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The higher-order nonlinear Schrödinger equation
(NLS) (Dysthe’s equation in the context of water
waves) models the time evolution of the slowly
modulated amplitude of a wave packet in physical
systems described by dispersive partial differential
equations (PDEs). These systems, of which water
waves are a canonical example, require the presence
of a small-valued ordering parameter so that a multi-
scale expansion can be performed. However, often
the resulting system itself contains this parameter.
Thus, these models are difficult to interpret from a
formal asymptotics perspective. This article describes
a procedure to derive a parameter-free, higher-order
evolution equation for a generic infinite-dimensional
dispersive PDE with weak linear damping and/or
forcing. This is achieved by placing the PDE in
an infinite-dimensional Hilbert space and Taylor
expanding with Fréchet derivatives. An attractive
feature of this procedure is that it can be used
in many different physical settings, including water
waves, nonlinear optics and any dispersive system
with weak dissipation or forcing and does not assume
any additional structure to the governing PDE, for
example its Hamiltonian nature. To complement this,
two specific examples with accompanying symbolic
algebra code are demonstrated that can be used as a
template for other physical systems.

1. Introduction
The nonlinear Schrödinger equation, first derived in [1],
and the higher-order version, or, in the context of water
waves, Dysthe’s equation, first derived in [2], describes
slowly varying wave envelopes and is immensely
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successful in modelling an array of physical phenomena, including water waves [3] and optics
[4]. These evolution equations are cornerstone achievements of nonlinear science and are still an
incredibly active research field. A key feature of the ‘standard’ nonlinear Schrödinger equation
(hereafter denoted NLS) and the higher-order Schrödinger equation (hereafter denoted HNLS) is
that they are Hamiltonian systems (in the context of water waves, for the HNLS, this has only
been shown very recently [5,6]). In such systems, there is no dissipation mechanism. Therefore,
dynamical attractors or repellers cannot exist and, crucially, energy cannot be gained or lost.
In some physical situations, where energy loss/gain is an important part of the physics, this is
undesirable [7]. For example, in the evolution of ocean swell [8,9] and wind forcing of ocean
waves [10–12], the dissipation results in a constant decay rate of the wave attenuation. Extending
this, in ice-infested ocean waves, experimental evidence suggests that the energy of a wave-
packet is actually damped at a rate that depends on the wave frequency [13] and in the context of
wave propagation in an ice pack, [14] investigated the effect of introducing viscosity to the NLS.
The classical NLS and HNLS, which in these contexts are derived from the inviscid, irrotational
and incompressible free-surface Euler system [3], cannot capture this energy attenuation. For the
system to dissipate energy, an ad hoc modification to the form of the NLS/HNLS is necessary
as the Euler system is derived from the underlying Navier–Stokes system under the assumption
of inviscid flow [15,16]. A rational argument of how the Navier–Stokes equations can lead to the
free-surface Euler system with dissipation was proposed in [17], and an HNLS with dissipation
was derived in [18] but it is unclear how this analysis can be extended to more general dispersive
systems with weak dissipation and/or forcing.

In early models of a modified-NLS [8,9,15] and modified-HNLS [18], an extra linear,
dissipation term was added. More recently, in light of striking evidence that the damping is
frequency dependent [13], a spatially dependent, linear dissipation term was added to the NLS
and HNLS to model sea-ice [12,19,20]. In these models, the equation is often simply stated
without derivation and the coefficients often vary from study to study, even for identical physical
situations (see for example, in the context of water waves, [1,11,21,22]). However, attempts to
derive the equations from the fully nonlinear Euler system can be unwieldy, laborious, and prone
to inadvertent algebraic mistakes, making derivations difficult to follow. In this article, we derive
a modified-HNLS system for a general dispersive evolution partial differential equation (PDE)
with weak dissipation/forcing. A key feature is that, in contrast to the literature, the small-
ordering parameter is absent from the final form of the resulting HNLS; which as we shall explain
in this article, provides an asymptotically consistent form of the envelope equations.

The literature on the NLS and HNLS in terms of water waves is vast, and we now highlight
two of the approaches to derive them. One approach is to perform a direct asymptotic expansion
of the governing equations in terms of powers of a small parameter and solve a linear problem
at each order of ε. Truncating the analysis at three orders of magnitude in ε results in the NLS
and going to four orders of magnitude results in the HNLS, e.g. [3]. The other, more recently
proposed method, in the specific case of water waves, uses the Hamiltonian nature of the system
and performs an expansion on the Hamiltonian so that the resulting HNLS is itself Hamiltonian,
see [5].

In both of these above approaches, the small parameter ε is often employed as a control
parameter, particularly in the HNLS (see [5,11]) rather than an asymptotic ordering parameter.
Even if ε can be scaled out of the PDE by suitable variable transforms, from a formal asymptotic
perspective, this is undesirable as ε should only be used to order the expansion, not be defined as
a specified finite value. Furthermore, while the literature on the HNLS is well developed for water
waves and, we emphasize, has been incredibly successful at modelling water-wave modulation,
we have been unable to identify an analysis that (i) can systematically be implemented in other
physical systems; (ii) results in an HNLS that does not contain ε; and (iii) does not necessarily rely
on the Hamiltonian structure of the system and thus can explicitly contain dissipative/forcing
terms.

With these three observations in mind, a fundamental aim of this article is to develop
and describe a friendly ‘user-guide’ and systematic method to derive higher-order evolution
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equations for a general dispersive system. With regard to the three points made at the end of
the last paragraph, the three main features of this article are to describe a systematic procedure
that (i) can be applied to a wide range of dispersive evolution PDEs; (ii) does not contain ε as
a control parameter; and (iii) contains weak dissipation/forcing so that a Hamiltonian structure
is not assumed and necessary. We aim for the description of our approach to be as constructive
and transparent as possible. In direct asymptotic expansions, one often relies on the scaling of
dependent/independent variables using the small parameter, ε. Sometimes in the literature, these
scalings are made at the outset, and for the uninitiated reader, can appear mysterious and ad hoc.
In this article, we make no a priori assumptions on these scalings; rather, they are transparently
motivated as part of the analysis when the expansion ‘goes wrong’. Therefore, we believe that
this article will be a valuable tool for future derivations of modulation equations in other physical
contexts and that an article of this type is long overdue in the nonlinear science community.

It is important to observe from the outset that in the literature, the nomenclature of higher-
order NLS models and so-called ‘modified’ NLS models have become convoluted (for example
the modified NLS in [16] refers to the damping, whereas in [2], it refers to the higher-order
terms). To avoid any confusion, in this article, we shall use the term modified-HNLS model, where
‘modified’ refers to the dissipation/forcing term (similar to the NLS in [16]).

(a) Current approaches
Before proceeding, we now describe our broad strategy and the current approaches in the
literature. Despite the success of the NLS (and associated systems) in describing the wave
amplitude for water waves, from a formal asymptotic perspective, an undesirable aspect of the
current models in the literature is the presence of a small, real parameter ε ∈ R, where |ε| � 1.
We highlight that ε is highly problem dependent and could also represent different physical
quantities depending on the non-dimensionalization of the governing system. For example, in
[23], ε represents the closeness of a parameter to a Hopf bifurcation. By contrast, in surface gravity
waves, ε is usually defined as the wave steepness or wave amplitude [2,3]. However, there is no
reason it cannot represent other small quantities, for example, in water waves ε could represent
surface tension or dispersive effects; the analysis will yield different coefficients, yet the structure
of the general envelope equations will remain the same.

