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In conventional proxy VAR analysis, the shocks of interest are identified by external instruments. 
This is typically accomplished by considering the covariance of the instruments and the reduced-

form residuals. Alternatively, the instruments may be internalized by augmenting the VAR process 
by the instruments or proxies. These alternative identification methods are compared and it 
is shown that the resulting shocks obtained with the alternative approaches differ in general. 
Conditions are provided under which their impulse responses are nevertheless identical. If the 
conditions are satisfied, identification of the shocks is ensured. An empirical example illustrates 
the theoretical results.

1. Introduction

Using external instruments or proxies to identify structural shocks has become an important tool in structural vector autoregressive 
(VAR) analysis. Nowadays some authors use several proxies to identify a set of shocks. In that case, the proxies generally identify 
only linear combinations of the shocks and typically additional assumptions are needed to identify the shocks individually (see, e.g., 
Mertens and Ravn, 2013, Piffer and Podstawski, 2017 or Jarociński and Karadi, 2020).

The dominant approaches for estimating the structural parameters and, hence, the shocks in proxy VAR analysis are based on 
the covariance of the instruments and the reduced-form residuals (see, e.g., Mertens and Ravn, 2013) or on augmenting the VAR 
model by the proxies and, hence, internalizing them (e.g., Kilian and Lütkepohl, 2017, Section 15.2, Jarociński and Karadi, 2020, 
Plagborg-Møller and Wolf, 2021, 2022). The distinction between external and internal instruments is also discussed by Stock and 
Watson (2018).

This study compares the two alternative approaches for using multiple proxies for identifying a set of shocks in structural VAR 
analysis and makes several contributions to the proxy VAR literature. (1) Conditions are derived under which the impulse response 
functions are identical in population for the external instruments and the augmented VAR approaches. (2) It is established that the 
shocks obtained with both approaches are different in population even if the conditions for identical impulse responses are satisfied. 
(3) It is shown that, if the conditions for identical impulse responses from both approaches are satisfied, the structural shocks are 
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fully identified by the proxies such that additional restrictions for disentangling the shocks in the external proxy VAR approach are 
unnecessary.

Specifically, we show that, if the proxies are mutually uncorrelated, each proxy is correlated with exactly one shock only and the 
proxies are not Granger-causal for the variables of interest, then the shocks can be scaled such that the structural impulse responses 
obtained from the external instruments and the augmented VAR approaches are identical in population. However, the shocks obtained 
from the two approaches will still be different. If the external instruments approach is used, the shocks will be linear transformations 
of the reduced-form residuals. In this setup, the proxies used for identification need not be direct measurements of the shocks of 
interest, but can contain some measurement error. If instead the augmented VAR approach is used, the resulting shocks will in many 
situations be linear transformations of the proxies, i.e., there is no built-in correction for measurement errors in the proxies. We use 
an empirical example considering a model of the crude oil market based on a study by Känzig (2021) to illustrate our theoretical 
results.

The remainder of the paper is organized as follows. In the next section we present the model setup, compare the alternative 
identification and estimation methods formally, and present conditions for individually identified shocks when multiple proxies are 
used. In Section 3 we study the empirical example and Section 4 concludes. Some proofs are provided in the Appendix.

2. Model setup and identification

2.1. The model

Our point of departure is a 𝐾 -dimensional reduced-form VAR process,

𝑦𝑡 = 𝜈 +𝐴1𝑦𝑡−1 +⋯+𝐴𝑝𝑦𝑡−𝑝 + 𝑢𝑡. (1)

The error process, 𝑢𝑡, is zero-mean white noise with nonsingular covariance matrix Σ𝑢. In short, the 𝑢𝑡 are serially uncorrelated and 𝑢𝑡 ∼
(0,Σ𝑢). The structural shocks, denoted as 𝐰𝑡 = (𝑤1𝑡,… ,𝑤𝐾𝑡)′, are assumed to be linear combinations of the 𝑢𝑡 , 𝐰𝑡 = 𝐵−1𝑢𝑡, such that 
𝑢𝑡 =𝐵𝐰𝑡. In the following we will refer to shocks that are linear combinations of the reduced-form residuals 𝑢𝑡 as fundamental.1 The 
(𝐾 ×𝐾) transformation matrix 𝐵 contains the impact effects of the structural shocks. They are assumed to have a diagonal covariance 
matrix Σ𝐰 such that 𝐵Σ𝐰𝐵

′ = Σ𝑢. If the shocks are normalized to have unit variances and, hence, Σ𝐰 = 𝐼𝐾 , the transformation matrix 
𝐵 has to be such that 𝐵𝐵′ = Σ𝑢.

We assume further that the first 𝐾1 shocks, 𝐰1𝑡 = (𝑤1𝑡,… ,𝑤𝐾1𝑡
)′, are of primary interest and have to be properly identified as 

economic shocks, while the last 𝐾 − 𝐾1 shocks, 𝐰2𝑡 = (𝑤𝐾1+1,𝑡,… ,𝑤𝐾𝑡)′, are not of interest. Accordingly, we partition the vector 
of shocks as 𝐰′

𝑡 = (𝐰′
1𝑡,𝐰

′
2𝑡). The matrix of impact effects, 𝐵, is partitioned correspondingly as 𝐵 = [𝐵1 ∶ 𝐵2], 𝐵1 being a (𝐾 ×𝐾1)

matrix and 𝐵2 being of dimensions (𝐾 × (𝐾 −𝐾1)).
The matrix 𝐵 contains the structural parameters of the model. The 𝑘-th column of 𝐵, say 𝑏𝑘 , respresents the impact effects of the 

𝑘-th shock on all the 𝐾 variables. Thus, the columns of 𝐵1 contain the impact effects of the shocks of interest, 𝐰1𝑡. Having 𝐵1, the 
latter shocks can be obtained from the reduced-form residuals as2

𝐰1𝑡 = (𝐵′
1Σ

−1
𝑢 𝐵1)−1𝐵′

1Σ
−1
𝑢 𝑢𝑡. (2)

The structural impulse responses of the shocks of interest for propagation horizon ℎ are known to be Θ1,ℎ = Φℎ𝐵1, where the Φℎ

are reduced-form quantities obtained recursively from the 𝐴1,… ,𝐴𝑝 VAR slope coefficients as Φℎ =
∑ℎ

𝑗=1 Φℎ−𝑗𝐴𝑗 , with Φ0 = 𝐼𝐾 , for 
ℎ = 1,… , and 𝐴𝑗 = 0 for 𝑗 > 𝑝 (e.g., Lütkepohl, 2005, Section 2.1.2).

2.2. Identification via proxy variables

Identification of the structural parameters and, hence, the structural shocks is assumed to be based on a set of 𝑁 instrumental 
variables (proxies) 𝑧𝑡 = (𝑧1𝑡,… , 𝑧𝑁𝑡)′ satisfying

𝔼(𝐰1𝑡𝑧
′
𝑡) = Σ𝐰1𝑧

≠ 0, Σ𝐰1𝑧
(𝐾1 ×𝑁), rk(Σ𝐰1𝑧

) =𝐾1 (relevance), (3)

𝔼(𝐰2𝑡𝑧
′
𝑡) = 0 (exogeneity). (4)

These conditions imply that

𝔼(𝑢𝑡𝑧′𝑡) =𝐵𝔼(𝐰𝑡𝑧
′
𝑡) =𝐵1Σ𝐰1𝑧

. (5)

In the following, we will refer to the approach based on these conditions and, hence, on the relation (5) as the external proxy 
VAR approach to distinguish it from the approach that internalizes the proxies by augmenting the VAR model to be discussed in 
Subsections 2.3 and 2.4. The result in (5) implies that 𝐵1 has to satisfy

1 In some of the recent literature, this property is referred to as invertibility (see, e.g., Plagborg-Møller and Wolf, 2021).
2 The relation follows from the fact that 𝑤𝑘𝑡 = 𝑏′

𝑘
Σ−1
𝑢
𝑢𝑡∕𝑏′𝑘Σ

−1
𝑢
𝑏𝑘 (see, e.g., Stock and Watson, 2018, Bruns and Lütkepohl, 2022, Appendix A.1) and (𝐵′

1Σ
−1
𝑢
𝐵1)−1 =

Σ𝐰1
.
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𝐵𝑒𝑥𝑡
1 = 𝔼(𝑢𝑡𝑧′𝑡)Σ

′
𝐰1𝑧

(Σ𝐰1𝑧
Σ′
𝐰1𝑧

)−1, (6)

where we reserve the notation 𝐵𝑒𝑥𝑡
1 for impact matrices satisfying (6). Unfortunately, this relation does not suffice to fully identify 

