipped with finitary relations, functions, and constants, 
because it carries a family of subsets closed under the infinitary operation of 
countable union.

 Moreover, an expected utility codification is a pair (u, P ) in which u assigns real 
numbers to D alone and P  is a probability measure over the sample space ⟨X, E⟩, 
which is not a structure in the sense specified.

 Thus, if we take homomorphisms to be maps between structures in the ordinary 
sense, we cannot have them here because we do not have an ordinary structure to 
work with and we do not have a single embedding into a homomorphic real structure.

 As in conjoint measurement, set-theoretic constructors play a role that is kept 
track of by the chosen numerical codification but not in terms of homomorphic 
mappings. To see this, we complete the description of an expected utility ‘struc-
ture’. Its ordering ≺− , which we may suppose a weak linear ordering (intuitively, 
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behaving like ≤ on numbers), is defined only on a set of gambles D, whose out-
comes are the elements of C, itself not in the range of the codification (u, P ). If A 
is an event from a given sample space, the associated gamble fA ∈ D specifies, 
for each ‘outcome’ x ∈ A, a payoff fA(x).

 No binary operations are written into an expected utility structure. Nonetheless, 
when A, B are disjoint events and the gambles fA, gB  are in D, the gamble 
fA ∪ gB  is supposed to be in D, too (see Krantz et al (1971: 376)). This gamble 
is defined on the event A ∪ B and it behaves like fA over A and like gB  over B.

 Under the conditions given on the various set-theoretic objects making up an 
expected utility ‘structure’, it is possible to prove that the following equality, in 
which conditional probabilities ‘weigh’ utility values, holds:

 u(fA ∪ gB) = u(fA)P (A|A ∪ B) + u(gB)P (B|A ∪ B).

It is clear that the expected utility of fA ∪ gB  is described by an operation in the 
ordered ring of nonnegative reals, which depends on u(fA), u(fB). An expected 
utility ‘structure’ is not equipped with a binary operation on gambles, yet the 
fact that certain gambles can be spliced is kept track of by u, which codifies this 
information without mapping it homomorphically (u is only a homomorphism 
between ⟨D ≺− ⟩ and ⟨R, ≤⟩).

The second fact left to illustrate in this section is that measurement-theoretic codifica-
tions can be carried out, even in a representational fashion, without using numbers or 
a numerical structure. An instructive example is discussed in Niederée (1987, 1992), 
which takes ‘systematic objective indices of phenomena’ to be certain model-theo-
retic types4 realised by the elements of a given non-numerical structure.

Consider for instance a structure X = ⟨X, ≺X , ◦X⟩, where ≺ is a linear order and 
◦ a binary operation. If X  satisfies the defining conditions of extensive structures5, 
then it is homomorphically embeddable into the positive, additive reals.

Niederée proposes to fix a ∈ X  and to associate the elements of X  with suitable 
subsets of At(x/a), the set of atomic formulae with one free variable in the signature 
{≻, ◦} over the set of parameters {a}( i.e. only a may occur in the relevant formulae 
as a parameter).

More explicitly, b ∈ X  is measured by the subset of At(x/a) whose elements it 
satisfies. Such a subset is called a 1-type over {a}. Because atomic formulae are, 
in the given signature, inequalities between multiples of a and multiples of b, type 
assignment is equivalent to a representation of b by successive rational approxima-
tions relative to the unit of measure a.

Niederée’s approach does not stop at the example I have briefly described. Among 
classes of structures studied by measurement theorists, the difference structures dis-

4 A type in the model-theoretic sense is simply a consistent set of formulae in some fixed first-order lan-
guage. A type may be over a set of parameters, i.e. the formulae may contain names of distinguished 
objects from some specified domain.

5 See e.g. Krantz et al (1971: 73) for a list of such conditions. An extensive structure may be viewed as a 
non-numerical model of an empirical variable like length. The ordering ≺ determines length-comparison 
and the operation ◦ combines lengths additively.
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cussed in chapter 4 of (Krantz et al., 1971), additive conjoint measurement (in chapter 
6 of Krantz et al., 1971) and the positive concatenation structures studied in chapter 
19 of Luce et al (1990) are readily amenable to a type-theoretic treatment (in such 
cases we cannot only work with 1-types, but we need 2-types or n-types with n > 2, 
depending on the number of conjoint components). In general, there are structures 
that lend themselves to the model-theoretic scaling introduced by Niederée but do not 
admit of any numerical representations.6

Niederée’s work does not only show that measurement values need not be numeri-
cal indices, but also that there can be distinct varieties of representational measure-
ment. The one he proposes does not call for a preliminarily fixed numerical structure: 
measurement values are directly generated by an empirical variable, which structures 
them as linguistic reports that codify relevant empirical information.

What I hope to have highlighted so far is the measurement theorist’s need to over-
come the canonical representational goal of constructing homomorphisms into fixed 
numerical structures. With a greater awareness of this need in mind, it is possible 
sharply to identify the limitations and shortcomings of the philosophical account of 
measurement theory contained in Heilman (2015).

3 Descriptive dislocation

Heilmann’s starting point is the reasonable observation that measurement theory may 
not be plausibly viewed as offering a complete account of measurement (see Heil-
mann (2015: 787)). This is clear in view of the fact that studies of calibration, error, 
and other themes crucial to the experimentalist or metrologist are not an integral part 
of mathematical work on measurement.