To illustrate this approach, let u(x, t) represent the solution of a nonlinear PDE in O(1) time and
space variables, x and t, written functionally as

∂u
∂t

+ nonlinear operator (u; ε) = 0, (1.1)

where the nonlinear operator contains spatial derivatives and is dependent on ε. Usually, to
derive the NLS and HNLS systems (and modified versions), a solution to equation (1.1) is
proposed of the form

u = A(ξ , τ ) × periodic-function (x, t) + ε × higher-order terms (x, t, ξ , τ ), (1.2)

where A(ξ , τ ) is the complex-valued wave envelope depending on some slow space and time
variables, ξ and τ (yet to be defined), and the periodic function is linear and periodic in both
space and time, e.g. an exponential (figure 1). For the modified HNLS, the evolution of the wave-
envelope, A(ξ , τ ), is found by solving a nonlinear PDE of the form

∂A
∂τ

+ Schrödinger operator (A) + dissipative operator (A)

+ ε ×
[

higher-order Schrödinger operator (A) + ∂ dissipative operator (A)
∂x

]
= 0, (1.3)

where the Schrödinger and higher-order Schrödinger operators contain linear spatial derivatives
of A and nonlinear terms involving A and A (an over-bar indicates the complex conjugate) and
the dissipation operator depends on the type of damping required [12,19,20]. In these traditional
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Figure 1. Sketch of a steadily translating wave packet, labelled u= A(ξ , τ )eiΩ + c.c;Ω = kx − ωt, with oscillations on
a fast time scale (blue) and an envelope, A(ξ , τ ), varying on a slow space and time scale (red).

approaches, equation (1.3) reduces to the ‘normal’ nonlinear Schrödinger system, simply by
setting ε= 0.

We repeat that, models of the form in equation (1.3) are extremely successful at modelling
and predicting the evolution of the wave-packet [8,18] yet, from a purely formal asymptotics
perspective, there is a troubling aspect of these equations in that the small-ordering parameter, ε,
is present in the system as a coefficient of the higher-order Schrödinger operator. Furthermore,
from a practical perspective, for numerical simulations, ε is a control parameter rather than
an ordering parameter, which can result in unnecessary ‘stiffness’ as ε� 1 in the numerical
implementation. Therefore, the aim of this article is to describe definite procedures for deriving
parameter-free, higher-order evolution equations for a general dispersive system with weak
dissipation.

(b) A parameter-free approach
We now sketch our general strategy to achieve a parameter-free modified HNLS. One way to
achieve this is by introducing a succession of, potentially infinite, small time scales proportional
to εn [24,25]. With the view of a numerical implementation, where the discretization of different
time scales may be problematic, we expand the amplitude function instead, resulting in a coupled
system of evolution equations. These are more amenable to numerical study as there is only one
scale for the independent variable in the slow-time scale, τ . Our strategy involves expanding the
amplitude function to higher orders so that instead of equation (1.2), we expand the solution
using

u = [A(ξ , τ ) + εB(ξ , τ ) · · · ] × periodic-function (x, t) + ε × higher-order terms (x, t, ξ , τ ), (1.4)

where B(ξ , τ ) is the slowly varying first-order envelope function. We show that an asymptotically
consistent system for A and B, which is parameter-free is of the form

∂A
∂τ

+ linear derivative + nonlinear term + dissipation term = 0 (1.5)

and
∂B
∂τ

+ linear derivative + nonlinear terms + dissipation term = 0. (1.6)

This approach relies on the interpretation of an evolution PDE as an infinite-dimensional
dynamical system where, instead of state variables belonging to R

d, with d finite, the state
variables, u, belong to an infinite-dimensional Hilbert space and is inspired by work where
a similar formal asymptotic expansion was used in a problem involving the propagation of
air-bubbles in a viscous fluid within a Hele–Shaw channel [23].
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We proceed as follows. In §2, we devote the preliminary part of the article to describing the
framework. Then, in §3, we proceed with a formal asymptotic analysis. First, we show how a
naive asymptotic expansion fails and then provide an appropriate remedy. In our analysis, our
main philosophy is to be constructive and transparent to the reader, so that, as well as deriving
an asymptotically consistent form of the HNLS with dissipation/forcing, this article will also
act as a user-friendly pedagogical guide. In §§4 and 5, we focus on the derivation from a toy
system and the fully nonlinear water-wave problem, respectively. For the latter, the rationale
for this is that although the evolution amplitude equations for water waves are well known in
the case of simple geometries (infinite depth or flat finite depth) and for standard physics (i.e.
gravity-capillary waves) [3], researchers may wish to determine the evolution equations for their
particular problem, which may have different geometries (for example, a submerged body in
the fluid or a variable bottom topography) and include different physics (for example, hydro-
elastic waves and external pressure distributions). In both examples, we provide symbolic algebra
MATLAB code that allows one to generate the coefficients efficiently and that can, in principle, be
adapted to other toy PDEs and water-wave problems. Therefore, the secondary aim of this article
is to provide a useful, user-friendly ‘look-up’ tool for researchers so they can make the necessary
adjustments for their own physical models.

2. Preliminaries
We study the generic PDE for the evolution of u:

∂u
∂t

+ F (u; ε) + ε2V(u) = 0, x ∈ R
d, t ∈ R

+, (2.1)

where u(x, t) ∈ U , a Hilbert space, F : U �→ U is a nonlinear operator that depends on a parameter
ε ∈ R and V : U �→ U is a linear dissipation operator. We note that F (u; ε) only contains spatial
derivatives and in the rest of the article, for ease of exposition, we omit the explicit ε dependence
from F . We also assume that associated with equation (2.1) are the correct number of boundary
conditions on u and spatial derivatives of u to make the system well-posed. We assume that d = 1
(this will be relaxed in §5) and that when ε= 0, the linearized equation admits a real-valued
dispersion relation. We start our analysis with several definitions involving Hilbert spaces and
Fréchet derivatives and introduce a notation that simplifies the subsequent analysis. While at first
glance, equation (2.1) may appear restrictive as only first-order time derivatives are present, it is
possible to transform a PDE that is second order (for example, the D‘Alembert or wave equation)
in time to a system of PDEs that are first order in time and hence fall in the class of problems
defined in equation (2.1). We will only seek bounded solutions to equation (2.1) that are not subject
to secular growth.

To proceed, we first assume that u = us(x) is a steady-state form of equation (2.1), independent
of time, i.e.

F (us) = 0. (2.2)

The steady state, us, does not have to be identically zero; the analysis will hold for a generic steady
base state us. Anticipating periodic solutions of equation (2.1) with temporal period T̃ and spatial
period X̃, we define an inner product:

〈u, v〉 =
∫ T̃

0

∫ X̃

0
uv dx dt, u, v ∈ U . (2.3)

(a) Taylor expansions in Hilbert spaces
An important feature of the subsequent analysis is the ability to Taylor expand the fully nonlinear
operator, F , within a Hilbert space (see, for example, §5.6 of [26]). We assume that F (u) is n-
differentiable, in the Fréchet sense (cf. equation (2.5)), and admits a Taylor expansion about the
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steady base state, u = us + v, i.e.

F (u) =F (us)︸ ︷︷ ︸
=0

+D1[F (us)](v) + 1
2!

D2[F (us)](v, v) + 1
3!

D3[F (us)](v, v, v) + · · · ; (2.4)

where the first-order Fréchet derivative is defined as

D1[F (us)](v1) ≡ lim
h→0

F (us + hv1) − F (us)
h

. (2.5)

Higher-order derivatives can be defined inductively;

Dn[F (us)](v1, . . . , vn) ≡ D[Dn−1(v1, . . . , vn−1)](vn), vi ∈ U . (2.6)

The nth Fréchet derivative is an n-linear functional. For ease of exposition, we introduce specific
symbols for the first four Fréchet derivatives about us as

J (u1) ≡ D1[F (us)](u1), H(v1, v2) ≡ 1
2!

D2[F (us)](v1, v2),

T (v1, v2, v3) ≡ 1
3!

D3[F (us)](v1, v2, v3), Q(v1, v2, v3, v4) ≡ 1
4!

D4[F (us)](v1, v2, v3, v4).

⎫⎪⎪⎬
⎪⎪⎭ (2.7)

We emphasize that the Taylor expansion in equation (2.4) is for a general nonlinear operator, F (u).

