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Abstract: Wien’s law is well known to approximate the Planckian blackbody radiator equation,
in the visible range, for temperatures less than 4000 Kelvin. As temperature increases, however,
the approximation degrades and ultimately for high temperatures the spectra generated by
Wien’s law have significantly different spectral shapes compared to the actual Planckian lights.
Accordingly, as temperature T increases, the chromaticity of a Wien spectrum at T diverges
from that of a Planck spectrum of the same T. That is in spectral space. However, in (u′, v′)
chromaticity space, the Planck and Wien loci are closely parallel, so it is plausible that, for any
target Planck spectrum at TP, there is a Wien temperature TW that produces nearly the same
chromaticity (hence nearly the same spectrum). In this paper, we derive a temperature adjustment
function f () such that the Wien spectrum calculated with the temperature TW is close to the
Planck spectrum calculated at any given TP: TW = f (TP). We investigate the utility of this result
in the context of locus filter theory. A locus filter has the property that when it is applied to any
Wien illuminant the resulting filtered light also is well described by Wien’s Law. Our temperature
adjustment formula, in effect, extends locus filter theory so that it also applies to Planckian lights.
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1. Introduction

Planck’s law defines blackbody radiation using only one parameter: the color temperature
typically measured in Kelvin [1]. Color temperature elucidates how the color appearance of
a heated blackbody radiator shifts within a specific temperature range. When the temperature
increases from 1000 to 100,000 Kelvin (equivalently, we write from 1000K to 100,000K), the
color shifts from red to orange to yellowish-white, to bluish-white and then to blue. Warm colors
are associated with low color temperatures, while cool colors are associated with high color
temperatures.

Wien’s displacement law [2,3] is an alternative formula that approximates Planck’s law.
Although the two formulae are not the same, they generate very similar spectra for low color
temperatures (i.e., less than 4000 K). However, the generated spectra are different the higher
the temperatures become. Although Wien’s law can generate spectra different (than the actual
desired Planckian) its construction compared to Planck’s formula is advantageous. Indeed, it
is easy to show that the logarithm of the set of all Wien spectra spans a 2-dimensional linear
subspace [4]. This result simplifies mathematical derivations and is employed in a variety of
research works in the field of computer vision [5–13].
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Figure 1(a) plots the Planckian and Wien loci in the CIE u′v′ chromaticity diagram. The u′v′
diagram is often used as it is approximately perceptually uniform in the sense that color stimuli
separated by a small Euclidean distance (denoted Du′v′) are perceived to be similar in color [3].

Fig. 1. (a) Planckian locus (solid blue line) compared to the Wien locus (dashed red line) in
u′v′ diagram. Positions of 7000K and 15000K Planck (blue text, below the loci) and Wien
(red text above the loci) are shown. For a 4000K temperature, the Wien and Planck u′v′
coordinates are almost coincident (see black text). (b) the spectral power distribution of
Planck light compared to the Wien light for a color temperature of 15000K (where maximum
power is normalised to 1).

Moreover, the same Du′v′ calculated at different locations in the u′v′ diagram corresponds to
approximately the same magnitude of perceived color difference. When the Du′v′ for a pair of
stimuli is greater than 0.004, it is deemed to be just noticeably different [14].

On the u′v′ chromaticity diagram color temperatures vary from warmer (e.g., 4000 K) to
cooler (e.g., 20000 K) from right to left. It is clear that for low color temperatures, the two loci
are quite similar, but they diverge a little as the temperature increases.

The u′v′ coordinates for 15000K Planckian and Wien lights are calculated and plotted - as a
cross (Planckian) and circle (Wien) - in Fig. 1(a). The cross and circle fall on respectively the
Planckian and Wien loci. The temperatures written in blue (below the loci) are for points on the
Planckian locus (with those temperatures). And, those written in red are for points on the Wien
locus (above the loci). The u′v′ point for 4000K is almost coincident for Wien and Planck and so
is plotted as a single black point. Notice that the position of a given temperature on the Wien
locus is below the corresponding temperature on the Planckian locus.