The initial observation, which rules out the tenability of a view of measurement 
theory as a complete, foundational framework for measurement is, however, esca-
lated into a descriptive dislocation, i.e. the portrait of of formal work that is in the 
first instance self-contained and relatively insulated from scientific work to which it 
may later apply.

This is clear from Heilmann’s insistence that measurement-theoretic work is capa-
ble of supporting theory construction, rather than having emerged for that purpose. 
According to Heilmann, measurement theory aids theorisation in mainly in two ways, 
i.e. by supplying various, structured notions of a scalable attribute (‘specifying condi-
tions for mapping’ (Heilmann, 2015: 792)) or by seeking to relate numerical practices 
to underlying structural features (‘backward engineering’ (Heilmann 2015: 793).

6 A purely illustrative example is the lexicographic ordering of the set of ordered pairs A × {0, 1}, where 
A is the domain of a continuum in Cantor’s sense (see section 4). For any a ∈ A, the pair (a, 0), (a, 1) 
defines a ‘jump’: no pair in A × {0, 1} lies strictly between these two endpoints. Because A is uncount-
able, there are uncountably many jumps. On the other hand, any substructure of the ordered reals has at 
most countably many jumps. It follows that the lexicographic order just defined is not embeddable into 
the ordered reals. It nonetheless admits a type-theoretic scale. Relative to its ordering as a continuum, 
A includes an order dense, countable subset B. The set of parameters B ∪ {(a, 0) : a ∈ A} guarantees 
the representation of the lexicographic ordering onto a set of quantifier-free types ordered by inclusion.
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These functions are underpinned by a conception of (representational) measure-
ment theory as a ‘library of theorems’ (Heilmann, 2015: 787) or a repertoire of formal 
results that may happen to be useful to the modeller.

The conception is unhelpful for three reasons. First, it suppresses the fact that, 
since at least Suppes and Zinnes (1963), representation theorems in measurement 
theory were sought with the explicit intention of formalising various notions of a 
scalable empirical variable pertinent to experimental settings in social science, espe-
cially psychology. If anything, experimental work has provided a library of scaling 
contexts for the measurement-theorist to work on.

Second, Heilmann remains silent on the possibility that measurement theorists 
may adopt codifications of empirical information that are not homomorphic embed-
dings. Implicit emphasis on representation theorems conceals the fact that the condi-
tions of scientific enquiry may call for mathematical departures from the canonical 
notion of homomorphic embedding. That they have in fact called for such departures 
was shown in the previous section. Conjoint measurement has been in part motivated 
by behavioural experiments, while the economic theory of expected utility has led to 
non-representational, measurement-theoretic models.

Third, Heilmann seems entirely to neglect the measurement-theoretic concerns 
with the compatibility between a formal (representable) model and a finite data set. 
This compatibility problem arises when finite data, in the form of a list of inequali-
ties, arises from an experimental setting. Typical situations are illustrated by factorial 
designs, an example of which is provided by the experiments on rats mentioned in 
the previous section. Those experiments involved three ‘factors’ i.e. the variables 
D, K, H , and generated finite lists of inequalities involving ordered triples of the 
factors.

To ask whether concrete behavioural data produced by such experiments is com-
patible with the formal model of a conjoint structure admitting a specified polyno-
mial representation (e.g. the one proposed in Hull (1956)) is not a matter that can be 
resolved entirely by testing consistency of the data with the formal conditions that 
define a suitable class of conjoint structures.

There are situations in which:

even if some conditions are true for the underlying data-generating process 
(e.g. weak ordering, solvability, Archimedean condition), and the others are 
true for a particular set of data (e.g. independence), this does not guarantee the 
existence of an appropriate numerical representation for those data. The exis-
tence of such a representation depends on the existence of solutions to a set of 
simultaneous linear or polynomial inequalities Krantz et al (1971: 426).

There is, in other words, an important difference between showing that an exper-
imental setting may be viewed as a conjoint measurement structure and showing 
that a finite amount of factorial data may be embedded into a conjoint measurement 
structure. In the first case, the behaviour of the factors implies at once that they have 
distinct representations and that these representations admit of a specified polyno-
mial combination, which yields a conjoint scale. In the second case, the behaviour 
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of the factors is to be checked by looking for the numerical solvability of a system 
of inequalities.

This kind of check requires solving genuinely measurement-theoretic problems 
that are not representation problems. One of them, pertinent to conjoint measure-
ment, is to find a solvability criterion for a set of polynomial inequalities: its solution 
is not a representational result, but a purely algebraic one on the completability of a 
finite order on a ring of polynomials R[Y ], where Y  is a finite set of unknowns asso-
ciated with a factorial design (for a complete statement of the relevant theorem, see 
Krantz et al (1971: 447)).

Heilmann’s account of measurement theory centres on representation theorems, 
seen as purely formal results that, independently given, may later be involved in the 
modeller’s concerns. What I have tried to throw into relief is that the entire arc of 
development of measurement-theoretic unfolds in response to the concerns of scien-
tific, in particular experimental, work.

Not only are representation theorems transcended in response to experimental 
needs; conditions are explicitly studied, under which non-numerical structures fur-
nish plausible models of data. Heilmann’s account of measurement theory as primar-
ily formal loses sight of its intrinsic solidarity with experimental work. Measurement 
theory is not a formal framework that may be linked to modelling concerns: it is the 
modeller’s mathematical work. When this work and its distinctive features are made 
visible again, the problem of deciding how measurement theory is to be connected 
to scientific work (what is known in the literature as the ‘interpretation problem’ of 
measurement theory) vanishes. This is because a description of how measurement 
theory is connected to scientific work can be supplied.