(b) The linear operator
We now discuss the linear operator, J (u) in equation (2.7), that will perform an important role in
the subsequent analysis. In what follows, we adopt the notation

Ωi = kix − ωt, Ωi,j = (ki + kj)x − ωt and Ωi,j,l = (ki + kj + kl)x − ωt, (2.8)

where ki is a spatial wavenumber, ω is a temporal wavenumber or angular frequency and i is a
labelling index. We can map our operator onto Fourier space as a pseudo-operator, i.e.

J (AeiΩ1 ) �→ iAeiΩ1 J(k1), (2.9)

where J : R �→ R is a function of a real variable.

(c) The bilinear and trilinear operators
In a similar way, we can map the bilinear and trilinear operators, H, T , in Fourier space so that

H(A1eiΩ1 , A2eiΩ2 ) �→ A1A2eiΩ1,2 H(k1, k2) (2.10)

and

T (A1eiΩ1 , A2eiΩ2 , A3eiΩ3 ) �→ A1A2A3eiΩ1,2,3 T(k1, k2, k3). (2.11)

The bilinearity of H means the following identities hold:

H(a + b, c + d) ≡H(a, c) + H(a, d) + H(b, c) + H(b, d), H(λa,μb) ≡ λμH(a, b), (2.12)

∀ a, b, c, d ∈ U and ∀ λ,μ ∈ C. Similar distributive properties hold for the trilinear operator, T .

3. Formal asymptotic expansion
Now that the problem and associated operators are defined, we can attempt to construct an
asymptotically valid expansion for the solution. First, we perform a naive asymptotic expansion
to solve equation (2.1) and show how it fails, as is well known, to understand how we may find a
remedy.
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We now assume that ε� 1, and formally expand u in the form

u(x, t) = us(x) + εu1(x, t) + ε2u2(x, t) + ε3u3(x, t) + ε4u4(x, t) + · · · , |ε| � 1. (3.1)

Substituting equation (3.1) into equation (2.1) and using equation (2.4) gives

ε
∂u1

∂t
+ ε2 ∂u2

∂t
+ ε3 ∂u3

∂t
+ · · · [εJ (u∗) + ε2H(u∗, u∗) + ε3T (u∗, u∗, u∗) + · · · ]︸ ︷︷ ︸

Taylor expansion

= 0, (3.2)

where we explicitly highlight the higher-order terms resulting from the Taylor expansion, see
equation (1.2), and u∗ = u1 + εu2 + ε2u3 + · · · .

(a) Leading order: the dispersion relation
In equation (3.2), at O(ε), we have

L(u1) = 0,
[
L(	) ≡ ∂(	)

∂t
+ J (	), 	∈U

]
. (3.3)

Equation (3.3) has a solution:

u1(x, t) = AeiΩ + Ae−iΩ , Ω = kx − ωt, (3.4)

for an, as yet, unknown constant A ∈ C. Using our notation introduced in equation (2.9), k and ω
are related through the linear dispersion relation

ω − J(k) = 0. (3.5)

(b) Disordered expansion
Continuing our naive expansion of equation (3.2), at O(ε2), we obtain

L(u2) = −H(u1, u1). (3.6)

The operator H is bilinear and examining the form of equation (3.4) means that H will contain
two types of terms proportional to (i) e2iΩ and (ii) e0iΩ . Therefore, the solution at this order will
be of the form

u2(x, t) = ϕ0A2e2iΩ + BeiΩ + ϕ1|A|2 + c.c, (3.7)

where ϕ0,1 are known solutions to linear problems, B ∈ C is arbitrary and c.c. stands for complex
conjugate. At this stage, u1 and u2 are bounded and periodic. At the next order O(ε3), we find

L(u3) = −H(u1, u2) − H(u1, u2) − T (u1, u1, u1). (3.8)

Now, there are terms on the right-hand side that are proportional to A|A|2eiΩ and hence u3 will
experience secular growth unless we choose A = 0, which reduces the expansion to null and thus
illustrates the failure of the naive expansion.

(c) Multiple-scales and two-timing
To avoid a trivial selection of our amplitude function, we introduce slow variables X,T that are
related to the O(1) quantities by

X = εx and T = εt. (3.9)

With u(x, t) �→ u(x, t, X, T), the differential operators get mapped to

∂

∂x
�→ ∂

∂x
+ ε

∂

∂X
. (3.10)

It is important to be careful with how this ansatz modifies the multi-linear operators introduced
in the previous section. Due to this ansatz, the wavenumber in Fourier space is mapped to

k �→ k + εK, (3.11)
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where K is a slow wavenumber associated with the slow spatial scale, X. Using equation (3.11),
expanding J as a Taylor series yields

J (A(X, T)eiΩ ) �→
[

iJ(k) + ε
dJ
dk

K − i
2
ε2 d2J

dk2 K2 + · · ·
]

A(X, T)eiΩ , (3.12)

�→
[

iJ(k) + ε
dJ
dk
∂A
∂X

− i
2
ε2 d2J

dk2
∂2A
∂X2 + · · ·

]
eiΩ . (3.13)

For the bilinear operator, we have to be more careful. The wave numbers are mapped according
to k1 �→ k1 + εK1, k2 �→ k2 + εK2 so that

H(A1eiΩ1 , A2eiΩ2 ) �→
[

H(k1, k2) + εKt∇kH + 1
2
ε2KTHK + · · ·

]
A1A2eiΩ1,2 , (3.14)

�→
[

H(k1, k2) + ε

(
∂H
∂k1

∂A1

∂X
A2 + ∂H

∂k2
A1
∂A2

∂X

)
+

1
2
ε2

(
∂2H

∂k2
1

∂2A1

∂X2 A2 + 2
∂2H
∂k1∂k2

∂A1

∂X
∂A2

∂X
+ ∂2H

∂k2
2

A1
∂2A2

∂X2

)
+ · · ·

]
eiΩ1,2 , (3.15)

where the slow wavenumber vector is defined as K = (K1, K2)T, wavenumber gradient ∇k =
(∂/∂k1, ∂/∂k2) and H is the Hessian matrix of H with respect to k1, k2. When going from
equation (3.14) to equation (3.15), we consider that in Fourier space A1 �→ Â1(K1, T) and A2 �→
Â2(K2, T).

Finally, we do the same to the trilinear operator, this time the slow wavenumber vector is
K = (K1, K2, K3)T and gradient operator, ∇k = (∂/∂k1, ∂/∂k2, ∂/∂k3)T, where the ambiguity with the
expressions above is noted, yet accepted as a reasonable abuse of notation. The trilinear operator
is mapped to

T (A1eiΩ1 , A2eiΩ2 , A3eiΩ3 ) �→ [T(k1, k2, k3) + εKT∇kT + · · · ]A1A2A3eiΩ1,2,3 . (3.16)

It will be useful later to expand the gradient term above explicitly:

[KT∇kT]A1A2A3 = ∂T
∂k1

∂A1

∂X
A2A3 + ∂T

∂k1
A1
∂A2

∂X
A3 + ∂T

∂k1
A1A2

∂A3

∂X
. (3.17)

For ease of exposition, we make the following definitions:

Sn
J (u1) ≡ (i)n−1 1

n!
dnJ
dkn

1

∂A
∂X

eiΩ , SH(u1, u2) ≡ [KT∇kH]A1A2eiΩ1,2

and S2
H(u1, u2) ≡ 1

2!
[KTHK]A1A2eiΩ1,2 ,ST (u1, u2, u3) ≡ 1

3!
[KT∇kT]A1A2A3eiΩ1,2,3 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.18)

We have used the symbol S to denote an operator defined on the ‘slow’ scale. For a technical
discussion of the multi-scale ansatz see [27].

(d) The two-timed system
Using the notation introduced in §3c, we can now write our system in a way that will let us pick
out the terms at each order in a straightforward manner.