𝐵1 if 𝐾1 > 1 because

𝐵1𝔼(𝐰1𝑡𝑧
′
𝑡) = 𝐵1𝑄𝔼(𝑄′𝐰1𝑡𝑧

′
𝑡)

for any 𝑄 ∈𝐾1
, where 𝐾1

is the set of orthogonal (𝐾1 ×𝐾1) matrices. Thus, for a given vector of proxies 𝑧𝑡, there are admissible 
shocks corresponding to 𝐵1𝑄 such that (6) holds. We denote the set of admissible impact effects matrices for a set of proxies 𝑧𝑡 by 
𝑒𝑥𝑡

𝑧 , i.e.,

𝑒𝑥𝑡
𝑧 = {𝐵1|𝔼(𝑢𝑡𝑧′𝑡) = 𝐵1Σ𝐰1𝑧

, with 𝐰1𝑡 satisfying (2) and 𝔼(𝐰1𝑡𝐰′
1𝑡) diagonal}. (7)

Thus, for a given matrix 𝐵1 satisfying (5), 𝑒𝑥𝑡
𝑧 contains all matrices 𝐵1𝑄, 𝑄 ∈ 𝐾1

. An element of the set of admissible impact 
effects matrices is denoted by 𝐵𝑒𝑥𝑡

1 . The shocks obtained from 𝐵𝑒𝑥𝑡
1 via equation (2) are signified as 𝐰𝑒𝑥𝑡

1𝑡 . A related discussion on the 
identified set in proxy VAR analysis can be found in Giacomini et al. (2022).

Obviously, there must be at least as many proxies as there are shocks to be identified such that 𝑁 ≥ 𝐾1, to satisfy the rank 
condition for Σ𝐰1𝑧

which ensures that Σ𝐰1𝑧
Σ′
𝐰1𝑧

in equation (6) is invertible and the 𝑁 proxies contain identifying information for 
all shocks in 𝐰1𝑡. As we can estimate 𝐵1Σ𝐰1𝑧

by the usual covariance matrix estimator

�̂�𝑧 = 1 
𝑇

𝑇∑
𝑡=1 

�̂�𝑡𝑧
′
𝑡 , (8)

where the �̂�𝑡 are reduced-form least squares (LS) residuals, the proxies contain identifying information for the first 𝐾1 structural 
shocks collectively but the shocks are not necessarily individually identified. Further identifying information may be imposed on 𝐵1
directly or on Σ𝐰1𝑧

or on both matrices. For example, Mertens and Ravn (2013) and Känzig (2021) impose exclusion restrictions on 
𝐵1, while Piffer and Podstawski (2017) use sign restrictions for 𝐵1 for identification. Identifying restrictions on Σ𝐰1𝑧

are used, e.g., 
by Altavilla et al. (2019), Jarociński and Karadi (2020), Lakdawala (2019), and Bruns et al. (2025).

2.3. Population results for VAR models augmented by the proxies

In proxy VAR analysis, some authors augment the VAR model by the proxy variables (see, e.g., Caldara and Herbst, 2019, Arias 
et al., 2021, Angelini and Fanelli, 2019, Jarociński and Karadi, 2020, Plagborg-Møller and Wolf, 2021). In this case, there are often 
as many proxies as there are shocks of interest. Therefore, from now on, we assume that 𝑁 =𝐾1. In practice, this assumption is not 
always satisfied (see, e.g., Hou, 2024, Arias et al., 2021) but it holds in many empirical studies using the approach that augments the 
VAR model by the proxies.

We consider the augmented reduced-form VAR(𝑝) model(
𝑧𝑡
𝑦𝑡

)
=
(

𝜈𝑧

𝜈𝑦

)
+
[
𝐴𝑧𝑧
1 𝐴

𝑧𝑦

1
𝐴

𝑦𝑧

1 𝐴
𝑦𝑦

1

](
𝑧𝑡−1
𝑦𝑡−1

)
+⋯+

[
𝐴𝑧𝑧

𝑝 𝐴
𝑧𝑦
𝑝

𝐴
𝑦𝑧
𝑝 𝐴

𝑦𝑦
𝑝

](
𝑧𝑡−𝑝
𝑦𝑡−𝑝

)
+
(

𝑢𝑧𝑡
𝑢
𝑦
𝑡

)
. (9)

In the following, we assume that the (𝐾1 + 𝐾)-dimensional error process 𝑢𝑎𝑢𝑔𝑡 = (𝑢𝑧′𝑡 , 𝑢
𝑦′
𝑡 )

′ is a zero-mean white noise process and 
denote its covariance matrix by Σ𝑎𝑢𝑔

𝑢 . Furthermore, we assume that 𝔼(𝑢𝑡𝑧′𝑡) = 𝔼(𝑢𝑡𝑢𝑧′𝑡 ). In other words, the covariance of the reduced-

form residuals 𝑢𝑡 from model (1) and the proxies is the same as the covariance between 𝑢𝑡 and the residuals 𝑢𝑧𝑡 from model (9). 
Clearly, this is not restrictive given that 𝑢𝑧𝑡 is not serially correlated and uncorrelated with lagged 𝑧𝑡 and 𝑦𝑡.

An augmented model such as (9) is often used for Bayesian proxy VAR analysis because it allows to use standard Bayesian VAR 
methods that place priors on the reduced-form parameters. For example, one could use a Gaussian-inverse-Wishart prior that results 
in a convenient Gaussian-inverse-Wishart posterior for the reduced-form parameters of the augmented model. For more sophisticated 
proposals see also Caldara and Herbst (2019) and Arias et al. (2021).

In large VARs, identification of the shocks is often based on a recursiveness assumption and we use this assumption for the 
augmented model (9). Hence, the shocks are identified based on a Cholesky decomposition of Σ𝑎𝑢𝑔

𝑢 (e.g., Bańbura et al., 2010) such 
that

𝐰𝑎𝑢𝑔
𝑡 = (𝐵𝑎𝑢𝑔)−1𝑢𝑎𝑢𝑔𝑡 . (10)

In that case, the first 𝐾1 shocks are interpreted as the shocks identified by the 𝐾1 proxies. The lower left-hand (𝐾 ×𝐾1) submatrix 
of 𝐵𝑎𝑢𝑔 contains the impact effects of the 𝐾1 shocks of interest on the variables 𝑦𝑡 and will be denoted by 𝐵𝑖𝑛𝑡

1 in the following. The 
corresponding shocks, e.g., the first 𝐾1 elements of 𝐰𝑎𝑢𝑔

𝑡 will be signified as 𝐰𝑖𝑛𝑡
1𝑡 . In contrast to 𝐵𝑒𝑥𝑡

1 in Section 2.2, the impact effects 
obtained from the internal approach, 𝐵𝑖𝑛𝑡

1 , are unique for a given set of proxies 𝑧𝑡 and so are the shocks 𝐰𝑖𝑛𝑡
1𝑡 because the Cholesky 

decomposition is unique.3

3 We always use the unique lower-triangular matrix with positive diagonal elements and not potentially different Cholesky decompositions as mentioned, e.g., by 
Lütkepohl (1996).
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To understand the relationship of the shocks 𝐰𝑖𝑛𝑡
1𝑡 from the augmented model to the 𝐰𝑒𝑥𝑡

1𝑡 shocks from the external proxy VAR 
approach, it may be worth mentioning that the inverse of the lower-triangular 𝐵𝑎𝑢𝑔 is also a lower-triangular matrix and, hence, the 
first component of 𝐰𝑎𝑢𝑔

𝑡 is just a multiple of 𝑢𝑧1𝑡 , the second component is a linear combination of 𝑢𝑧1𝑡 and 𝑢𝑧2𝑡, and, more generally, the 
𝑘-th component of 𝐰𝑎𝑢𝑔

𝑡 is a linear combination of 𝑢𝑧1𝑡,… , 𝑢𝑧
𝑘𝑡

for 𝑘 = 1,… ,𝐾1. There are no linear combinations of the 𝑢𝑦𝑡 involved 
in determining the first 𝐾1 shocks, 𝐰𝑖𝑛𝑡

1𝑡 , of the augmented model. This contrasts to the 𝐰𝑒𝑥𝑡
1𝑡 which are linear transformations of the 

𝑢𝑡 from model (1). We state this result formally for future reference.