In Fig. 1(b) we plot the Wien spectrum for a 15000K temperature and the corresponding
15000K Planckian spectrum. In Fig. 1(b) both spectra are normalized so their maxima equal 1.
Notice that the Wien spectrum is steeper in the shorter wavelengths indicating a cooler color
appearance. Further, we calculate the Euclidean distance in the u′v′ space. The Du′v′ = 0.007
(between cross and circle) indicating that the corresponding spectra (see Fig. 1(b)) would be
perceived to have different colors [14].

Our paper starts with the question: Does there exist a Wien illuminant - with temperature TW -
that is closer in spectral shape to a Planckian with a temperature TP where TW ≠ TP. Intuitively,
the answer seems to be yes. It is worth noting that the Planck and Wien loci are almost coincident,
but the Wien locus extends further. For any TP on the Planckian locus, there must be a TW whose
Wien spectrum lies very close to the Planck spectrum of the given TP.

In this paper, we derive such a temperature adjustment function f () so that the Wien spectrum
calculated with the temperature TW = f (TP) (Planckian temperature) is a very close approximation
to the desired Planckian spectrum. We find that the function f () can be well modeled by a
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Look-up-table, as a Polynomial (in Mired units) or as a parameterized Arctangent (in Kelvin)
of temperature. Respectively, these 3 functions are denoted f L(), f P() and f A(). Numerical
experiments demonstrate that all three functions deliver similar performance (are equally effective
at converting a target Planck temperature to a Wien counterpart). However, the arctangent
and polynomial formulations have the advantage that they are one-to-one functions and can be
inverted.

This invertibility is a useful property when we approximate a Planckian with a Wien counterpart
in Locus Filter theory [4]. In [4], Deeb and Finlayson defined a transmissive filter - used to
change the color of a light - to be a Locus Filter if and only if the filter always maps a Wien
illuminant to some other counterpart which is also defined by Wien’s equation. Effectively, the
adjustment functions f () - derived in this paper - extend the Locus Filter theory so that it also
applies to Planckian blackbody radiators.

2. Preliminary equations

The Wien displacement law describes the blackbody radiation EW as a function of color
temperature T and wavelength λ [3]:

EW (λ, T) = kc1λ
−5e−

c2
Tλ (1)

where c1 and c2 are constants equal to 3.74183 × 10−16Wm2 and 1.4388 × 10−2mK, respectively.
Additionally, the scalar k modulates the intensity of the Wien light. The Wien and Planck
functions both describe similar spectra for low (say <4000 K) color temperatures. For a blackbody
radiator, the spectral radiant emittance EP is calculated using Planck’s formula [3]:

EP (λ, T) = kc1λ
−5(e

c2
Tλ − 1)

−1
(2)

where c1 and c2 are as defined for Eq. (1), and, again, we admit a scalar k to modulate the power
of the light.

Let us quantify how similar Wien lights are to actual Planckians in terms of the shape of
spectra in the range of the visible spectrum. To do this, we will adopt a discrete approximation of
the lights. Each light spectrum will be represented as an 81-component vector (corresponding to
the spectral power distribution of the lights in the visible range from 380 to 780 Nanometres (nm)
at 5 nm sampling). Now, given Planckian and Wien-approximation vectors, denoted as EP and
EW , we can calculate the angle between the vectors as a measure of similarity that is independent
of intensity. We define the angular error as:

AngularError(EP, EW ) = acos(
EP.EW

| |EP | |.| |EW | |
) (3)

where ’.’ denotes the vector dot-product, | |.| | is the vector 2-norm and acos is the inverse
cosine. The angular error, by construction, is independent of the magnitude of the vectors of the
underlying spectra. In considering the angular error between spectra and – later in the Subsection
3.3 – the Du′v′ measure, we acknowledge that this is just one of many possible measures. For a
different spectral recovery test, Agarla et al. [15] considered 13 measures. They demonstrated a
strong correlation between many error measures (such as a normalized RMSE) and the angular
measure we adopt. In this paper, we choose angular error simply as an exemplar of the available
error metrics.