Summarizing the process so far, we have performed two sets of Taylor expansions. The first
involved a Hilbert-space Taylor expansion of the fully nonlinear operator F about the base state,
us. This procedure resulted in a succession of multi-linear operators, J ,H, . . . , at each order in
ε. The second set of Taylor expansions involved expanding the individual multi-linear operators
due to the multi-scale ansatz in equation (3.9).
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Bringing these expansions together, using the notation in equation (3.18), we can write
equation (3.2) to an arbitrary order in ε. The new expansion is of the form

u = us + εA(X, T)eiΩ + ε2u2(X, T, x, t) + ε3u3(X, T, x, t) + ε4u4(X, T, x, t) + · · · . (3.19)

Substituting equation (3.19) into equation (3.2), and using the Taylor expansions in (3.18), yields

ε

(
∂u1

∂t
+ ε

∂u1

∂T

)
+ ε2

(
∂u2

∂t
+ ε

∂u2

∂T

)
+ ε3

(
∂u3

∂t
+ ε

∂u3

∂T

)
︸ ︷︷ ︸

time derivatives

+ εJ (u∗) + ε2SJ (u∗) + ε3S2
J (u∗) + ε4S3

J (u∗)︸ ︷︷ ︸
linear dispersion, J

+ ε2H(u∗, u∗) + ε3SH(u∗, u∗) + ε4S2
H(u∗, u∗)︸ ︷︷ ︸

bilinear terms, H

+ ε3T (u∗, u∗, u∗) + ε4ST (u∗, u∗, u∗)︸ ︷︷ ︸
trilinear terms, T

+ ε4Q(u∗, u∗, u∗, u∗)︸ ︷︷ ︸
quadrilinear term

+ ε2V(u∗)︸ ︷︷ ︸
dissipation

+O(ε5) = 0. (3.20)

Each set of grouped terms corresponds to the Taylor expansion of each of the (multi-linear)
operators in equation (3.2) due to the two-timing ansatz (equation (3.9)).

The system in equation (3.20) may seem unwieldy. Still, conceptually it is simple as it arises
from Taylor expansions in Hilbert spaces, which have a strong correlation to standard Taylor
expansions of functions of real variables, with which we assume the reader is familiar. In practice,
all that is required are the (i) elementary linear dispersion relation and (ii) the forms of the
bilinear and trilinear operators. For a given system, the linear dispersion relation is often a trivial
exercise, but the form of the bilinear and trilinear operators often requires some work. However,
once established, the subsequent analysis becomes straightforward as it simply involves repeated
applications of these operators with different arguments.

(e) Two-time first order
We now proceed with the formal asymptotic expansion. As before, at O(ε), we obtain

L(u1) = 0. (3.21)

This the time solution for u1 will contain an unknown slowly varying (in space and time)
modulation function;

u1(x, t, X, T) = A(X, T)eiΩ + A(X, T)e−iΩ︸ ︷︷ ︸
oscillating

, Ω = kx − ωt (leading-order solution), (3.22)

with the dispersion relation stated in equation (3.5).

(f) Two-time second order: the transport equation
We continue our expansion to O(ε2) where

L(u2) + ∂u1

∂T
+ SJ (u1) + H(u1, u1) = 0 (3.23)

or

L(u2) = −
[
∂A
∂T

+ cg
∂A
∂X

]
︸ ︷︷ ︸

resonant

eiΩ − H(u1, u1)︸ ︷︷ ︸
non-resonant

+c.c, (3.24)

where cg = dJ/dk is the group velocity of the travelling wave. To eliminate the resonant terms
on the right-hand side and thus avoid secular growth of the harmonic modes for u2, we invoke
the Fredholm alternative [28]. This states that either i) the only solution of L(u) = 0 is u = 0 and
then L(u) = v has a unique solution or ii) there exists a non-zero solution of L(u) = 0 in which case

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 J

ul
y 

20
25

 



10

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A481:20240967

..........................................................

L(u) = v has a solution only if the inner product of v with the solutions of L†(u†) = 0 vanishes,
where L†, u† are the adjoint problem and eigenmodes, respectively, of

〈L(u), v〉 = 〈u,L†(v)〉, ∀ u, v ∈ U . (3.25)

In what follows, we assume our problem is self-adjoint, but a non-self-adjoint problem can be
handled similarly [23]. For self-adjoint operators, the adjoint eigenmodes are proportional to eiΩ

and hence in our problem, equation (3.24), this can be written as〈(
∂A
∂T

+ cg
∂A
∂X

)
eiΩ + H(u1, u1), u†

〉
= 0. (3.26)

The non-resonant terms in H(u1, u1) will automatically be orthogonal to u† due to periodicity and
so the solvability condition in equation (3.26) becomes

∂A
∂T

+ cg
∂A
∂X

= 0. (3.27)

We can write an alternative form of equation (3.24) using the Fourier representation,

L(u2) = − A2H(k, k)e2iΩ − A
2
H(−k, −k)e−2iΩ︸ ︷︷ ︸

oscillating

− |A|2H(k, −k) − |A|2H(−k, k)︸ ︷︷ ︸
non-oscillating

+ resonant terms.

(3.28)
This form allows us to write down the solution, u2, as

u2 = ϕ0 A2e2iΩ + ϕ0A
2
e−2iΩ + BeiΩ + Be−iΩ︸ ︷︷ ︸
oscillating

+ G(ϕ1|A|2)︸ ︷︷ ︸
non-oscillating

(first-order solution), (3.29)

where B(X, T) is an arbitrary modulation that can be considered as an order ε correction to A and
ϕ0 = H(k, k) and ϕ1 = H(k, −k) + H(−k, k). Finally, the operator G is defined as

G(u) = F
−1
(

− i
ω

F(u)
)

, (3.30)

where F is the Fourier transform in the spatial derivatives x.

(g) Two-time third order: the modified-NLS system
Continuing our analysis, at O(ε3), we have

L(u3) = −
(
∂u2

∂T
+ cg

∂u2

∂X
+ i

2
d2ω

dk2
∂2u1

∂X2

)
− H(u1, u2) − H(u2, u1)

− SH(u1, u1) − T (u1, u1, u1) − V(u1). (3.31)

or in Fourier representation:

L(u3) = −
[
∂u2

∂T
+ cg

∂u2

∂X

]
︸ ︷︷ ︸

transport

−
[
− i

2
d2ω

dk2
∂2A
∂X2 + λ1A|A|2 + V(k)A + λ2G(|A|2)

]
eiΩ

︸ ︷︷ ︸
resonant

−
[
λ3A3e3iΩ +

(
λ4A

∂A
∂X

+ λ5AB
)

e2iΩ + λ6
∂|A|2
∂X

+ λ7(AB + AB)

]
︸ ︷︷ ︸

non-resonant

+c.c, (3.32)

where λi are functions of k that, again, in principle, can be determined, and V(k) is the Fourier
symbol of the dissipation term. We note that the second term in the bracket containing the
resonant terms arises due to the nonlinear interaction between u1 and u2 in those terms
involving H and T in equation (3.31). A further important point is that a non-local term appears
in the resonant part of the right-hand side of equation (3.32). We note that non-local terms
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have appeared before in NLS-type models, for example, water waves [22], a ‘shallow-deep’
approximation for stratified fluids [29] and in so-called generalized quasi-nonlinear models of
shear flow [30].

The transport term will vanish if we move to the frame of reference moving with the group
velocity of the wave, which the form of equation (3.27) suggests. Therefore, we introduce
a travelling-wave coordinate, ξ , moving with speed cg. In addition, the resonant term in
equation (3.32) has zero time-derivative (in T), implying that A is constant in time. To ensure
a slow modulation, in time, of the envelope, A, we introduce a further slow time scale τ , so that

ξ = X − cgT, τ = ε2t, A(X, T) �→ A(ξ , τ ), B(X, T) �→ B(ξ , τ ). (3.33)

Therefore, equation (3.32) becomes

L(u3) = −eiΩ

(
∂A
∂τ

− i
2

d2ω

dk2
∂2A
∂ξ2 + λ1A|A|2 + V(k)A + λ2AG(|A|2)

)
+ non-resonant terms.