Result 1. The shocks 𝐰𝑖𝑛𝑡
1𝑡 are linear combinations of the 𝑢𝑧𝑡 , while the 𝐰𝑒𝑥𝑡

1𝑡 shocks are linear combinations of the 𝑢𝑡 from model 
(1). □

In other words, the shocks obtained from the external and internal approaches generally differ. In practice, proxies are often 
uncorrelated white noise by construction. For example, proxies for monetary policy shocks are sometimes based on changes in 
forward rates or futures contracts at the time of policy announcements of the central bank (e.g., Gürkaynak et al., 2007, Gertler 
and Karadi, 2015, Barakchian and Crowen, 2013, Miranda-Agrippino and Ricco, 2021, Cesa-Bianchi et al., 2020). Moreover, some 
authors explicitly remove autocorrelation in the proxies by using residual series from a dynamic model as proxies. For example, 
Lunsford (2015) constructs proxies for consumption TFP and investment TFP shocks as the residuals from a VAR model fitted to two 
relevant TFP series. In that case, there may be no lags of 𝑧𝑡 and 𝑦𝑡 on the right-hand side of the 𝑧𝑡 equations in model (9). Hence, 
the 𝑢𝑧𝑡 = 𝑧𝑡 − 𝔼(𝑧𝑡) are just the mean-adjusted proxies. According to Result 1, the shocks 𝐰𝑖𝑛𝑡

1𝑡 are then linear combinations of the 
mean-adjusted 𝑧𝑡.

In contrast, the 𝐰𝑒𝑥𝑡
1𝑡 shocks, obtained from the external proxy VAR approach, which are linear combinations of the reduced-form 

residuals of the VAR model (1), are just correlated with the proxies such that the proxies are better thought of as shocks measured 
with error. In fact, the two sets of shocks, 𝐰𝑒𝑥𝑡

1𝑡 and 𝐰𝑖𝑛𝑡
1𝑡 , can be quite different although they may result in identical impulse response 

functions, as we will see below. An empirical example is provided in Section 3.

Given the way many proxies are constructed in practice, it may not be very appealing to view them directly as shocks. As an 
extreme case, consider for example the sign proxies proposed by Boer and Lütkepohl (2021) which are discrete variables with values 
−1,0, and 1 only. A number of proxies used in the proxy VAR literature are explicitly constructed to be nonzero only for selected 
periods where shocks have occurred and set to zero for many other periods where no shock measurements are available (e.g., Gertler 
and Karadi, 2015, Piffer and Podstawski, 2017, Boer and Lütkepohl, 2021, Känzig, 2021). This can be problematic when the shocks 
are used directly for economic analysis as, for instance, in historical decompositions, as we will see in the example in Section 3. It 
is easy to picture the proxies as correlated with shocks of interest but perhaps less plausible to view them as the shocks of interest 
themselves. Thus, interpreting the proxies as shocks may not be natural and appealing in many situations.

It turns out, however, that, under suitable conditions, the impact effects of the shocks of interest of the external and internal proxy 
VAR approaches may be identical upon suitable rescaling of the shocks. In the following proposition, proven in Appendix A, we state 
conditions under which that equivalence of the impact effects of the shocks holds. The proposition presents a necessary and sufficient 
condition for equality of the impact effects obtained from the external and internal proxy VAR approaches.

Proposition 1. Suppose the proxies, 𝑧𝑡, satisfy the relevance and exogeneity conditions (3) and (4) and, for the augmented VAR model (9), 
𝔼(𝑢𝑦𝑡 𝑢

𝑧′
𝑡 ) = 𝔼(𝑢𝑡𝑢𝑧′𝑡 ) holds. Then there exists a 𝐵𝑒𝑥𝑡

1 ∈𝑒𝑥𝑡
𝑧 such that

𝐵𝑒𝑥𝑡
1 =𝐵𝑖𝑛𝑡

1

if and only if the proxies are such that

Σ𝐰1𝑧
= chol(Σ𝑧)′. □ (11)

As 𝐵𝑒𝑥𝑡
1 is in general not unique for a given set of proxies 𝑧𝑡 if 𝐾1 > 1, the proposition makes a statement about one specific element 

of the set 𝑒𝑥𝑡
𝑧 of admissible matrices. In contrast, 𝐵𝑖𝑛𝑡

1 is a unique matrix. Hence, identifying 𝐵1 recursively as in the internal proxy 
VAR approach, is more restrictive than under-identifying 𝐵1 only by the relevance and exogeneity conditions. Clearly, condition (11) 
uniquely fixes also 𝐵𝑒𝑥𝑡

1 and shows that 𝐵𝑒𝑥𝑡
1 can be identified by restrictions on Σ𝐰1𝑧

. Proposition 1 actually implies that Σ𝐰1𝑧
has 

to be an upper triangular matrix for the two approaches to result in equivalent impact effects of the structural shocks of interest. 
Restricting Σ𝐰1𝑧

to be upper-triangular just-identifies the 𝐵1 matrix and, hence, the shocks of interest. Interestingly, Lakdawala (2019) 
uses triangularity of Σ𝐰1𝑧

to identify his shocks of interest. Also Altavilla et al. (2019) and Bruns et al. (2025) consider a diagonal 
(hence, a special triangular) Σ𝐰1𝑧

which is compatible with condition (11) but over-identifies 𝐵1 due to the additional zero restrictions 
imposed on Σ𝐰1𝑧

.

In Proposition 1, the condition 𝔼(𝑢𝑦𝑡 𝑢
𝑧′
𝑡 ) = 𝔼(𝑢𝑡𝑢𝑧′𝑡 ) can be replaced by the more restrictive sufficient condition 𝐴𝑦𝑧

1 =⋯ =𝐴
𝑦𝑧
𝑝 = 0, 

i.e., no lags of the proxies appear in the 𝑦𝑡 equations of model (9). The latter condition implies 𝑢𝑦𝑡 = 𝑢𝑡 and may be more intuitive 
than the condition 𝔼(𝑢𝑦𝑡 𝑢

𝑧′
𝑡 ) = 𝔼(𝑢𝑡𝑢𝑧′𝑡 ).

While Proposition 1 is useful to understand the implications of restrictions placed on Σ𝐰1𝑧
, it is less helpful if identifying restrictions 

are imposed directly on 𝐵1 as, e.g., in Mertens and Ravn (2013) and Känzig (2021). However, it implies the following sufficient 
conditions for equivalence of the external and internal proxy VAR approaches which can be useful in applied work.
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Corollary 1. If the proxies, 𝑧𝑡, satisfy the relevance and exogeneity conditions (3) and (4), then the external and internal proxy VAR 
approaches result in equivalent impact effects matrices 𝐵𝑒𝑥𝑡

1 and 𝐵𝑖𝑛𝑡
1 which differ only by a scalar multiple of each column, if the following 

three conditions hold:

(a) In the augmented VAR model (9), 𝐴𝑦𝑧

1 =⋯ =𝐴
𝑦𝑧
𝑝 = 0, i.e., no lags of the proxies appear in the 𝑦𝑡 equations.

(b) The covariance matrix of 𝑧𝑡, Σ𝑧, is a diagonal matrix, i.e., the proxies are instantaneously uncorrelated.

(c) Σ𝐰1𝑧
is a diagonal matrix, i.e., each shock in 𝐰1𝑡 is correlated with one proxy only. □

Proof of Corollary 1. As mentioned earlier, condition (a) implies the condition 𝔼(𝑢𝑦𝑡 𝑢
𝑧′
𝑡 ) = 𝔼(𝑢𝑡𝑢𝑧′𝑡 ) of Proposition 1. Thus, we can 

use Proposition 1 to prove the corollary. If Σ𝑧 is a diagonal matrix, then chol(Σ𝑧) is also diagonal and equal to its transpose. Moreover, 
if chol(Σ𝑧) and Σ𝐰1𝑧

are diagonal matrices, we can choose the shocks 𝐰1𝑡 such that the two matrices are identical because we can 
choose the size of the shocks arbitrarily. Thus, the conditions in Corollary 1 are sufficient for (11) to hold up to scale of the shocks. □

The corollary states that, if the proxies are contemporaneously uncorrelated and each of the proxies is correlated with one shock 
of interest only, then we can get impact effects of the first 𝐾1 structural shocks, 𝐰𝑖𝑛𝑡

1𝑡 , by considering chol(Σ𝑎𝑢𝑔
𝑢 ). These impact effects 

will be scalar multiples of the impact effects of the 𝐰𝑒𝑥𝑡
1𝑡 shocks on the 𝑦𝑡 variables.