4 Measurement theory: classification

A second dislocation of measurement theory, other than descriptive, occurs when its 
results are regarded as external constraints on what modelling practices are accept-
able. This perspective produces a normative dislocation of measurement theory. Its 
results are no longer co-regulated with other aspects of scientific enquiry, but stand 
aside as rigid criteria dictating what course scientific enquiry is to take.

Normative dislocation strikingly occurs in (Philippi, 2021). An adequate discus-
sion of Philippi’s work requires a preliminary discussion of certain important mea-
surement-theoretic results, which constitute the main subject of this section.

The results in question concern the classification of scale types over continua, i.e. 
ordered relational structures that are order-isomorphic to ⟨R, <⟩. For present pur-
poses, we restrict attention to finite scale types. Given an empirical variable X  that 
is a continuum in the sense just specified, its (finite) scale type is specified by a pair 
of integers (m, n), with m ⩽ n. These integers are called, respectively, the degree of 
homogeneity and the degree of uniqueness of the scale type.
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Homogeneity and uniqueness, are, in these contexts, properties of the automor-
phism group of X .7 The continuum X  is said to be m-point homogeneous if any 
two ordered m-tuples of elements of X  are related by an automorphism in an order-
preserving fashion.8 The same continuum is said to be n-point unique if the only 
automorphism with at least n fixed points is the identity.

It is worth stressing that a finite scale type is defined intrinsically, i.e. indepen-
dently of any numerical representation. It is only sensitive to how rich the automor-
phism group of an abstract structure is.

The connection with numerical scales may be understood by a simple example: 
an additive empirical variable like length is classically identified, up to isomorphism, 
with the additive continuum R = ⟨R+, <, +⟩, where R+ is the set of positive reals. 
The automorphisms of the latter structure are the multiplications by a positive real 
constant, which correspond to the scale changes induced by a change of unit of mea-
sure. Thus, R is 1-point homogeneous.    

Moreover, for any two scales f, g for length, seen as isomorphisms from an 
abstract additive continuum onto R, the function f ◦ g−1 is an automorphism of R. 
When f, g have the same unit of measure (f(a) = 1 = g(a)), f ◦ g−1 has one fixed 
point. In this event, f ◦ g−1 actually fixes every point, i.e. it is the identity automor-
phism. The fact that a scale is fixed by the specification of at least one value is thus 
the 1-point uniqueness of R.

This lengthy technical digression was necessary to state a fundamental result on 
scale types established in (Narens, 1981b) and (Alper, 1987) (a comprehensive dis-
cussion appears in chapter 20 of Luce et al (1990)). Alper and Narens showed that, if 
the finite scale types of a continuum are of the form (1, n), then n ⩽ 2.

What this means is that the decision formally to regard an empirical variable as a 
Dedekind-complete, dense linear order has a dramatic effect on the range of scales 
that it will support. Scales determined by m parameters, with 3 ⩽ m, are automati-
cally ruled out. The types of scale one may expect for a continuum, under the hypoth-
eses cited, are only three, namely (1, 1), (1, 2) and (2, 2). The largest number of 
parameters determining a measurement scale over a continuum is 2. Intuitively, these 
parameters correspond to the choices of an origin and a unit.

Attempts at evaluating the philosophical significance of these results may be 
found in (Baccelli, 2020) and (Wolff, 2020). My main interest in the present section 
is to clarify what these results actually say and in what way they may be viewed as 
setting constraints on modelling practice. For these reasons I will not engage with 
the metaphysical discussion of scale types offered in (Wolff, 2020). (Baccelli, 2020) 
takes the classification of scale types to illustrate the fact that measurement theory is 

7 We recall here that, given a structure X  with domain X , the automorphisms of X  are the structure-
preserving permutations of X . Such permutations determine a group relative to functional composition: 
the group identity is the identity permutation, which fixes every element of X , while the inverse of an 
automorphism α is the permutation α−1 that ‘puts back’ the elements of X  moved by α. For a concrete 
example, any multiplication by a fixed positive real is an automorphism of < R, <, + >. In fact, the 
latter structure has no other automorphisms.

8 This means that, if a1 < ... < am is the ordering of the first m-tuple and b1 < ... < bm that of the 
second, then there is an automorphism α such that α(ai) = bi, i = 1, . . . , m.
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not exclusively concerned with constructing measurement scales: with this remark I 
concur.

The philosophical import of what I say about scale types here will fully emerge in 
the next section, when I discuss (Philippi, 2021) and its interpretation of results that 
involve the classification of ‘admissible’ scales. What I will have to say there depends 
on the brief analysis of known classification results to follow.

What the result obtained by Alper and Narens shows is that the ordered reals sup-
ply an extremely limited range of 1-point homogeneous abstract models of an empiri-
cal variable.9

This result does not primarily delimit, on purely formal grounds, which scales are 
acceptable, but directs the modeller away from Dedekind-complete ones, if she has 
reasons to doubt that she is working with an empirical variable whose ‘degrees of 
freedom’ are not allowed by continua.

Continua, after all, do not impose themselves as the unique resort open to the 
modeller, even though they are extremely helpful, e.g. because they enable the use of 
differential equations.

It is known, for instance, that there certain abstract models of an empirical vari-
able with numerical representations that cannot be Dedekind-completed: such is the 
case of certain positive concatenation structures (see Luce et al (1990: 53–54)). A 
modeller handling these structures is not subjected to the restrictions implied by the 
classification of Alper and Narens.