As a complement to the angular error metric, we can calculate the chromaticity difference Du′v′

between Planck and Wien lights as the Euclidean distance on the CIE 1976 u′v′ chromaticity
diagram. Let us denote the u′v′ coordinates of a Planckian and Wien light, respectively as
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(u′P, v′P) and (u′W , v′W ). The Euclidean distance, Du′v′ , between these points is calculated as:

Du′v′ =
√︁
(u′P − u′W )2 + (v′P − v′W )2 (4)

Figure 2 plots the errors for Planckians and Wien lights where color temperature is increasing
(x-axis is natural logarithm of color temperature and the y-axis is the error - angular and Du′v′ -
between Planckian and Wien spectrum of that temperature). Here, the temperature range is 1667
up to 1,000,000 K (we will use this domain for all numerical experiments discussed in this paper).
As temperature increases, both angular error and Du′v′ also increase. Significantly, we see that as
the temperature increases the Du′v′ error is more than 0.004 and this indicates that the perceived
color of the Planck and Wien Pair would be visually noticeably different to a human observer
[14]. From Fig. 2(b), the Du′v′ threshold is approximately at lnTP = 9.2 (i.e., TP = 10300K).
According to Fig. 2(a), this corresponds to an angular error of about 2 degrees.

Fig. 2. Error between the spectra of Planckian and Wien lights with the same color
temperature in terms of (a) Angular Error, and (b) Du′v′ .

3. Estimating a Planckian light using the Wien formula

We would like to determine a correction function f () such that for Planckian light with a color
temperature of TP, denoted as EP(λ, TP), the Wien approximation for the corrected temperature,
EW (λ, f (TP)), is closer to the Planckian light than when using T directly in Wien’s formula. We
seek a function f () such that

EP(λ, T) ≈ kEW (λ, f (T)) (5)

where k is a scalar. Throughout this paper, we denote the best corrected Wien temperature (which
produces a light with a spectral shape similar to a Planckian with temperature TP) as

TW = f (TP) (6)

Substituting Eq. (6) into Eq. (5):

EP(λ, T) ≈ kEW (λ, TW ) (7)

3.1. Correcting Wien color temperature using a look-up-table

Here we find the best – integer Plackian temperature mapping to integer Wien – look-up-table
that implements the correction function, which we denote f L(). In order to solve for f L()
we will again represent spectra as vectors in the discrete domain. Respectively, EP and EW

denote Planckian and Wien lights. Now, suppose we have a set of Planckian color temperatures
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τP = [TP
1 , TP

2 , . . . , TP
N] the corresponding Planckian spectra are in the set ψP = [EP

1 , EP
2 , . . . , EP

N].
For the ith Planckian temperature TP

i we find the integer Wien temperature TW
i which minimizes:

min
TW

i

AngularError(EP
i , EW

i ) , TW
i ∈ Ω (8)

or
min
TW

i

Du′v′(EP
i , EW

i ), TW
i ∈ Ω (9)

TW
i , TP

i ∈ Ω where Ω = [1667, 106] Kelvin.
For conciseness of exposition, in the text that follows we exclusively present derivations

where the Angular error between spectra is minimised (we will return to Du′v′ in Section 3.3).
Respectively, the sets of Wien temperatures and spectra that minimize Angular error are denoted
as τW and ψW .