(3.34)
Now, to avoid secular growth, we repeat the imposition of the Fredholm alternative. Again,
assuming L is self-adjoint, the solvability condition is the modified-NLS equation:

∂A
∂τ

− i
2

d2ω

dk2
∂2A
∂ξ2 + λ1A|A|2 + V(k)A + λ2AG(|A|2) = 0. (3.35)

We emphasize that this equation is valid for any system of the form equation (2.1) with small
linear dissipation. We note that the non-local operator, G, in the context of water waves is absent
as we will show in §5.

As in the previous order, using Fourier transforms, the full particular integral for u3 can be
written as

u3 = A3ψ0e3iΩ + A
3
ψ0e−3iΩ +

(
ψ1A

∂A
∂ξ

+ ψ2AB
)

e2iΩ + ψ3A
∂A
∂ξ

e−2iΩ + CeiΩ + Ce−iΩ

︸ ︷︷ ︸
oscillating

+ ψ4G

(
∂|A|2
∂ξ

)
+ ψ5G(AB + AB)

︸ ︷︷ ︸
non-oscillating

(second-order solution), (3.36)

where C(ξ , τ ) is an arbitrary modulation function and ψi are functions of k.

(h) Two-time third order: the modified-HNLS system
The expansion at O(ε4) is

L(u4) + ∂u2

∂τ
− i

2
dcg

dk
∂2u2

∂ξ2 − 1
6

d2cg

dk2
∂2u1

∂ξ3 + H(u1, u3) + H(u3, u1) + H(u2, u2)

+ [SH,ξ (u1, u2) + SH,ξ (u2, u1)] + S2
H,ξ (u1, u1) + T (u1, u1, u2) + T (u1, u2, u1)

+ T (u2, u1, u1) + ST ,ξ (u1, u1, u1) + Q(u1, u1, u1, u1) + V ′
(
∂u1

∂ξ

)
= 0, (3.37)
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where V ′ is the Fréchet derivative of the operator V . In Fourier representation, this is

L(u4) = −
[
∂B
∂τ

− i
2

dcg

dk
∂2B
∂ξ2︸ ︷︷ ︸

order ε NLS

+μ1BG(|A|2) + μ2A2B + μ3|A|2B︸ ︷︷ ︸
coupling terms

−1
6

d2cg

dk2
∂2A
∂ξ3 + μ4|A|2 ∂A

∂ξ
+ μ5A2 ∂A

∂ξ
+ μ6A G

(
∂|A|2
∂ξ

)
+ V ′(k)

∂A
∂ξ

]
eiΩ

︸ ︷︷ ︸
resonant

+ μ7A4e4iΩ + μ8A2 ∂A
∂ξ

e3iΩ

︸ ︷︷ ︸
non-resonant

+
(
μ9|A|2A2 + μ10A2

G(|A|2) + μ11A
∂2A
∂ξ2 + μ12

(
∂A
∂ξ

)2
)

e2iΩ

︸ ︷︷ ︸
non-resonant

+
(
μ13|A|4 + μ14|A|2G(|A|2) + μ15G(|A|2)2 + μ16

∂2|A|2
∂ξ2

)
︸ ︷︷ ︸

non-resonant

+c.c, (3.38)

where μi are functions of k and the transport terms vanish due to the travelling wave frame of
reference (equation (3.33)). We note that the expressions on the first two lines in equation (3.38)
are resonant.

Invoking the Fredholm alternative yields the solvability condition

∂B
∂τ

− i
2

dcg

dk
∂2B
∂ξ2 + μ1BG(|A|2) + μ2A2B + +μ3|A|2B

− 1
6

d2cg

dk2
∂2A
∂ξ3 + μ4|A|2 ∂A

∂ξ
+ μ5A2 ∂A

∂ξ
+ μ6A G

(
∂|A|2
∂ξ

)
+ V′(k)

∂A
∂ξ

= 0. (3.39)

Equation (3.39) is an evolution equation for B(ξ , τ ) that is coupled to A(ξ , τ ) through
equation (3.35) in the modified-HNLS system:

∂A
∂τ

− i
2

dcg

dk
∂2A
∂ξ2 + λ1A|A|2 + V(k)A + λ5AG(|A|2) = 0, ( A)

∂B
∂τ

− i
2

dcg

dk
∂2B
∂ξ2 + μ1BG(|A|2) + μ2A2B + μ3|A|2B,

− 1
6

d2cg

dk2
∂2A
∂ξ3 + μ4|A|2 ∂A

∂ξ
+ μ5A2 ∂A

∂ξ
+ μ6A G

(
∂|A|2
∂ξ

)
+ V ′(k)

∂A
∂ξ

= 0. ( B)

(3.40)

After solving equation (3.40) for A and B the asymptotically consistent solution to the original
PDE, equation (3.2), is

uε = (A + εB)eiΩ + εu2, (3.41)

where u2 is stated in equation (3.29). Although equation (3.40) is a system of equations,
calculating (A) + ε × ( B) in equation (3.40) results in a single PDE for A= A + εB (with
terms of O(ε)) that is similar to the standard single PDEs seen in the literature [2,11,31]. In
equation (3.40), we emphasize that all quantities are O(1) as we have truncated the expansion
at O(ε4). Furthermore, equation (3.41) is the explicit second-order reconstruction of the solution
u, once A and B have been found by solving equation (3.40).

(i) Discussion
We have derived a system of equations, equation (3.40), that determines an asymptotically
consistent form of the wave-envelope. Crucially, the small parameter ε is absent from the final
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form in equation (3.40), thus fulfilling our main aim. An important feature is that this analysis has
been on a general PDE, demonstrating the universality of the wave-envelope evolution equations
in equation (3.40) for systems defined in equation (3.2).

Note that, equation (3.40) is time-like in that it is of the form:

∂A
∂τ

= operator
(

A,
∂A
∂x

, . . .
)

, ( time-like) , (3.42)

rather than space-like, where

∂A
∂x

= Operator
(

A,
∂A
∂τ

, . . .
)

, ( space-like) . (3.43)

In most physical situations, the governing PDEs involve a single time derivative and are time-
like (for example, the Navier–Stokes equations and the free-surface Euler equations). However,
when making a comparison with experiments, the space-like form of the HNLS is more useful
and can be determined by making a Galilean transformation in t (in the context of water
waves, [11,19,31]). In practice, this involves neglecting certain nonlinear terms that arise from
transforming equation (3.40) to its space-like counterpart and great care has to be taken as it is not
as straightforward as simply switching the spatial and temporal coordinates in equation (3.40).

A further point to mention is the numerical implementation of equation (3.40). In current
derivations of the HNLS, where ε is present, the wavenumber k and ε have to be specified as
control parameters and, therefore, the parameter space to explore numerically is two dimensional.
In equation (3.40), all that needs to be specified is the wavenumber k so that for a given
wavenumber, once equation (3.40) has been solved, the solution can be reconstructed immediately
for all ε using equation (3.41), thus resulting in a significant reduction in computation time when
exploring parameter space.

An important part of this procedure was Taylor expanding a nonlinear functional in terms of
Fréchet derivatives. However, for specific systems, an expert knowledge of Fréchet derivatives is
not needed as we shall now demonstrate for two specific systems: a toy fifth-order problem and
the more complicated damped water-wave problem.

(j) Symbolic algebra code
The algebra involved can be challenging (especially in the example of water waves
discussed later) but we attempt to omit as few details as possible to make the
analysis easier to follow. The reader can generate all of the coefficients by running the
toy_example_modulation_equations.m and water_wave_modulation_equations.m

in the electronic supplementary material or running driver.m and generating the output as a
PDF file. These symbolic MATLAB codes are designed to act as a template for other systems, in
particular water-wave problems, where the operators present are intrinsically non-local and great
care has to be taken.