Much more dramatically, a modeller viewing measurement scales on the ordered 
rationals as more realistic than real-valued scales will not have ruled out any finite 
scale type (m, n), with m < n, by a deep result proved in (Cameron, 1989). In fact, 
Cameron’s theorem indicates that Dedekind completion may prove a serious distort-
ing factor in measurement: it collapses finite scale types with any degree of homoge-
neity and uniqueness onto types with uniqueness degree in {1, 2}. This situation is 
remarkable: it presents us with a case in which choosing a structurally richer math-
ematical description does not increase, but dramatically curtails, our ability to adjust 
to possible empirical variations.

Finally, there is no absolute norm forcing us to classify scale types on the basis of 
automorphism groups. A symmetry-based classification is certainly insightful, but it 
does not preclude the adoption of alternative classification criteria. A need for them 
has long been registered by measurement-theorists themselves:

[T]here is little doubt that other principles of classification are needed because 
structures of these types range from highly regular ones with rich families of 
automorphisms […] to structures with no automorphism except for the identity, 
which simply reflects their great irregularity (R.D. Luce et al., 1990: 122).

The foregoing reflections on the import of a symmetry-based classification of scale 
types for continua offer all the technical background required to examine the norma-
tive dislocation of measurement theory occurring in (Philippi, 2021).

9 Alper showed that, if we drop the transitivity of the automorphism group, i.e. 1-point homogeneity, we 
can have any finite scale type of the form (0, n).
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5 Normative dislocation

A famous informal classification of measurement scales, due to the psychologist S.S. 
Stevens (see Stevens, 1946), distinguishes types of measurement scales by specify-
ing, for each of them, a set of admissible scale transformations, which may be under-
stood as groups of automorphisms of the ordered reals.

The largest such group contains the strictly increasing, monotonic transformations 
(this group singles out the ‘ordinal’ scales).10 Subgroups of interest to Stevens consist 
of the positive linear transformations – associated with what Stevens called ‘interval’ 
scales – with domain R, and the multiplications by a positive constant – associated 
with what Stevens called ‘ratio’ scales – with domain R+.

Stevens’ classification comes reasonably close to the classification of finite scale 
types obtained by Alper and Narens under the assumption of 1-point homogeneity. 
Key differences are that: (i) Stevens’ ratio and interval scales are closely related with 
the scale types (1, 1) and (2, 2) respectively, but they do not share the same domain: 
they can both be represented on R by taking the natural logarithm of ratio scale 
transformations, which are then analytically represented as translations by a positive 
constant; (ii) Stevens does not identify a group of scale transformations intermediate 
between (1, 1) and (2, 2).

Stevens’ classification is the main reference in (Philippi, 2021) for what is called 
the ‘received view’ on admissible measurement scales: on this view, Stevens’ clas-
sification should provide a normative grid against which the tenability of measure-
ment practice is to be evaluated. More precisely, Stevens’ classification is taken to 
require that, whenever an ordered empirical variable is studied, its measurement 
scale should be of ordinal, interval of ratio type, and cannot be of any other type. 
Second, once a scale type is fixed, only the numerical statements preserved under 
the corresponding group of automorphisms of the ordered reals can be considered 
empirically meaningful.

Philippi contrasts this highly prescriptive view with the requirements of scientific 
practice and observes that it is plausible to envisage research contexts in which the set 
of scale transformations may be neither ordinal, nor interval, nor ratio: for instance, 
such would be the case with the set of order-preserving functions that, beyond being 
strictly increasing, are twice differentiable and satisfy the conditions f ′(x) > 0 and 
f ′′(x) ≤ 0 over a fixed real domain (the examples to follow take this domain to be 
R+).

Philippi thus identifies a proposed set of scale transformations included in the set 
of strictly increasing, monotonic transformations, but different from the subgroups of 
multiplications by a real constant or the multiplicative version of interval transforma-
tions.11 This choice does not only transcend Stevens’ classification, but also departs 
from the mathematical classification given by Alper and Narens. Furthermore, Philip-
pi’s set of transformations is not in general a group but only a monoid, because it 

10 Stevens also considers the full symmetric group over a fixed numerical set, i.e. the group of all its per-
mutations. For present purposes, we may ignore this aspect of his classification.
11 On the positive reals, these are power transformations described by conditions of the form x �→ αxβ , 
with α, β > 0
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does not contain the inverses of its elements (on R+, it contains the function defined 
by the condition x �→ x1/2 but not its inverse on the positive reals, which has strictly 
positive second derivative).

Philippi’s key point is that it would be unreasonable to rule out scaling practices 
that depart from the scale types recognised by Stevens. Philippi does also acknowl-
edge the classification of scale types discussed in the previous section, in a brief men-
tion of (Narens, 1981a) (see Philippi (2021: 934 n)). Philippi’s reaction to this result 
is a rebuttal of what is recognised as an illegitimate normative stricture: the response 
to it recommended in the paper consists in abandoning a representational – which 
here means: measurement-theoretic – framework altogether. Philippi notes that:

I propose that we characterize the ordinal/interval distinction explicitly in 
terms of researchers’ beliefs. This provides a more flexible way of thinking 
about scales, one that is less focused on the complete numerical representabil-
ity of attributes abstractly considered (as in RTM) and more on the inferences 
researchers can validly make with measurement results (Philippi: 934).