Corollary 1 is useful in practice because all three conditions can be assessed with statistical tools. Condition (a) just means that 
the proxies are not Granger-causal for the 𝑦𝑡 variables which can be checked by a standard Granger-causality test. Condition (b) can 
be tested by checking the correlations between the proxies. Finally, if 𝐾1 > 1, condition (c) can be assessed by an over-identification 
𝐽 -test as proposed by Bruns et al. (2025). As mentioned before, diagonality of Σ𝐰1𝑧

over-identifies the shocks because condition (11) 
shows that for just-identification it is sufficient for Σ𝐰1𝑧

to be triangular. Imposing diagonality hence means imposing additional 
over-identifying restrictions. Bruns et al. (2025) provide a set of moment conditions corresponding to these restrictions and show 
formally that they are over-identifying. They set up a GMM estimation approach and the corresponding 𝐽 -test for over-identifying 
moment conditions.

If there is just one shock of interest (𝐾1 = 1), conditions (b) and (c) of Corollary 1 are automatically satisfied and, hence, provided 
𝐴

𝑦𝑧

1 =⋯ = 𝐴
𝑦𝑧
𝑝 = 0, the impact effects of the shock can be obtained directly from the relation 𝔼(𝑢𝑡𝑧1𝑡) = 𝜎1𝑏1, where 𝜎1 is a scalar, 

or, equivalently, by using the covariance matrix of the VAR residuals augmented by a single proxy. The latter fact follows from 
Corollary A.1 in Appendix A which implies that, if there is just one shock identified by a single proxy (𝑁 = 𝐾1 = 1), the last 𝐾
elements of the first column of the Cholesky decomposition of the covariance matrix Σ𝑎𝑢𝑔

𝑢 of the augmented VAR residual vector are 
a multiple of 𝔼(𝑢𝑦𝑡 𝑢

𝑧
𝑡 ) = 𝔼(𝑢𝑡𝑧𝑡) and thus, upon standardization, are precisely the desired impact effects of the external proxy VAR 

approach, 𝑏𝑒𝑥𝑡1 , where the latter quantity denotes the first column of 𝐵𝑒𝑥𝑡
1 . We can even get the slightly more general result for the 

case of 𝐾1 ≥ 1.

Corollary 2. If in the augmented VAR model (9), 𝐴𝑦𝑧

1 =⋯ = 𝐴
𝑦𝑧
𝑝 = 0 and the proxies, 𝑧𝑡, satisfy the relevance and exogeneity conditions 

(3) and (4), then 𝑏𝑖𝑛𝑡1 , the first column of 𝐵𝑖𝑛𝑡
1 , is a multiple of 𝑏𝑒𝑥𝑡1 . □

Proof of Corollary 2. As 𝐴𝑦𝑧

1 =⋯ =𝐴
𝑦𝑧
𝑝 = 0 implies 𝔼(𝑢𝑦𝑡 𝑢

𝑧′
𝑡 ) = 𝔼(𝑢𝑡𝑢𝑧′𝑡 ), the corollary follows from Proposition 1. Note first that the 

last 𝐾 elements in the first column of Σ𝑎𝑢𝑔
𝑢 are equal to 𝔼(𝑢𝑡𝑢𝑧1𝑡) = 𝔼(𝑢𝑡𝑧1𝑡) = 𝑏𝑒𝑥𝑡1 under the condition 𝐴𝑦𝑧

1 =⋯ =𝐴
𝑦𝑧
𝑝 = 0 of Corollary 2. 

Moreover, Corollary A.1 in Appendix A shows that the first column of chol(Σ𝑎𝑢𝑔
𝑢 ) is a scalar multiple of the first column of Σ𝑎𝑢𝑔

𝑢 . Thus, 
𝑏𝑖𝑛𝑡1 is a scalar multiple of 𝑏𝑒𝑥𝑡1 = 𝔼(𝑢𝑡𝑧1𝑡) as claimed in Corollary 2. □

Note that this result always holds for the first shock, provided 𝔼(𝑢𝑦𝑡 𝑢
𝑧′
𝑡 ) = 𝔼(𝑢𝑡𝑢𝑧′𝑡 ), e.g., if there are no lagged proxies in the 𝑦𝑡

equations in model (9), even if there are several proxies and shocks of interest. However, it only holds for the first shock, not for the 
other shocks in 𝐰1𝑡 in general. Only if there are several proxies which are instantaneously uncorrelated, i.e., Σ𝑧 is a diagonal matrix 
as in Corollary 1, then, by Corollary A.2 given in Appendix A, we can get also the impact effects of all shocks from the external proxy 
VAR approach from the Cholesky decomposition of Σ𝑎𝑢𝑔

𝑢 , provided Σ𝐰1𝑧
in (5) is a diagonal matrix, that is, if the 𝑖-th proxy is only 

correlated with the 𝑖-th shock and uncorrelated with all other shocks.

We note that condition (a) of Corollary 1 implies that the proxies have to be Granger-noncausal for the 𝑦𝑡 to ensure equivalence of 
the impact effects of the external and internal approaches. There are, in fact, good reasons for including lags of 𝑧𝑡 in the 𝑦𝑡 equations. 
If the proxies contain information on some of the structural shocks 𝐰1𝑡 , which after all is why we use them as proxies, they may well 
be Granger-causal for 𝑦𝑡. In that case, at least some of the 𝐴𝑦𝑧

𝑖
, 𝑖 = 1,… , 𝑝, are nonzero. Including them leads to different impulse 

responses. Note that, in general, the ((𝐾1 +𝐾) × (𝐾1 +𝐾)) dimensional reduced-form impulse response matrices, say Φ𝑎𝑢𝑔
ℎ

, of the 
augmented VAR model (9) are quite different from the (𝐾 ×𝐾) Φℎ matrices from model (1). In contrast, if 𝐴𝑦𝑧

1 =⋯ = 𝐴
𝑦𝑧
𝑝 = 0, the 

reduced-form impulse response matrices of the augmented model will have the form

Φ𝑎𝑢𝑔
ℎ

=
[
∗ ∗
0 Φℎ

]
, ℎ = 1,2,… , (12)

where * stands for potentially nonzero elements (see, e.g., Lütkepohl, 2005, Section 2.3.1). Computing, as usual, the structural impulse 
responses from the augmented model as
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Θ𝑎𝑢𝑔
ℎ

=Φ𝑎𝑢𝑔
ℎ

chol(Σ𝑎𝑢𝑔
𝑢 ),

we get exactly the same structural impulse responses from the augmented model as from the external proxy VAR approach whenever 
𝐵𝑒𝑥𝑡
1 =𝐵𝑖𝑛𝑡

1 . We state that insight as Result 2 for easy reference.

Result 2. If 𝐵𝑒𝑥𝑡
1 = 𝐵𝑖𝑛𝑡

1 and 𝐴𝑦𝑧

1 = ⋯ = 𝐴
𝑦𝑧
𝑝 = 0 in the augmented VAR model (9), then the structural impulse responses of the 𝑦𝑡

variables from the external proxy VAR and the augmented VAR approaches are identical. □

The structural impulse responses are not only of interest by themselves but they are also the basis for forecast error variance 
decompositions (FEVDs) and historical decompositions. As the FEVDs can be computed as nonlinear functions of the structural 
impulse responses (see, e.g., Lütkepohl, 2005, Section 2.3.3), FEVDs of the external and internal approaches will be identical when 
the conditions for identical structural impulse responses are fulfilled. The situation is a bit different for historical decompositions which 
are also often of interest in structural VAR analysis (see, e.g., Antolín-Díaz and Rubio-Ramírez, 2018). They are determined from the 
structural impulse responses and the structural shocks. Thus, even if the impulse responses from the two approaches are identical, 
the historical decompositions may differ because the shocks 𝐰𝑒𝑥𝑡

1𝑡 and 𝐰𝑖𝑛𝑡
1𝑡 generally differ (see Result 1). Which of the historical 

decompositions are preferred will depend on which shocks are more plausible. In any case, our results do not directly suggest how 
narrative restrictions as considered, for example, by Antolín-Díaz and Rubio-Ramírez (2018) for historical decompositions, can be 
useful for identification in our setup.