4. Example 1: a toy fifth-order system
We now apply this analysis to the toy dispersive system (without any damping):

∂u
∂t

+ ∂2u
∂x3 + ∂2u

∂x5 + u
∂u
∂x

+ ∂u
∂x
∂2u
∂x2 + u

∂2u
∂x3 = 0, (4.1)

which, with appropriately scaled coefficients, is related to the fifth-order Korteweg–de Vries
equation [32]. We expand equation (4.1) using equation (3.19) with base state us = 0. It is
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instructive to omit the multi-scale expansion at first to make the form of the operators transparent.
Therefore, our (single-scale) expansion is

u = εu1(x, t) + ε2u2(x, t) + ε3u3(x, t) + ε4u4(x, t) + · · · . (4.2)

Substituting equation (4.2) into equation (4.1) gives

εL(u1) + ε2[L(u2) + H(u1, u1)] + ε3[L(u3) + H(u1, u2) + H(u2, u1)]

+ ε4[L(u4) + H(u2, u2) + H(u1, u3) + H(u3, u1)] + · · · = 0, (4.3)

where we have identified the operators:

L(u) ≡ ∂u
∂t

+ J (u), J (u) ≡ ∂2u
∂x3 + ∂2u

∂x5 and H(u, v) ≡ u
∂v

∂x
+ ∂u
∂x
∂2v

∂x2 + u
∂3v

∂x3 . (4.4)

The Fourier multipliers of the operators in equation (4.4) are

J(k1) = ik3
1(k2

1 − 1) and H(k1, k2) = ik2(1 − k1k2 − k2
2). (4.5)

We emphasize that we have not found the Fréchet derivatives explicitly; the definitions in
equation (4.4) arise from simple algebra. We now expand the operators by simply substituting
equation (4.5) into the multi-scale expansions in equations (3.13)–(3.16). Our problem then
becomes

εL(u1) + ε2
[
L(u2) + H(u1, u1) + SJ (u1) + i

∂u1

∂T

]

+ ε3
[
L(u3) + H(u1, u2) + H(u2, u1) + S2

J (u1) + SH(u1, u1) + SJ (u2) + i
∂u2

∂T

]
+ ε4[L(u4) + H(u2, u2) + H(u1, u3) + H(u3, u1) + S3

J (u1) + S2
H(u1, u1)

+ S2
J (u2) + SH(u1, u2) + SH(u2, u1) + i

∂u3

∂T

]
+ · · · = 0. (4.6)

We are now in a position to simply ‘pick’ out the equations in each order.

(a) First order
The expansion at O(ε) equation (4.6) is

L(u1) = 0, (4.7)

which has the solution and dispersion relation

u1 = A(X, T) eiΩ + c.c, ω= k5 − k3. (4.8)

(b) Second order
Continuing, at O(ε2), equation (4.6) is

L(u2) = i
[
∂A
∂T

+ cg
∂A
∂X

]
eiΩ + ik(1 − 2k2)A2e2iΩ , cg = 5k4 − 3k2. (4.9)

Note, there are no non-oscillating terms in equation (4.9). We eliminate the resonant transport
terms by moving to a frame of reference moving with the group velocity cg by setting ξ = X − cgT
and τ = ε2t. By finding the particular integral of equation (4.9) and using the dispersion relation
in equation (4.8), the solution at this order is therefore

u2 = B(ξ , τ ) eiΩ + ϕ0A2e2iΩ + c.c., ϕ0 = 2k2 − 1
6k2(1 − 5k2)

. (4.10)
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(c) Third order
The next order in equation (4.6) is O(ε3), where

L(u3) = −i

[
i
∂A
∂τ

+ 1 − 2k2

6k
A|A|2 + dcg

dk
∂2A
∂ξ2

]
eiΩ

+
(

i(1 − 6k2)
∂A
∂ξ

A + ik(1 − 2k2)AB
)

e2iΩ + 3ik(1 − 5k2)ϕ0A3e3iΩ + i(1 − 2k2)
∂|A|2
∂ξ

.

(4.11)

Using the Fredholm alternative, we get the modified-NLS equation for our toy system:

i
∂A
∂τ

+ 1 − 2k2

6k
A|A|2 + 2k(10k2 − 3)

∂2A
∂ξ2 = 0. (4.12)

The solution at this order is

u3 = C(ξ , τ ) eiΩ + ψ1A
∂A
∂ξ

e2iΩ + ψ2ABe2iΩ + ψ3e3iΩ + ψ4G

(
∂|A|2
∂ξ

)
+ c.c, (4.13)

where C(ξ , τ ) is undetermined and by finding the particular integral of equation (4.11) and using
the dispersion relation in equation (4.8):

ψ1 = 6k2 − 1
6k3(1 − 5k2)

, ψ2 = 2k2 − 1
6k2(1 − 5k2)

, ψ3 = (2k2 − 1)(3k2 − 1)
144k4(1 − 10k2)(1 − 5k2)

and ψ4 = 2i(1 − 2k2).

(4.14)

(d) Fourth order
Finally, at O(ε4), equation (4.6) is

L(u4) = i

[
i
∂B
∂τ

+ 1 − 2k2

6k
B|B|2 + 2k(10k2 − 3)

∂2B
∂ξ2 + i(22k4 − 11k2 + 1)

2k2(5k2 − 1)
|A|2 ∂A

∂ξ
+

i(2k2 − 1)
6k

|A|2B + i(2k2 − 1)
6k

A2B + i(2k2 − 1)(3k2 − 1)
6k2(5k2 − 1)

A2 ∂A
∂ξ

+ 6k(10k − 3)
∂3A
∂X3

−2k3(1 − 2k2)AG

(
∂|A|2
∂ξ

)]
eiΩ + non-resonant terms. (4.15)

Using the Fredholm alternative, we get the evolution equation for B that can be coupled with
equation (4.12) to form the complete HNLS for the toy problem in equation (4.1):

i
∂A
∂τ

+ 1 − 2k2

6k
A|A|2 + 2k(10k2 − 3)

∂2A
∂ξ2 = 0

i
∂B
∂τ

+ 1 − 2k2

6k
B|B|2 + 2k(10k2 − 3)

∂2B
∂ξ2

+ i(22k4 − 11k2 + 1)
2k2(5k2 − 1)

|A|2 ∂A
∂ξ

+ i(2k2 − 1)
6k

|A|2B + i(2k2 − 1)
6k

A2B

+ i(2k2 − 1)(3k2 − 1)
6k2(5k2 − 1

A2 ∂A
∂ξ

+ 6k(10k − 3)
∂3A
∂X3 − 2k3(1 − 2k2)AG

(
∂|A|2
∂ξ

)
= 0.

(4.16)
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(e) A note on the boundary conditions
As a final note, equation (4.1) is fifth order in space and so five conditions on the x-derivatives of
u are required to ensure the problem is well-posed. The system in equation (4.16) is third order
in space and hence requires three boundary conditions and the other two are accounted for by
the periodicity requirement. Therefore, going to higher orders for this toy system is ill-posed as
more boundary conditions for the wave envelope are required than the original toy problem in
equation (4.16).

5. Example 2: the damped water-wave problem
We now describe a more complicated example; determining the shape of the free surface, y = ζ ,
bounding a body of irrotational, inviscid and incompressible fluid with damping. In the fluid, the
unknown velocity potential, φ, must satisfy Laplace’s equation, and in this instance, we neglect
surface tension. As in [3,33], we concentrate on the three-dimensional problem with horizontal
coordinates (x, y) and vertical coordinate z.

We non-dimensionalize the system in the same way as [3]. To replicate the general system in
equation (3.2), the governing equations can be written as a dynamical system of the form

∂u
∂t

+ F (u) + ε2V (u) = 0, (5.1)

where u = [ζ ,ψ]T, ψ = φy=ζ and V is the, now vectorial, linear damping/forcing term, which is
consistent with the approach of [17]. The nonlinear functional can be written explicitly as

F (u) =
[
−G[εζ ]ψ , ζ + 1

2
ε|∇ψ |2 − ε(G[εζ ](ψ) + ε∇ζ · ∇ψ)2

2(1 + ε2|∇ζ |2)

]T

, (5.2)

where ε is the nonlinearity parameter, proportional to the ratio of a typical wave-height to
wavelength [3]. The spatial boundary conditions are that ϕ and ζ and the first spatial derivative of
ζ vanish as x → ±∞. In addition, ∇ = [∂/∂x, ∂/∂y]T, G[ζ ] is the Dirichlet-to-Neumann map (DtN)
on deep water defined as

G[ζ ](ψ) = (1 + |∇ζ |2)1/2(∇φ · n), (5.3)

where n is the outwards-pointing normal of the free surface. The operator is a linear with respect
to ψ (and hence the Fréchet derivatives with respect to ψ are trivial) but highly nonlinear with
respect to ζ and more work is required to determine the Fréchet derivatives with respect to ζ .