Such a sharp turn away from mathematical considerations, abandoned in favour of an 
explicit attention to researchers’ beliefs, comes, it seems to me, from an impression 
of mathematical results as hinderances to scientific practice, which I find important 
to dispel. The classification of scale types that Philippi finds to be at odds with the 
plausibility of his proposed set of transformations is not a measurement-theoretic 
imposition. It is the consequence of certain choices, none of which is compulsory on 
mathematical grounds.

These choices consist in: taking measurement to be real valued (as opposed to 
rational valued, by Cameron, 1989); taking an empirical variable to be a continuum 
(as opposed to e.g. a suborder of a continuum or even a numerical structure lacking 
a Dedekind completion); allowing only highly regular scale types (with rich auto-
morphism groups); choosing scale transformations to possess full group structure. 
All of the above choices can be dropped without leaving the domain of measurement 
theory: none of them is forced by it. The use of monoids of scale transformations that 
are not groups is already part of measurement-theoretic work, as shown in Narens 
(2002): 318–319.

Philippi is led to a dismissal of measurement theory because the theory was pre-
sented as a coercive intervention upon scientific work, which it is not. Philippi is 
certainly not wrong to suggest that the information of interest supposed to be cap-
tured by a measurement model should be responding to researchers’ beliefs, but also 
heavily underestimates the requirements to which these beliefs are subjected when 
they have to be spelled out in terms of a mathematical model.

For instance, a researcher keen on assuming smoothness conditions like those 
described by Philippi, or making use of basic theorems of reals analysis that are 
equivalents of Dedekind completeness could not always do this consistently with a 
symmetry-based notion of scale type. This is all measurement-theoretic work alerts 
the modeller to.

Insofar as measurement theory keeps track of the constraints attending the adop-
tion of certain formal assumptions on mathematical models, it can work as a useful 
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instrument to prevent the researcher’s beliefs, which Philippi evokes, from degener-
ating into a cognitively arbitrary employment of formalisms. We are not in presence 
of a normative straitjacket, but an aid to navigate the space of modelling possibilities.

6 Measurement theory: experimental and theoretical connections

The third type of dislocation mentioned in Sect. 1, it will be recalled, is methodologi-
cal. This dislocation underlies (Tal, 2021). In order adequately to examine the essen-
tial critical points of Tal’s contribution, a preliminary discussion of the connections 
between measurement-theoretic work, experimental work and scientific theorising is 
necessary. This section will offer such preliminary discussion, while the next section 
will directly address, in its light, Tal’s critical examination of measurement theory.

The central point I wish to emphasise here is that different aspects of measurement 
theory acquire varying degrees of salience depending on the scientific research con-
texts to which they are connected.

For instance, measurement-theoretic work developed under the pressure of numer-
ical practices in behavioural science will not rise to comparable salience when for-
mally related to experimental physics. Similarly, the reconstruction of dimensional 
analysis from an underlying algebra of physical quantities (studied in chapter 10 of 
Krantz et al., 1971) will not play a major role in the social scientist’s work.

Trivial as these remarks seem, they helpfully indicate that it is counterproductive 
to view measurement-theoretic work as providing a uniform foundation for measure-
ment practices across the sciences. It is more realistic to think of measurement theory 
as a range of results that make contact with experimental or theoretical work in the 
sciences in a variety of distinct ways. A distorted picture of measurement theory 
is bound to arise from the decision to assign its more specialised contributions an 
unconditional significance.

While this decision may result, as we shall see, from a distinctive methodological 
interpretation of measurement theory, as in (Tal, 2021), it may also be the effect of tra-
ditional philosophical prepossessions lingering in measurement-theoretic work, not 
least the decision to understand this work as foundational, which pervades (Krantz et 
al., 1971) and Luce et al (1990).

Foundationalism evokes the idea that a primitive, and thus unique, basis of enquiry 
should be singled out. In light of this suggestion, it is easy to view ‘foundational 
results’ as the instruments of dogma: they proscribe what is illegitimate and establish 
an orthodoxy of concept and procedure. Philppi’s understanding of a ‘received view’ 
of measurement as issuing proscriptions on scale types, as well as Tal’s insistence 
on the narrow-minded methodological demands of measurement theory, result from 
understandable responsiveness to foundational associations evoked by casual philo-
sophical remarks encountered in the writings of measurement theorists.

These remarks are of marginal significance relative to the actual mathematics of 
measurement theory. When the latter, its motivation and its consequences are straight-
forwardly examined, no substantial reason to associate foundational prejudice with 
this work will be found. An effective way to support the last claim consists in show-
ing that measurement-theoretic work can be viewed as a complex of problem-solving 
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approaches called forth by specific difficulties or questions independently occurring 
in experimental or theoretical work across various disciplines.

I begin by clarifying the connection between measurement theory and experimen-
tal work. It is fair to say that the original motivation for measurement theory was the 
problem of determining whether sound measurement practices could be established 
in psychology.

The problem was not purely methodological since scientific and practical goals 
were already driving experimental attempts at constructing numerical scales before 
the rise of the modern theory in the 1950’s.12

Measurement theorists devoted their attention to numerical practices in which data 
is responses elicited from subjects under a controlled experimental setup. Psycho-
physics provides an especially apt example. In classical psychophysical measure-
ment, experimental subjects act as ‘measuring devices’, either by estimating, say, the 
subjective loudness of a sound against a set benchmark, or by producing a prescribed 
loudness level, e.g. an average of two presented acoustic stimuli a, b. Measurement-
theoretic work has been, to a large extent, an attempt to identify conditions on the 
responses elicited that ensure their codifiability on a numerical scale.