If the lags of the proxies enter the 𝑦𝑡 equation in (9), one may even wonder whether the shocks of interest are fundamental and 
can be obtained as linear transformations of the reduced-form residuals 𝑢𝑡 , as assumed in our model setup in Section 2.1, and in 
the external proxy VAR approach. Plagborg-Møller and Wolf (2021) consider the situation where a single shock is to be identified 
by one proxy. They consider a more general setup as ours by allowing the DGP of the 𝑦𝑡 and the proxy to have infinite order 
VAR representations and the shocks to be potentially nonfundamental. In that framework they show that local projection methods, 
where the unlagged 𝑧𝑡 and lags of 𝑧𝑡 appear on the right-hand side of the 𝑦𝑡 equations, can be used to estimate impulse responses 
even of nonfundamental shocks properly in an augmented VAR model. Clearly, being able to determine the impulse responses of 
nonfundamental shocks in an augmented VAR model setup is an advantage of the latter model.

In summary, if 𝐴𝑦𝑧

1 =⋯ = 𝐴
𝑦𝑧
𝑝 = 0 and there is only one shock that is identified by a single proxy, then we can use a Cholesky 

decomposition of the residual covariance matrix of the augmented VAR model to compute the impact effects of the impulse responses. 
If there are several shocks identified by a set of proxies, then the impact effects of the first shock can be obtained from the first column 
of the Cholesky decomposition of the residual covariance matrix of the augmented VAR. The impact effects of the other shocks can 
be obtained from the Cholesky decomposition of the residual covariance matrix of the augmented VAR if the proxies are uncorrelated 
(the matrix Σ𝑧 is a diagonal matrix) and the 𝑖-th proxy is correlated with the 𝑖-th shock and not with any of the other shocks of 
interest (the matrix Σ𝐰1𝑧

is a diagonal matrix).

2.4. Estimation of augmented VAR models

The previous discussion refers to population quantities. It is important to emphasize that some of the results will carry over to 
estimated quantities in small samples as long as standard estimation methods are used. For example, if the VAR model (1) is estimated 
by LS and the LS residuals together with the proxies can be used for estimating 𝐵𝑒𝑥𝑡

1 . Of course, that may require further identifying 
restrictions to be imposed.

If the conditions of Proposition 1 can be assumed to hold, we can alternatively estimate the augmented model (9) by LS and 
estimate the covariance matrix Σ𝑎𝑢𝑔

𝑢 as

Σ̂𝑎𝑢𝑔
𝑢 = 1 

𝑇

𝑇∑
𝑡=1 

(
�̂�𝑧𝑡
�̂�
𝑦
𝑡

)
(�̂�𝑧′𝑡 , �̂�

𝑦′
𝑡 ), (13)

where the �̂�𝑦𝑡 and �̂�𝑧𝑡 are LS residuals. Then the lower left-hand (𝐾 ×𝐾1) block of chol(Σ̂𝑎𝑢𝑔
𝑢 ) can be used to estimate the impact effects 

𝐵𝑖𝑛𝑡
1 of the structural shocks. This estimator will generally differ from the one from the external approach because it is based on a 

model with many more parameters and, hence, is potentially less precise.

However, if we consider an augmented model (9) without lags in the 𝑧𝑡 equations and without lags of the 𝑧𝑡 in the 𝑦𝑡 equations 
and we restrict the parameter estimates such that 𝐴𝑧𝑧

1 =⋯ =𝐴𝑧𝑧
𝑝 = 0, 𝐴𝑧𝑦

1 =⋯ =𝐴
𝑧𝑦
𝑝 = 0 and 𝐴𝑦𝑧

1 =⋯ =𝐴
𝑦𝑧
𝑝 = 0, then the estimator 

of Σ𝑎𝑢𝑔
𝑢 becomes

Σ̂𝑎𝑢𝑔
𝑢 = 1 

𝑇

𝑇∑
𝑡=1 

(
𝑧𝑡 − �̄�

�̂�𝑡

)(
(𝑧𝑡 − �̄�)′, �̂�′𝑡

)
, (14)

where �̄� = 𝑇 −1∑𝑇
𝑡=1 𝑧𝑡 and the �̂�𝑡 are LS residuals. In that case, the corresponding estimator �̂�𝑖𝑛𝑡

1 based on chol(Σ̂𝑎𝑢𝑔
𝑢 ) is equivalent 

to �̂�𝑒𝑥𝑡
1 = 𝑇 −1∑𝑇

𝑡=1 �̂�𝑡𝑧
′
𝑡 which may be used if Σ𝐰1𝑧

is assumed to be diagonal. Thus, in this case, the internal and external estimator 
would be identical even in small samples if the columns are scaled appropriately. In fact, even the estimated structural impulse 
responses would be identical in small samples in this case.
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Alternatively, one may include lags of the proxies in the 𝑦𝑡 equations of the augmented model (9) and consider the shocks and 
impulse responses obtained from the augmented model, still maintaining no lags in the 𝑧𝑡 equations. In that case, the estimated shocks, 
their interpretation and their impulse responses are different in small samples from those of the external proxy VAR approach. Of 
course, the additional parameters to be estimated in the augmented VAR may reduce the precision of the estimated impulse responses 
if that approach is used.

One issue that is often a concern in the estimation of the impact effects is that some proxies are only weakly related to the shocks of 
interest. In other words, the proxies may be weak instruments for which special estimation procedures are recommended (see Montiel 
Olea et al., 2021). Clearly, as the external proxy and augmented VAR estimates are identical under the conditions of Proposition 1, 
both approaches are equally affected by the weakness of an instrument.

Of course, there are a number of other estimation methods for proxy VAR models. The methods based on (13) or (14) do not 
account for the over-identifying restrictions from the diagonality of Σ𝐰1𝑧

and the uncorrelatedness of the structural shocks and are, 
hence, not efficient. To improve efficiency, one could use the GMM approach of Bruns et al. (2025), as mentioned earlier. There are 
also local projection (LP) and Bayesian estimation methods that could be applied. Moreover, if there is just one proxy that identifies 
a single shock (𝐾1 =𝑁 = 1), then an equivalent estimator of 𝐵𝑒𝑥𝑡

1 is obtained by including 𝑧𝑡 as an additional regressor in the VAR 
model, i.e., by estimating the model

𝑦𝑡 = 𝜈 +𝐴1𝑦𝑡−1 +⋯+𝐴𝑝𝑦𝑡−𝑝 +𝐵1𝑧𝑡 + 𝑢∗𝑡

by LS. The LS estimator �̂�1 is a multiple of �̂�𝑒𝑥𝑡
1 = 𝑇 −1∑𝑇

𝑡=1 �̂�𝑡𝑧𝑡 in this case (see Paul, 2020, Online Appendix A.2, A.3).

Generally, it may be useful to keep in mind the theoretical results of Proposition 1 and Corollaries 1 and 2 in the identification 
and estimation of proxy VAR models. In the present study we are interested in presenting and illustrating the theoretical results of 
this section and therefore do not consider alternative estimation methods.

3. Oil market shocks

Känzig (2021) considers a six-dimensional benchmark model to study the impact of oil market shocks on some key economic 
variables. In his benchmark analysis, he uses a single proxy to identify an oil supply news shock. To safeguard against distortions in 
his analysis, he also uses a setup with two proxies to identify two shocks, an oil supply news shock and an oil production shortfall 
shock. Given that our main contribution is to generalize results known for a single proxy to the case of multiple proxies, we consider 
the two proxy case to illustrate our results and we will denote the corresponding proxies by 𝑧𝑡(news) and 𝑧𝑡(ops), respectively.

Känzig uses a VAR(12) model with a constant term for the real price of oil (𝑟𝑝𝑡), world oil production (𝑝𝑟𝑜𝑑𝑡), world oil inventories 
(𝑖𝑛𝑣𝑡), world industrial production (𝑖𝑝𝑊 𝑜𝑟𝑙𝑑

𝑡 ), U.S. industrial production (𝑖𝑝𝑈𝑆
𝑡 ), and the U.S. consumer price index (𝑐𝑝𝑖𝑈𝑆

𝑡 ) such that 
𝑦𝑡 = (𝑟𝑝𝑡, 𝑝𝑟𝑜𝑑𝑡, 𝑖𝑛𝑣𝑡, 𝑖𝑝𝑊 𝑜𝑟𝑙𝑑

𝑡 , 𝑖𝑝𝑈𝑆
𝑡 , 𝑐𝑝𝑖𝑈𝑆

𝑡 )′. All variables are in logs. Känzig uses monthly data from January 1974 to December 2017. 
Hence, his gross sample size is 528. Accounting for the presample values required for LS estimation of the VAR(12) model, we have 
a net sample size of 𝑇 = 516. We use his sample period and data set to facilitate a comparison with his results although there is some 
evidence that the structural impulse responses may not be time-invariant across the full sample period (see Bruns and Lütkepohl, 
2023).