As the dynamical system is two dimensional in the sense that there are two independent
phase variables in u, the coefficients of the modified-HNLS equation for this system are vectors
in R

2 and the envelope is also a vector, A = [Aζ , Aψ ]T. Furthermore, the domain is spatially three
dimensional and ζ describes a co-dimension two surface. To reflect equation (3.19), we therefore
look for a solution of the form

u = A eiΩ + εu2 + ε2u3 + · · · + c.c, (5.4)

where un = [ζn,ψn]T, Ω = k · x − ωt and k = [kx, ky]T.
A key part of the analysis is the expansion of the DtN in equation (5.3). The DtN is analytic in

ζ (e.g. [34]) and hence we expand it as a Taylor series about the zero base state:

G[εζ ](ψ) =
∞∑

n=0

εnGn[ζ ](ψ), (5.5)

where Gn is an n-linear operator. The form of Gn is highly dependent on the geometry of the
problem. For a finite-depth domain with a flat bottom and for an infinite-depth domain, the
explicit forms of Gn are known, e.g. [33,35], respectively. While the DtN is well defined for
more complex geometries, including varying bottom topography, the explicit calculation is more
difficult [36,37]. As the main focus of this article is to show that the evolution equations emerge
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from general dispersive systems with weak dissipation, not just for water-wave problems, we
do not explore these difficulties, which are well documented in the literature. With that in
mind, we apply our methodology to waves over infinite depth, in which case the expansion in
equation (5.5) is relatively straightforward. For infinite depth, the first few terms of the DtN are

G0(ψ) = |D|(ψ), G1[ζ ](ψ) = −|D|(ζ (|D|(ψ)) − ∇ · (ζ∇ψ) (5.6)

and

G2[ζ ](ψ) = |D|(ζ |D|(ζ |D|(ψ))) + 1
2
∇2(ζ 2|D|(ψ)) + 1

2
|D|(ζ 2∇2ψ), (5.7)

where D = −i ∇ with a Fourier multiplier of k, and |D| has a Fourier multiplier of |k|, see p. 88 of
[3].

(a) Leading order
At O(1), we obtain

L(u1) ≡ ∂u1

∂t
+ J (u1) = 0, J =

(
0 −G0
1 0

)
and J(k1) =

(
0 −|k|
1 0

)
, (5.8)

where the bold symbols are matrix versions of J (u1) and J(k) introduced earlier. Writing u1 in
component form,

u1 = [ζ1,ψ1]T = AeiΩ , (5.9)

results in an eigenvalue problem. To ensure that a non-zero solution exists the full dispersion
relation for deep-water waves emerges:

ω= J(k) ≡ |k|1/2, (5.10)

along with the eigenmodes and adjoint eigenmodes:

g = veiΩ , g† = v†eiΩ , where v = [iω, 1]T, v† = [1, −iω]T. (5.11)

The slowly varying modulation amplitude is now A(X, T)v, where A is a scalar function of
X = [X1, X2]T = εx and T = εt. Therefore, we can write the first-order solution as

u1 = AveiΩ + c.c (first-order solution). (5.12)

At this stage, it is also useful to Taylor expand the operator G0 in the slow variable. We find that

G0(A(X)eiΩ ) �→ A(X)|k|eiΩ − ε(2iω∇kω(k) · ∇XA)eiΩ + · · · , (5.13)

where ∇k = [∂/∂k1, ∂/∂k2]T and ∇X = [∂/∂X1, ∂/∂X2]T.

(b) First order
The expansion at O(ε) is

L(u2) = −
[(

iω
1

)
∂A
∂T

+
(

2iω
0

)
∇kω · ∇XA

]
︸ ︷︷ ︸

resonant terms

eiΩ + c.c + H(u1, u1), (5.14)

where

H(ui, uj) ≡
(

G1[ζi](ψj)
− 1

2 ∇ψi · ∇ψj + 1
2G0(ψi)G0(ψj)

)
. (5.15)

Now, to impose the Fredholm alternative, we multiply equation (5.14) by the conjugate transpose
adjoint eigenmode in equation (5.11) and integrate over a period in t. To eliminate the secular
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terms that still arise, we set

ξ = X − cgT cg = ∇kω. (5.16)

The solution to u2 is

u2 = ϕ0 A2e2iΩ + B veiΩ + c.c, (5.17)

where B(ξ , T) and ϕ̄2(ξ ) are both arbitrary at this order and ϕ0 solves the linear problem

L2ϕ0 = [0, |k|2]T, Ln ≡
(

−niω −|n||k|
1 −niω

)
, (5.18)

yielding

ϕ0 = i|k|2
ω

v = iω3v. (5.19)

(c) Second order
Continuing the expansion, at O(ε2) (by moving to a frame of reference using equation (5.16) and
using the small time scale, τ = ε2t), we obtain

L(u3) = −

⎡
⎢⎢⎢⎢⎢⎣
(

iω
1

)
∂A
∂τ

−
(

1
0

)
1

2ω2

(
∇2

ξ A − 1
ω4 (k · ∇ξ )2A

)
+
(

1
1

)
V(k)A

︸ ︷︷ ︸
≡N (A)

⎤
⎥⎥⎥⎥⎥⎦ eiΩ + c.c

+ SH(u1, u1) + H(u1, u2) + H(u2, u1) + T (u1, u1, u1)︸ ︷︷ ︸
nonlinear interactions

, (5.20)

where we have defined the linear operator N (	) as the operator in the square brackets and V(k)
is the pseudo-Fourier operator of V . The operator T is defined as

T (ui, uj, uk) ≡
(

G2[ζi, ζj](ψk)
G0(ψi)G1[ζj](ψk) + G0(ψi)∇ζj · ∇ψk

)
. (5.21)

The nonlinear resonant term, that is proportional to A|A|2, arises from interactions between u1 and
u2 in the H terms and u1, u1, u1 in the T term. As at the previous order, the Fredholm alternative is
imposed by multiplying the right-hand side of equation (5.20) by the conjugate transpose adjoint
eigenmode (see equation (5.11)) that results in the modified NLS:

∂A
∂τ

+ 1
4ω3 i

(
∇2

ξ A − 1
ω4 (k · ∇ξ )2A

)
+ 5i

2
|k|4
ω

A|A|2 − i
2ω

V(k)A = 0. (5.22)

Note that, for this particular example, no non-local terms enter the modulation equation, unlike
the general modified-NLS in equation (3.35). We also note that, the form of equation (5.22) is
nearly identical to that of non-dissipative NLS with V(k) = 0, as derived in [3] (§8.3, eqns (8.50)
and (8.51) in [3]). The important difference is that we obtain a single evolution equation (5.22)
instead of separate evolution equations for the leading-order term in the modulation amplitude
for ζ and ψ . Indeed, this highlights another advantage of our Fréchet approach.

By examining the non-resonant terms of equation (5.20) that arise from nonlinear
interactions, the form of u2 can be determined. By solving a series of linear problems (see
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water_wave_modulation_equations.m in the electronic supplementary material), one can
deduce that

u3 = ϕ2A3e3iΩ + (ϕ3AB + (ϕ4 · A∇ξ A))e2iΩ + CveiΩ + c.c︸ ︷︷ ︸
oscillating terms

+
(

−2i(Ak · ∇ξ A − Ak · ∇ξ A)
2

|D| (ωk · ∇ξ |A|2)

)
︸ ︷︷ ︸

mean-flow terms

, (5.23)

where

ϕ2 = −1
2
ω6[9iω, 5]T, ϕ3 = 2iω3[iω, 1]T and ϕ4 = 4

ω
[2iω, 1]T, (5.24)

and 1/|D| is the inverse leading-order DtN operator. The labelling in the subscripts above has
been chosen to be consistent with the script water_wave_modulation_equations.m in the
electronic supplementary material.