In order to understand how formal modelling interacts with experiment in such a 
context, it is instructive briefly to consider two examples. Take first the production 
of acoustic averages mentioned earlier. A setting is given in which, given a, b, a new 
‘average’ stimulus aIb is produced by an experimental subject.

Because an averaging experiment produces a set of behavioural responses, it is of 
interest to ask whether combinatorial conditions on such responses may be found, 
which can both be tested and contribute to specifying the empirical information that 
may be numerically codified. What follows is an interplay between the formal isola-
tion of conditions that support averaging scales and experimental checks that such 
conditions are satisfied.

The interplay occurs as an exchange between experimental practice and formal 
theory construction. In the example of acoustic averaging, an important question is 
to determine whether the response a|b, elicited by the presentation of a followed by 
the presentation of b, is equivalent to the response b|a, elicited by the presentation of 
b followed by the presentation of a.

Slightly more formally, this is to ask whether experiment supports the numerical 
codification of commutative or non-commutative ‘averaging’. Since Pfanzagl et al 
(1973: 122), it is known that b|a is consistently louder than a|b, so that the commu-
tativity of  can be finitely refuted and should not be included in the measurement-
theoretic rendering of an ‘averaging’ operation.

While thus the experimental psychologist highlights certain constraints for the 
measurement-theorist, the latter, in the capacity of a modeller, is also in a position 
to offer guidance to experimental work. This dynamics is illustrated by my second 
example, the psychophysical theory of magnitude estimation axiomatised in (Narens, 

12 The many experiments carried out by Stevens on subjective loudness scales since the 1930’s (see Ste-
vens and Davies (1938)) were both an integral part of the wider physiological study of hearing and a 
response to practical issues raised by unreliable estimates of industrial noise that used Fechner’s scale (see 
in this connection Churcher, 1935).
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1996). Narens proposes abstractly to treat the responses of magnitude estimation 
experiments as triples (x, p, t), where t is a fixed modulus or benchmark stimulus, x 
a presented stimulus and p the numerical term or numeral (thus, not a number) with 
which a subject responds to a stimulus.

Against this framework, Narens gives conditions under which triples of the form 
(x, p, t) are described by numerical functions φt, parametrised by moduli. The key 
combinatorial condition supporting this construction is a form of commutativity, 
which it was left to experimenters to test. Successful testing is recorded in Ellermeier 
and Faulhammer (2000) and Ellermeier et al. (2003).

What the above examples show is that, in a specialised context like that of psy-
chophysics, measurement theory can fruitfully interact with experimental settings 
in which the problem of scaling may be viewed as the problem of constructing a 
numerical codification of overt, non-numerical responses.

It evidently does not follow from this that all experimental practice should con-
form to the procedures measurement theorists were particularly interested in.

It is nevertheless true that measurement theorists have also studied formal models 
whose typical reference is not quantitative work in social science, but mathematical 
physics. Such is the case of extensive measurement, when related to canonical physi-
cal quantities like length, mass or time.

The purpose of such formal models cannot be to provide the experimental physi-
cist with directions that preside over scale construction. Tal (2021: 720–721) offers 
compelling reasons from experimental practice to rule out such a role as a plausible 
use of extensive measurement.

To accept this conclusion is, however, not to reject extensive measurement. When-
ever position or velocity enters a differential equation as a sufficiently smooth func-
tion of time, the latter is automatically conceived as a continuum endowed with 
extensive structure. It is within a theoretical, as distinct from an experimental, con-
text, that extensive measurement proves its fruitfulness.

In a theoretical context, knowing that certain empirical variables carry structure 
that fixes their scalability (e.g. extensive scales over a continuum are of type (1, 1)) 
provides, among other things, valuable insight into the form of laws into which these 
variables may enter.

To clarify the last remark, I offer brief indications of measurement-theoretic work 
that tackled the question of the possible forms of laws involving scaled empirical 
variables. In a pioneering paper (Luce, 1959), Luce observed that, if x, y are exten-
sive magnitudes conceptualised as continua and if, roughly, the scale changes of an 
independent variable x induce corresponding scale changes of a dependent variable 
y, then y, x are related by a power law.13 (Luce, 1964) generalises this result to y 
depending on a finite family of independent, extensive variables, obtaining the ana-
lytical form of a product of powers ubiquitous in physics.

These results show how the analytical treatment of quantities constrains the forms 
of equations in which they may enter. In particular, they afford a generalisation of 
dimensional analysis. This generalisation does not stop at Luce’s results but extends 
much further.

13 That is, there are real numbers r, s such that y = rxs, with s independent of scale choice for x, y.
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For instance, Falmagne and Narens (1983) studied scenarios in which y depends 
on x1, . . . , xn and scale changes on the latter n-tuple are constrained by a nonempty 
relation.14 In the same paper, Falmagne and Narens also considered the general situ-
ation in which the relationship between y and x1, . . . , xn belongs to a family of 
functions, thus seeking to address a problem already recognised in Luce (1959: 85), 
in which scale changes of an independent variable do not induce corresponding scale 
changes of the dependent variable.15

Moreover, Luce’s work has been extended to a wider family of scalable variables 
in (Kim, 1990) and expanded from the standpoint of structural stability in (Yoshino, 
1989), whose results allow one to derive information about finer constraints on sci-
entific laws, e.g. bounds to the exponent in the formal power law derived by Luce.