Känzig (2021) constructs one proxy, 𝑧𝑡(news), based on OPEC announcements about their production plans. It is used to identify 
an ‘oil supply news shock’, 𝑤𝑡(news), while the other proxy, 𝑧𝑡(ops), is based on work by Kilian (2008) and Bastianin and Manera 
(2018) and captures the shortfall of OPEC oil production caused by exogenous political events such as wars or civil disturbances 
and, hence, may be related to the first proxy. Känzig considers the two proxies to exclude possible distortions due to omitting effects 
related to his oil supply news shock.

We have applied the external and internal proxy VAR approaches to Känzig’s reduced-form VAR model using his two proxies. As 
discussed in Section 2.2, the external approach requires further restrictions to identify the shocks individually. Känzig (2021) uses 
the external approach and identifies the shocks with the additional restriction that oil production does not respond instantaneously 
to an oil supply news shock. In other words, he applies an external proxy VAR approach where he imposes a zero restriction on 
𝐵1 to ensure individually identified and uncorrelated shocks. We consider this identification condition as one alternative but we 
also identify the shocks by using the proxies one-by-one to identify the shocks individually which is more in line with the results 
presented in Section 2. In other words, we are identifying the impact effects by zero restrictions on Σ𝐰1𝑧

. More precisely, we assume 
that this matrix is diagonal. Thus, Känzig’s identification approach for the case of two proxies is different from ours. To distinguish 
the resulting shocks, we denote the shocks obtained with Känzig’s identifying restriction by �̂�𝑒𝑥𝑡,𝐾

𝑡 (ops) and �̂�𝑒𝑥𝑡,𝐾
𝑡 (news) while we 

signify the shocks obtained by using the proxies one-by-one by �̂�𝑒𝑥𝑡,1𝑏𝑦1
𝑡 (ops) and �̂�𝑒𝑥𝑡,1𝑏𝑦1

𝑡 (news). Note, however, that for the news 
shock, our approach corresponds exactly to Känzig’s baseline model where he considers a single proxy for the news shock. In other 
words, �̂�𝑒𝑥𝑡,1𝑏𝑦1

𝑡 (news) is Känzig’s news shock in his one-proxy baseline case.

For computing the shocks with the internal approach, we first do not include lags of 𝑧𝑡 and 𝑦𝑡 in the 𝑧𝑡 equations of the augmented 
VAR model to limit the number of estimated parameters. This seems plausible, given the way the proxies are constructed.4 In Fig. 1
we show scatter plots of the shocks obtained from the external and internal approaches, where the shocks from the augmented VAR 
approach are signified as �̂�𝑖𝑛𝑡

𝑡 (ops) and �̂�𝑖𝑛𝑡
𝑡 (news). Note that we have computed the �̂�𝑖𝑛𝑡

1𝑡 using the relation (10) and that 𝑧𝑡(news) 

4 A Wald test of the null hypothesis 𝐴𝑧𝑧
𝑖 = 0, 𝐴𝑧𝑦

𝑖 = 0 for 𝑖= 1,… , 𝑝, results in a 𝑝-value of 0.361. For detailed formulas of a related test see Footnote 5.
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Fig. 1. Scatter plots of shocks for oil market example. 𝐰𝑖𝑛𝑡
1𝑡 obtained from model (9) restricting 𝐴𝑧𝑧

𝑖 = 0, 𝐴𝑧𝑦
𝑖 = 0, 𝑖 = 1,… , 𝑝. 

contains many zero elements, implying �̂�𝑖𝑛𝑡
𝑡 (news) to take on constant values close to zero for much of the sample. In contrast, 

�̂�
𝑒𝑥𝑡,1𝑏𝑦1
𝑡 (news) and �̂�𝑒𝑥𝑡,𝐾

𝑡 (news) vary across the full sample period. This outcome illustrates the external proxy VAR’s ability to 
account for measurement errors in the proxies rather than intending to measure the shock directly. The two types of external shocks 
are in fact quite similar. Their correlation is close to one, as can be seen in the lower right-hand panel of Table 1.

Before we compare impulse responses based on the different approaches, we investigate the validity of the conditions (a), (b) and 
(c) of Corollary 1 to see whether similar empirical impulse responses from the one-by-one approach and the internal approach can be 
expected. We begin with a standard Wald test of ℍ0 ∶𝐴

𝑦𝑧

1 =⋯ =𝐴
𝑦𝑧
𝑝 = 0. It returns a value of 116.9 which corresponds to a 𝑝-value 

of 0.95 of the associated 𝜒2 limiting distribution with 144 degrees of freedom. Thus, the null hypothesis is clearly not rejected.5

Although this suggests that the shocks may indeed be fundamental, it is clear that nonrejection of a null hypothesis can also mean 
that the test may not have enough power to reject. The null hypothesis may still be false. Actually, Plagborg-Møller and Wolf (2022) 
find that the Känzig shocks may not be fundamental. For illustrative purposes we nevertheless treat the shocks as fundamental in the 
following.

Condition (b) of Corollary 1 requires that the proxies are instantaneously uncorrelated. We show the correlation between the 
proxies in Table 1. Although the empirical correlation between the proxies is as small as −0.065, there is evidence that the proxies 
are correlated as zero is not in the 95% bootstrap confidence interval. Thus, condition (b) is approximately but possibly not strictly 
satisfied.

5 Based on a model 𝑦𝑡 = [𝜈,𝐴𝑦𝑧

1 ,… ,𝐴
𝑦𝑧
𝑝 ,𝐴1,… ,𝐴𝑝]𝑋𝑡 + 𝑢𝑡 = 𝐷𝑋𝑡 + 𝑢𝑡 or, for 𝑡 = 1,… , 𝑇 , 𝑌 = 𝐷𝑋 + 𝑈 , we use the Wald statistic 𝑊 = vec(�̂�)′𝑅′[𝑅((𝑋𝑋′)−1 ⊗

Σ̂𝑢)𝑅′]−1𝑅vec(�̂�) for testing ℍ0 ∶𝑅vec(𝐷) = 0. Here �̂� = 𝑌 𝑋′(𝑋𝑋′)−1 and 𝑅= [0𝑝𝐾𝐾1×𝐾 , 𝐼𝑝𝐾𝐾1
,0𝑝𝐾𝐾1×𝑝𝐾2 ]. 
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Table 1
Empirical Correlations of Proxies and Shocks for Oil Market Example with 95% Bootstrap Confidence 
Intervals.

𝑧𝑡(ops) 𝑧𝑡(news) �̂�
𝑒𝑥𝑡,1𝑏𝑦1
𝑡 (ops) �̂�

𝑒𝑥𝑡,1𝑏𝑦1
𝑡 (news) 

𝑧𝑡(ops) 1 
𝑧𝑡(news) −0.065

(−0.131,−0.008)
1 

�̂�
𝑒𝑥𝑡,1𝑏𝑦1
𝑡 (ops) 0.173

(0.006,0.319)
−0.020

(−0.091,0.050)
1 

�̂�
𝑒𝑥𝑡,1𝑏𝑦1
𝑡 (news) −0.015

(−0.130,0.092)
0.226

(0.098,0.346)
−0.088

(−0.182,0.005)
1 

�̂�𝑒𝑥𝑡,𝐾
𝑡 (ops) 0.170

(0.007,0.312)
0.019

(−0.049,0.082)
0.985

(0.981,0.988)
0.084

(−0.008,0.174)
�̂�𝑒𝑥𝑡,𝐾

𝑡 (news) −0.030
(−0.149,0.082)

0.225
(0.096,0.346)

−0.172
(−0.262,−0.080)

0.997
(0.996,0.997)

Note: The confidence intervals are obtained with a bootstrap suggested by Lunsford (2015) and presented 
in detail in the Appendix of Bruns et al. (2025).