(d) Third order
At O(ε3), and recalling the definition of N (	) from equation (5.20), the linear system to be solved
is

L(u4) = −
[
N (B) −

(
1
0

)
1

2ω10 i(k · ∇ξ )3A +
(

1
0

)
1

2ω6 i(k · ∇ξ )∇2
ξ A + ∇ξ A · ∇κV

]
eiΩ

+ SH(u1, u2) + SH(u2, u1) + ST (u1, u1, u1) + H(u1, u3) + H(u3, u1) + H(u2, u2)

+ T (u1, u1, u2) + T (u1, u2, u1) + T (u2, u1, u1) + non-resonant terms. (5.25)

As in the previous order, we first identify resonant terms on the right-hand side of
equation (5.25) and then multiply by the conjugate transpose adjoint eigenmodes to
form a solvability condition. At this stage of the analysis, the algebra involved is
formidable; we omit the details that can be found in the symbolic algebra script
water_wave_modulation_equations.m in the electronic supplementary material and
simply state the final result:

N (B) + 1
4ω11 ((k · ∇ξ )3A − |k|2(k · ∇ξ )∇2

ξ A)︸ ︷︷ ︸
linear derivatives

+ 5
2

iω7A2B + 5iω7|A|2B︸ ︷︷ ︸
coupling terms

+ 1
4
ω3A2k · ∇ξ A + 2ω3|A|2k · ∇ξ A︸ ︷︷ ︸

nonlinear terms

+2iω3A
1

|D| (∇ξ |A|2)︸ ︷︷ ︸
non-local terms

− i
2ω

∇ξ A · ∇kV︸ ︷︷ ︸
dissipation terms

= 0.

(5.26)

Therefore, the coupled form for the slow modulation amplitudes, A and B is

∂A
∂τ

+ 1
4ω3 i

(
∇2

ξ A − 1
ω4 (k · ∇ξ )2A

)
+ 5i

2
|k|4
ω

A|A|2 − i
2ω

V(k)A = 0.

∂B
∂τ

+ 1
4ω3 i

(
∇2

ξ B − 1
ω4 (k · ∇ξ )2B

)
− i

2ω
V(k)B + 1

4ω11 ((k · ∇ξ )3A − |k|2(k · ∇ξ )∇2
ξ A)

+ 5
2

iω7A2B + 5iω7|A|2B + 1
4
ω3A2k · ∇ξ A + 2ω3|A|2k · ∇ξ A

+ 2iω3A
1

|D| (∇ξ |A|2) − i
2ω

∇ξ A · ∇kV = 0.

. (5.27)
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(e) Comparison to existing literature
To make a comparison to existing models of the HNLS, we can combine the two equations in
equation (5.27) by writing A= A + εB and then truncating to O(ε2) to a single PDE (as discussed
in equation (3.41)). By noting that in deep-water ω2 = |k|, and setting the dissipative term to zero,
we obtain (with a slight re-ordering of terms):

i
∂A
∂τ

− 1
4ω3

(
∇2

ξ A − 1
ω4 (k · ∇ξ )2A

)

− 5
2
ω|k|3A|A|2 + iε

4ω11 ((k · ∇ξ )3A − |k|2(k · ∇ξ )∇2
ξ A)

1
4
εiω3Ak · ∇ξA + 2εω3i|A|2∇ξA − 2εω3A 1

|D| (∇ξ |A|2) + O(ε2) = 0, (Keeler et al.).

(5.28)

We can compare this directly with the recent formulation based on the Hamiltonian form of the
governing equations, stated at the end of §5 in [33] as

i
∂A
∂τ

− ω

8k2
∂2A
∂x2 + ω

4k2
∂2A
∂y2 − k3A|A|2 − iε

ω

16k3
∂3A
∂x3 + iε

3ω
8k3

∂

∂x
∂2A
∂y2 + 3iεk2|A|2 ∂A

∂x

− εk2A
1

|D|
∂|A|2
∂x

= 0, (Guyenne et al. three-dimensional deep-water gravity).

(5.29)

Upon inspection of equations (5.28) and (5.29), one can see similar terms occurring in both
equations. There are a number of important differences: (i) nonlinear terms in equation (5.28)
have an additional ω factor in the coefficient (which agrees with the non-Hamiltonian form of
the HNLS as stated in eqn. (7.3) of [33]); (ii) in equation (5.28), the preceding analysis has not
assumed any preferred direction for the wavenumber k, hence the linear spatial derivatives terms
in equation (5.28) can be written more compactly; and (iii) although the numerical coefficients
differ in equations (5.28) and (5.29), the sign and i prefactors of all the equivalent terms are
identical.

Finally, due to the similarity of our modified-HNLS to the literature, we would expect
equation (5.27) to have the same mathematical properties as existing models in the literature.
A systematic study of the existence and uniqueness of solutions of equation (5.27), as well as how
they behave, is out of the scope of this present study and a comprehensive numerical study is an
interesting future research avenue.

(f) Choice of dissipation term
In the context of the water-wave problem, we have purposefully left the form of the dissipation
operator, V , general. For flow over ice-infested waters (e.g. [19,20,31]), assuming the flow is two
dimensional so that there is only one spatially horizontal coordinate, x, the dissipation term in
Fourier space is of the form

V(k) = (−i)nαnkn, n ∈ R. (5.30)

Very recently, Humphries et al. [31] simulated a space-like HNLS with n = 2 in equation (5.30). It
would be of significant interest to simulate the parameter-free equation (5.27) with a non-integer
n representing non-local dissipation.

From a more theoretical perspective, a weakly damped water-wave system was derived from
first principles from the Navier–Stokes equations in [17]. The form of this dissipation (again in
two dimensions) is

V(u) =
[

2ν
∂2ϕ

∂z2 , − ∂a
∂x

]T

, where
∂2a
∂x∂t

= 2ν
∂3a
∂x2∂y

(5.31)
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and ν is the kinematic viscosity. Again, as a suggestion for future study, it would be of great
interest to include this form of dissipation in equation (5.27) for the two dimensional and fully
three-dimensional systems and study the behaviour of the solutions.

6. Conclusion and perspective
In this article, we have formally derived the modified-NLS and -HNLS systems for a general set
of dispersive PDEs with damping. We have achieved this by posing the system as an infinite-
dimensional dynamical system and performing a series of Taylor expansions on the nonlinear
functionals, allowing us to derive general evolution equations using the method of multiple
scales. In particular, we have placed the recent work of [19,20] on a firmer theoretical footing
where a modified-NLS equation damping was used to describe ocean waves in the marginal
ice-zone of the southern ocean.

It is important to state that the derivation of the evolution equations for this problem has
been achieved before by many different authors (see §1). Yet, we believe this general analytic
framework provides a fresh perspective in that; (i) it makes no assumption on what the small
parameter, ε, is; (ii) there is no assumption that the underlying base state is the zero state; (iii)
there is no requirement that the particular form of solutions should be known a priori, as is often
the case in existing derivations; and (iv) this framework can easily be applied to similar problems
that do not have a Hamiltonian structure.

Although the evolution equations have been traditionally derived in the context of measuring
the wave envelope of water waves and optics, there is an intriguing possibility that the framework
we have derived here can be used to approximate general time-dependent periodic invariant
solutions of infinite-dimensional PDEs in numerical formulations. An attractive feature of this
formulation is that in any numerical computation of these systems, we can approximate the
multi-linear operators using the numerically constructed Jacobian and Hessian operators. This
substantially increases the potential scope of our approach to a wider class of problems. For
example, a recently discovered periodic invariant solution of the water-wave problem for flow
over a localized topographic forcing has been discovered numerically [38] and it is an intriguing
possibility that the envelope equations developed here can be used to approximate such objects.
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