This quick survey of lesser known measurement-theoretic work is meant to drive 
home the point that distinct measurement models function differently because they 
relate to different scientific contexts. Some of them afford a relatively direct aid to 
the social scientist engaged in experimental work while others cast light on the far-
reaching effects of the analytical mathematisation of empirical variables, as pertinent 
to the mathematical physicist especially. Each of these functions is localised because 
it emerges from special scientific concerns and special choices of mathematisation.

The remarks just made enable us to consider (Tal, 2021) in close detail.

7 Methodological dislocation

In a rich and important 2021 contribution, Eran Tal has taken issue with measurement 
theory as a foundational framework presiding over experimental work and bound up 
with a strictly empiricist methodology. I have called this view of measurement theory 
the result of methodological dislocation.

The critical stance presented in (Tal, 2021) can now be reviewed in the light of 
what was observed the previous section.

Tal’s leading concern is, as just noted, with the strictly empiricist foundational 
stance he believes inevitably to accompany measurement-theoretic work. Tal finds 
this stance openly at variance with at least measurement practice in physics and 
deems it philosophically harmful insofar as it contributes to propagating certain 
empiricist ‘myths’ concerning measurement.

Two myths seem to Tal inherent into the conceptual architecture of measurement 
theory. The first myth is that the structural traits of an empirical variable can be 
directly extracted from raw, non-numerical data, which are later subjected to numeri-
cal scaling. In short, the detection of qualitative structure must precede numerical 
assignment in measurement practice. The second myth is:

14 If Ti is the set of scale changes associated with xi, then the relation in question is a nonempty subset of 
T1 × . . . × Tn.
15 This phenomenon, noted in Luce (1959: 91), was stressed in Rozeboom (1962: 545), which illustrates 
it with reference to the exponential law of radioactive decay. If the law is expressed as q = ae−bt, with t 
time and q the quantity in grams of radioactive material, a scale change of t does not induce a change scale 
of q, which should be a multiplication by a positive constant.
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[…] the belief that establishing homomorphic mappings from independently 
abstracted data structures is not only sufficient, but also necessary for empiri-
cally detecting quantitative structure (Tal (2021: 715)).

The two myths are not implausibly framed against the type of measurement-theoretic 
result philosophers have especially been attentive to, namely a representation theo-
rem asserting that any member of a set-theoretically definable class of structures can 
be homomorphically embedded into a prescribed real structure.

One may regard this type of result as suggesting, in formal terms, an account of 
measurement as concretely carried out. The account suggested proceeds through three 
fundamental stages: (a) the extraction of raw, non-numerical data from an experimen-
tal setting; (b) the testing of structural features directly exhibited by recorded data; 
(c) the construction of a homomorphism between the structured variable detected 
through (a) and (b) and a prescribed numerical structure.

Tal takes issue with this account of measurement, which is in fact evoked by occa-
sional methodological statements made by measurement-theorists (see in particu-
lar the reference to Luce et al. (1990) discussed in Tal (2021: 714–715) and Tal’s 
criticism of Krantz’s sketch of the concatenation of periods using pendulums in Tal 
(2021: 722)).

It seems to me that there is no strong reason to regard measurement theory as the 
carrier of the procedural and methodological conception targeted by Tal’s criticism. I 
do not disagree with the criticism as such, but with Tal’s claim about what it shows.

I don’t think this criticism shows that measurement theory essentially rests on an 
unacceptably unrealistic picture of measurement processes. What it shows is that the 
function and significance of measurement-theoretic work are misunderstood unless 
they be disassociated from an implausible foundational stance. I presume Tal believes 
the disassociation to be impossible. In the remainder of this section I shall endeavour 
to show that it can be made.

What was said in the preceding section already goes a long way toward supporting 
the last claim. Even focussing on representational measurement alone, it is possible 
to view it, where Tal indicates its experimental irrelevance, as the starting point of a 
theoretical study of real scalability and its impact on the formulation of mathematised 
laws. The theoretical relevance of measurement-theoretic results becomes invisible 
if one works with the initial hypothesis that they must be about experimental scale 
construction.

Section 6 was intended to indicate that scale construction is a dominant concern 
only in some specific contexts, typically coming from the behavioural sciences. It 
is in such contexts that scale construction based on overt non-numerical responses 
may be a meaningful practice. Here representational measurement is pertinent to 
experimental practice for two reasons: first, because it affords intrinsic (i.e. scale 
independent) presentations of traits whose features may be experimentally controlled 
or detected (recall the discussion of commutativity conditions in psychophysics); 
second, because it proves the existence of homomorphic embeddings in a fashion that 
may be suggestive of a scale construction procedure.

I must stress that what was just said is not a surreptitious way of indicating that 
empiricist prepossessions concerning measurement may after all hold some ground, 
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but a direct way of noting that, relative to some actual experimental practices, it makes 
sense to think about scaling along lines indicated by the representational approach.

Representational measurement is thus not to be understood as methodological 
dogma, but as a mathematical response to specific investigations actually ongoing.

As Tal indirectly argues, the specific investigations concerned do not include most 
theory-laden physical measurement. Acceptance of this conclusion does not, how-
ever, automatically render measurement theory irrelevant to the physicists’ concerns: 
it rather calls for relocating its relevance, as indicated towards the close of Sect. 6.

In order to complete the disassociation of measurement theory from the founda-
tional perspective undermined by Tal’s critique, it should now be sufficient to show 
that Tal’s two myths can be rejected on measurement-theoretic grounds alone.