Finally, condition (c) of Corollary 1 requires that Σ𝐰1𝑧
is diagonal. Using the estimated external shocks, obtained with the Känzig 

identifiying restriction and with the one-by-one approach, its off-diagonal elements are indeed very small and not significantly 
different from zero (see Table 1). The two covariance matrices Σ𝐰1𝑧

in Table 1 obtained with the one-by-one and Känzig identifying 
restrictions are actually very similar. That result is not surprising given the high correlation between the related shocks given in 
Table 1.

We also tested for diagonality of Σ𝐰1𝑧
by imposing the additional, over-identifying, restriction of orthogonality for the one-by-

one shocks in a 𝐽 -test, as proposed by Bruns et al. (2025). We find that the corresponding test statistic takes on a value of 0.0834 
implying a 𝑝-value of 0.7727 of the corresponding asymptotic 𝜒2(1) distribution. Hence, we cannot reject that the moment conditions 
associated with a diagonal Σ𝐰1𝑧

jointly hold, supporting condition (c) of Corollary 1.

These results are at least indicative for the conditions of Corollary 1 to be approximately satisfied. Thus, the impulse responses 
obtained from the internal and external approaches are expected to be similar, despite the rather different shocks in Fig. 1. Actually, 
the impulse responses to the first shock, the ops shock, obtained by the one-by-one external proxy VAR approach and the augmented 
VAR approach restricting 𝐴𝑧𝑧

𝑖
= 0, 𝐴𝑧𝑦

𝑖
= 0, 𝐴𝑦𝑧

𝑖
= 0, 𝑖= 1,… , 𝑝, are identical, as discussed in Section 2.3 (see Corollary 2). Therefore 

we focus on the impulse responses of the news shock and compare them in Fig. 2. We follow Känzig (2021) and consider shocks that 
increase the real oil price by 10% on impact.

In Fig. 2 we show the impulse responses corresponding to four different shocks: �̂�𝑒𝑥𝑡,𝐾
𝑡 (news), �̂�𝑒𝑥𝑡,1𝑏𝑦1

𝑡 (news) and �̂�𝑖𝑛𝑡
𝑡 (news) with 

and without lags of the proxies and endogenous variables in the proxy equations. The impulse responses to the two types of external 
shocks in the first two columns of Fig. 2 are very similar. The main difference is that the response of oil production on impact is 
exactly zero when a �̂�𝑒𝑥𝑡,𝐾

𝑡 (news) hits while it is only close to zero for a �̂�𝑒𝑥𝑡,1𝑏𝑦1
𝑡 (news) shock.

If 𝐴𝑧𝑧
𝑖

, 𝐴𝑧𝑦
𝑖

and 𝐴𝑦𝑧
𝑖

are restricted to zero in the augmented model, the responses to a �̂�𝑖𝑛𝑡
𝑡 (news) are also very similar to the 

responses in the first two columns of Fig. 2, as expected, given that the conditions of Corollary 1 roughly hold. Although setting the 
𝐴𝑧𝑧

𝑖
, 𝐴𝑧𝑦

𝑖
and 𝐴𝑦𝑧

𝑖
to zero is not rejected by our tests, leaving them unrestricted has a substantial impact on the estimated impulse 

responses. First of all, the confidence intervals (in cyan color in Fig. 2, column 4) are much wider than the confidence intervals of the 
corresponding impulse responses estimated with the other three approaches (in blue, pink and red in Fig. 2) which may be due to the 
larger number of parameters in the model. The impulse responses also have partly very different shapes and, hence, are likely to lead 
to different interpretations of the dynamics of the system. For example, the response of the 𝑐𝑝𝑖𝑈𝑆 index is much less persistent than 
the response estimated with the other three methods. Thus, augmenting the model with many additional insignificant parameters, 
may not be a good idea if they are actually not needed. On the other hand, the differences in the impulse responses may be indicative 
for the lags to be important in the equations in which case the impulse responses based on the external VAR approaches and from 
the augmented VAR with 𝐴𝑧𝑧

𝑖
= 0, 𝐴𝑧𝑦

𝑖
= 0, 𝐴𝑦𝑧

𝑖
= 0, 𝑖= 1,… , 𝑝, would be distorted.

Clearly, the internal approach as discussed in the foregoing does not result in impulse responses satisfying Känzig’s identifying 
restriction exactly. To impose such a restriction, one could also consider internalizing the proxies and use a different identification 
scheme by considering a 𝐵𝑎𝑢𝑔 matrix that satisfies 𝐵𝑎𝑢𝑔𝐵𝑎𝑢𝑔′ = Σ𝑎𝑢𝑔

𝑢 but is different from chol(Σ𝑎𝑢𝑔
𝑢 ). As such alternative approaches 

are not common in the literature we do not elaborate on this possibility here but just mention that by a suitable choice of 𝐵𝑎𝑢𝑔 one 
could obtain the restricted impact effect of production considered by Känzig.

We have also reversed the order of the proxies and hence the shocks such that the news shock is first and the oil production 
shortfall shock is second. In Fig. B.1 in Appendix B we show the corresponding impulse responses of the oil production shortfall 
shock. The results are qualitatively similar to those in Fig. 2 in that the responses to �̂�𝑒𝑥𝑡,1𝑏𝑦1

𝑡 (ops), �̂�𝑒𝑥𝑡,𝐾
𝑡 (ops) and �̂�𝑖𝑛𝑡

𝑡 (ops) shocks 
restricting 𝐴𝑧𝑧

𝑖
= 0, 𝐴𝑧𝑦

𝑖
= 0, 𝐴𝑦𝑧

𝑖
= 0, 𝑖 = 1,… , 𝑝, are almost identical, while the responses to �̂�𝑖𝑛𝑡

𝑡 (ops) with 𝐴𝑧𝑧
𝑖
,𝐴

𝑧𝑦
𝑖

, and 𝐴𝑦𝑧
𝑖

not 
restricted to zero have wider confidence intervals and are partly quite different from the corresponding other two impulse responses.

Given that historical decompositions involve both structural impulse responses and the shocks, they can be expected to be quite 
different for the external and internal proxy VAR approaches because the shocks are very different (see Fig. 1). To illustrate this 
point, we show the historical contributions of the news shocks to the real price of oil in Fig. 3. Obviously, the historical contributions 
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Fig. 2. Comparison of impulse responses of �̂�𝑒𝑥𝑡,1𝑏𝑦1
𝑡 (news) shock (column 1), �̂�𝑒𝑥𝑡,𝐾

𝑡 (news) shock (column 2), �̂�𝑖𝑛𝑡
𝑡

(news) shock with restrictions 𝐴𝑧𝑧
𝑖 = 0, 𝐴𝑧𝑦

𝑖 = 0, 
𝐴

𝑦𝑧
𝑖 = 0, 𝑖= 1,… , 𝑝, (column 3) and without restrictions (column 4). The shocks are normalized to increase oil prices by 10 percent on impact. The confidence intervals 

around the impulse responses are based on 5000 bootstrap samples. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)
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Fig. 3. Cumulative historical contributions of news shocks to the real price of oil. The top panel shows the historical decomposition based on �̂�𝑒𝑥𝑡,1𝑏1
𝑡 (news). The 

middle panel shows the contribution of �̂�𝑒𝑥𝑡,𝐾
𝑡 (news). The bottom panel shows the historical decomposition based on �̂�𝑖𝑛𝑡

𝑡
(news) obtained from equation (9) restricting 

𝐴𝑧𝑧
𝑖 = 0, 𝐴𝑧𝑦

𝑖 = 0, 𝑖 = 1,… , 𝑝. The 68% and 90% confidence intervals around the historical decomposition are based on 5000 bootstrap samples.
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from the external and internal approaches differ substantially while the two external approaches deliver very similar results. If we 
use �̂�𝑖𝑛𝑡

𝑡 (news) and recover the structural shocks as linear combinations of the proxies, then the historical decompositions look very 
peculiar. The reason is that �̂�𝑖𝑛𝑡

𝑡 (news) is constant for much of the sample and can therefore not contribute to the historical evolution 
of the real price of oil. In the present example one might argue that the proxies are better thought of as noisy rather than direct 
measurements of the shocks themselves and that the historical decomposition is more readily interpretable if it is constructed using 
�̂�𝑒𝑥𝑡

𝑡 (news) rather than �̂�𝑖𝑛𝑡
𝑡 (news).

4. Conclusions

When instruments are used in a proxy VAR study to identify a single shock or a set of shocks, a couple of alternative approaches for 
estimating the structural parameters are in common use. The first one is based on the covariance of the proxies and the reduced-form 
residuals and another one augments the VAR by the proxies. We have pointed out important differences and similarities between 
these approaches for the case of multiple proxies. Thereby we not only provide some new insights for researchers using multiple 
proxies to identify a set of shocks but also generalize results that were previously known for the case of identifying a single shock 
only.

In general, both approaches for identifying multiple shocks by a set of proxies have to be complemented with additional identifying 
assumptions in order to properly identify the shocks of interest individually. However, if there are exactly as many proxies as there 
are shocks to be identified and if the proxies are mutually uncorrelated, and each of them is correlated with a single shock only, 
then no additional information is needed to fully identify the shocks of interest individually. If the proxies are not Granger-causal 
for the variables of the VAR model, the impulse responses obtained with the two alternative estimation approaches are identical 
in population and may be very similar if in the augmented VAR no lags of the proxies are included in the VAR equations for the 
variables. If the lagged proxies are nevertheless included in the model, the increased estimation uncertainty due to the additional 
parameters in the model may distort the impulse responses. Even if the conditions for identical population impulse responses are 
satisfied, the shocks will generally not be identical. In the external proxy VAR approach, the shocks are linear combinations of the 
reduced-form residuals while the shocks are linear combinations of the mean-adjusted proxies or the residuals of the proxy equations 
in the augmented VAR approach.

We consider an empirical example model for the crude oil market to illustrate these theoretical results. In the example, the 
conditions for identical population impulse responses are nearly satisfied and, as expected, the estimated impulse responses turn out 
to be also very similar if lagged proxies are not included in the augmented model. Dropping the lagged proxies in this example is 
supported by the nonsignificant outcome of a Granger-causality test. If nevertheless lags of the proxies and the variables are included 
on the right-hand side of the augmented VAR model, the additional estimation uncertainty due to model augmentation is reflected 
in much wider confidence intervals around the impulse responses and quite different impulse response estimates than in the external 
proxy VAR approach that may lead the researcher to draw different conclusions regarding the dynamics of the model. Thus, the 
example illustrates that it may not be a good idea to include unnecessarily many parameters in the VAR model.

Our results imply the following strategies for applied work. If the shocks can be thought of as linear combinations of the proxies, 
then the augmented VAR approach may be useful. If, however, the proxies are better thought of as shocks measured with error, then 
the external proxy VAR approach is perhaps more suitable. If the conditions for identical population impulse responses from the two 
approaches are satisfied and the researcher is interested only in the impulse responses and FEVDs, then s/he is free to choose between 
the external proxy VAR and the augmented VAR approaches. As the shocks based on the different approaches still differ, it depends 
on the construction of the proxies whether using the internal approach can be recommended for a historical decomposition. Finally, 
if the proxies are Granger-causal for the variables of the model, then using the augmented VAR approach with lags of the proxies in 
the model is called for and the two approaches will provide different shocks and impulse responses.

In practice, one may also want to consider alternative estimation methods which may be more efficient or account for weak 
instruments. Also Bayesian methods can be considered instead of the frequentist methods mentioned in this study. We have not 
discussed those methods here because the objective of this study is to raise awareness for the theoretical relations between external 
proxies and internalizing them. Considering the implications for the various possible estimation methods for proxy VAR analysis may 
be an interesting topic for future research.

Appendix A. Proof of Proposition 1

Proposition 1 follows from the following matrix result.

Lemma 1. Let Σ11 be a symmetric positive definite (𝑁 ×𝑁) matrix, Σ22 be a symmetric positive definite (𝐾 ×𝐾) matrix, and Σ21 a (𝐾 ×𝑁)
matrix such that the ((𝑁 +𝐾) × (𝑁 +𝐾)) matrix

Σ =
[
Σ11 Σ′

21
Σ21 Σ22

]

is positive definite. Then the lower-triangular Cholesky decomposition of Σ is

chol(Σ) =
[

chol(Σ11) 0
Σ21chol(Σ11)−1′ 𝐺

]
, (A.1)
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where 𝐺 = chol(Σ22 − Σ21Σ−1
11 Σ

′
21), i.e., 𝐺𝐺′ = Σ22 − Σ21Σ−1

11 Σ
′
21. □

Proof of Lemma 1. The lemma follows by multiplying the right-hand side of equation (A.1) by its transpose and noting that 
chol(Σ11)−1′chol(Σ11)−1 = Σ−1

11 . □

Lemma 1 is a useful tool for proving Proposition 1.

Proof of Proposition 1. From relation (5) we have 𝔼(𝑢𝑡𝑧′𝑡) = 𝐵1Σ𝐰1𝑧
. Hence, the external proxy VAR approach implies 𝐵𝑒𝑥𝑡

1 =
𝔼(𝑢𝑡𝑧′𝑡)Σ

−1
𝐰1𝑧

because the proxies satisfy the relevance and exogeneity conditions and the rank condition implies invertibility of Σ𝐰1𝑧
given that 𝑁 =𝐾1.

Setting Σ11 = Σ𝑧 and

Σ21 = 𝔼(𝑢𝑡𝑧′𝑡) = 𝔼
(
𝑢𝑡(𝑧𝑡 − 𝔼(𝑧𝑡))′

)
= 𝔼(𝑢𝑡𝑢𝑧′𝑡 ) = 𝔼(𝑢𝑦𝑡 𝑢

𝑧′
𝑡 ),

Lemma 1 implies that the lower-left hand (𝐾 ×𝐾1) block of chol(Σ𝑎𝑢𝑔
𝑢 ) is 𝐵𝑖𝑛𝑡

1 = 𝔼(𝑢𝑡𝑧′𝑡)chol(Σ𝑧)−1′. Thus, if 𝐵𝑒𝑥𝑡
1 is equal to the latter 

matrix, we have

𝔼(𝑢𝑡𝑧′𝑡)chol(Σ𝑧)−1′ = 𝔼(𝑢𝑡𝑧′𝑡)Σ
−1
𝐰1𝑧

. (A.2)

Multiplying from the left by (𝔼(𝑢𝑡𝑧′𝑡)
′𝔼(𝑢𝑡𝑧′𝑡))

−1𝔼(𝑢𝑡𝑧′𝑡)
′ gives Σ𝐰1𝑧

= chol(Σ𝑧)−1′ showing that 𝐵𝑒𝑥𝑡
1 =𝐵𝑖𝑛𝑡

1 implies the result in (11).

Conversely, (11) implies (A.2) and, hence, equality of the impact effects from both approaches, as claimed in Proposition 1. □

We also state the following straightforward implications of Lemma 1 for future reference.

Corollary A.1. The first column of chol(Σ) is a multiple of the first column of Σ. More precisely, denoting the upper left-hand element of Σ
by 𝜎11, the first column of chol(Σ) is 1∕

√
𝜎11 times the first column of Σ. □

Proof of Corollary A.1. Obvious. □

Corollary A.2. If Σ11 in Proposition 1 is a diagonal matrix, then the first 𝑁 columns of chol(Σ) are multiples of the corresponding columns 
of Σ. More precisely, denoting the 𝑖-th diagonal element of Σ11 by 𝜎𝑖𝑖, the 𝑖-th column of chol(Σ) is 1∕

√
𝜎𝑖𝑖 times the 𝑖-th column of Σ for 

𝑖 = 1,… ,𝑁 . □

Proof of Corollary A.2. The corollary follows by noting that, for a diagonal matrix Σ11 = diag(𝜎11, … , 𝜎𝑁𝑁 ), 𝜎𝑖𝑖 > 0, the Cholesky 
decomposition is chol(Σ11) = diag(

√
𝜎11, … , 

√
𝜎𝑁𝑁 ). □
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Appendix B. Additional results

Fig. B.1. Comparison of impulse responses of �̂�𝑒𝑥𝑡,1𝑏𝑦1
𝑡 (ops) shock (column 1), �̂�𝑒𝑥𝑡,𝐾

𝑡 (ops) shock (column 2), �̂�𝑖𝑛𝑡
𝑡

(ops) shock with restrictions 𝐴𝑧𝑧
𝑖 = 0, 𝐴𝑧𝑦

𝑖 = 0, 𝐴𝑦𝑧
𝑖 = 0, 

𝑖 = 1,… , 𝑝, (column 3) and without restrictions (column 4). The shocks are normalized to increase oil prices by 10 percent on impact. The confidence intervals around 
the impulse responses are based on 5000 bootstrap samples.
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