The first myth is that the structural traits of an empirical variable may simply 
be extracted from raw, non-numerical data. This myth is inconsistent with existing 
measurement-theoretic results. Some of them openly, some implicitly, allow data to 
be numerical and structured in the first instance: such data is then used to detect the 
intrinsic (non-numerical) features of an underlying empirical variable.

An illustration is offered by a measurement model discussed in Pfanzagl et al. 
(1973: 158–159). Motivation for this model comes from psychophysical experiments 
in which subjects are asked to assign numerical values to stimuli (e.g. sounds at vary-
ing sound pressure levels). Pfanzagl set-theoretically typifies this setup as a family 
F  of real-valued functions on an ordered and connected set16 〈 A, < 〉 (which may be 
formally identified with an open real interval, if assumed to be a continuum).

If the given numerical functions satisfy a suitable list of conditions (see Pfanzagl 
et al., 1973: 158), then it is possible to use the elements of F  to define a four-place 
relation on A, under which this set may be structured as a system of comparable 
intervals, giving rise to a real homomorphic embedding that codifies the subjective 
comparisons of stimuli in A. In this case, the isolation of a codifiable, non-numerical 
variable is not the starting point for numerical codification, but its outcome.

Many familiar measurement models can be used in the same way. We know, for 
instance, that positive-difference structures have a definable additive operation on 
intervals and that additive conjoint structures carry additive interval structure on 
each conjoint component. Since the formal conditions that define a positive-differ-
ence structure or an additive conjoint structure are obviously satisfied by numerical 
structures, the corresponding measurement theories can be used as ways of detecting 
underlying additive operations in presence of difference or conjoint numerical data.

The second myth, i.e. the necessity of homomorphic embedding for representa-
tion, only results from exclusive familiarity with single-embedding representations 
in measurement theory. As observed in Sect. 2, measurement-theoretic work includes 
scaling strategies that go well beyond proving the existence of a homomorphic 
embedding or do not depend on it.

Neither of Tal’s myths is thus countenanced by measurement-theoretic results, 
mainly because they can be used in a more flexible manner than Tal seems to 
contemplate.

16 Connectedness is intended relative to the interval topology.
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A final word is worth spending on the fact that the measurement-theoretic stress 
on providing ‘coordinate-free’ or non-numerical presentation of empirical variables 
is not, as Tal suggests, the effect of empiricist allegiance. Its true basis is the need for 
an explicit isolation of the content that a certain numerical practice seeks to codify. 
This need may not be severely felt in the context of physical measurement, but it is 
natural in scientific work that is farther from having reached a comparably thorough 
degree of mathematisation.

In principle, it is not impossible to work with a notion of content that lacks a non-
numerical reference.17 It nonetheless remains important, and it is probably conducive 
to finer analyses, to be able to state, in non-numerical terms, what empirical content 
scales are supposed to codify.

Measurement theorists have pushed the analysis of content to a very refined level 
by investigating conditions under which numeral responses elicited by experimental 
subjects are legitimately treated as numerical (this is what Narens did in the 1996 
work referred to in Sect. 6).

The concern here is strikingly not with the search for an empiricist foundation, but 
with control over content that appears in numerical format. One may operate with 
numbers rather freely, to the point of divorcing them from the study of content: to put 
it bluntly, one may multiply two figures of debt to obtain a credit, but this legitimate 
piece of arithmetic in Z will not provide any safe guidance to financial management.

In a slightly more sophisticated fashion, one may average data to which only 
ordinal significance is associated but then again the average may be manipulated at 
will by shrinking or stretching numerical differences between the ordered items. The 
concern of measurement theorists with non-numerical data is more sensibly under-
stood as the consequence of a difficulty to which the social sciences seem especially 
exposed, namely the arbitrary manipulation of numerical indices, than as the effect of 
abstract methodological commitment.

8 Concluding remarks

In this paper I have attempted to show that, as soon as measurement theory is rec-
ognised as an integral part of scientific work, making distinct points of contact with 
experiment and theory, philosophical criticism resting on its dislocation from scien-
tific work no longer applies.

More interestingly, what were originally presented as critical points against mea-
surement theory can be viewed as consequences of measurement-theoretic work 
itself (the conclusion arose in the previous section with respect to Tal’s ‘myths’). This 
result is not paradoxical: dislocations portray a picture of measurement theory as for-
eign to scientific work and at variance with the latter’s proceedings. When relocation 
is effected, the consistency between measurement-theoretic and broader scientific 
work is simply made discernible again.

17 After Stevens’ fashion, fix a numerical measurement structure R with domain R, a group G of automor-
phisms of R( which may not be its full automorphism group) and declare content to be, for each positive 
integer n, the family of sets A ⊂ Rn that are fixed by G.
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It is, from this standpoint, possible to list some alleged criticism of measurement 
theory in its defence, as indirectly showing that certain accounts of measurement-
theoretic work are actually inconsistent with its motivation and scientific function.

It does not follow, of course, that measurement theory is shielded from all pos-
sible philosophical criticism, but only that meaningful criticism could not rest on an 
unreliable picture of its object.18 There is no compelling reason for philosophers to 
scrutinise measurement theory while neglecting a fairly large amount of work in this 
area or glossing over the subtler implications of what mathematical work is reviewed. 
I hope that this paper may contribute to emancipating philosophical debates on math-
ematical aspects of measurement from such unnecessary restrictions.
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