The minimization in Eq. (8) is solved simply by searching for the best answer. The best
correction is found for each of our Planckian temperatures and these pairs, taken together, define
the best look-up-table (LUT) function denote f L :

τW
i = f L(τP

i ) , i = 1, 2, . . . , N (10)

Intuitively from Fig. 1, we expect that the best Wien spectrum that approximates a Planckian
will have a smaller corrected color temperature, TW<TP. Moreover, we also expect relationship
between TP and TW to be increasing. In Fig. 3, we plot the Wien corrected temperature in
Kelvin against the (natural) logarithm of the Planckian temperature (where we are minimizing
the spectral angular error). The function f L() delivers corrected temperature that is always less
than the actual Planckian temperature. f L() is an increasing function. Notice that the range of
f L(), [1667, 30179] is much less than its domain [1667, 106] (approx. 7.4 to 13.8 in the log units
shown in the plot).

Fig. 3. Corrected Wien color temperatures using look-up-table through angular error
minimization.

One issue with f L() is that a pair of consecutive Planckian temperature TP, TP + 1 can map
to the same Wien corrected temperature: f L(TP) = f L(TP + 1). As an example, f L(2519) =
f L(2520) = 2519. This happens because TW is always equal/less than TP, and since both these
temperatures are integers, with the integer range of the former smaller than the domain of the
latter, the function cannot be one-to-one. There must be duplicates. The existence of duplicates
implies that f L is not an invertible function.

As a final comment, we acknowledge that in building this look-up-table we are choosing to
map integer input temperatures to integer outputs. We could, of course, have adopted a finer
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(or indeed coarser) sampling of the temperature scale. Moreover, we could have adopted some
interpolation scheme so that the LUT has continuity. However, rather than focusing our efforts
on finding the best LUT we instead, in the next subsection, derive 2 concise analytic formulae
which have the advantage of being much more compact transfer functions than a LUT. Moreover,
in our results section, we show that these functions deliver very good temperature correction.

3.2. Analytic functions to correct Wien color temperature

Now, we seek analytic expressions such that:

τW
i ≈ f (τP

i ) (11)

where f () is a continuous and invertible function.
In the minimizations that follow we will find the optimal parameters for a training set and

then evaluate how well the parameterised function works in general. We will assume that the
look-up-table function f L(), derived in the last section, can be used to generate ground truth
Wien temperatures.

Judd [16] suggested that reciprocal color temperature (say Mired) would be a more convenient
parameter for general use than color temperature itself, because differences in reciprocal color
temperature are proportional to the corresponding chromaticity differences. The use of reciprocal
temperature instead of color temperature is already fairly prevalent due to the form of the Wien
radiation law. Therefore, we will choose 600 Mired temperatures as our training set.

The Mired color temperature (micro-reciprocal-degree) [16] of a temperature T is defined as

TM = Mired(T) =
106

T
(12)

Relative to Eq. (12), the interval Ω maps to ΩM = [1, 600] in Mired Units. While we sample
the temperatures of interest in Mired units, we need to convert them back to corresponding
temperatures in Kelvin, so the set of Planckian temperatures we wish to approximate becomes:

τP
i = Mired−1(i) , i ∈ {1, 2, . . . , 600} (13)

Because each τP
i is not an integer value we calculate the corresponding τW

i by linear interpolation.
For i ∈ {1, 2, 3, . . . , 600}

αi =
⌈τP

i ⌉−τ
P
i

⌈τP
i ⌉−⌊τP

i ⌋

τW
i = αif L(⌊τP

i ⌋) + (1 − αi)f L(⌈τP
i ⌉)

(14)

where ⌊.⌋ and ⌈.⌉ are respectively the floor and ceiling operators (mapping real numbers to their
closest integer counterpart below and above).

We now present two analytic derivations of the functions f (). In both cases we will find the
parameters of f () by trying to predict τW

i from τP
i . In the arctangent derivation the optimisation

is carried out directly with respect to these temperatures. In the second Polynomial derivation we
will carry out the optimisation in Mired units.

3.2.1. Arctangent correction function

Our first analytic correction function is based on the arctangent function. Actually, we choose the
arctangent function because one distinct characteristic of the arctangent is its slow approach to the
asymptotes (±∞), making it a good fit for our values (temperatures). Furthermore, for Planckian
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lights (TP), we do not use negative temperatures, so the positive section of the arctangent function
is adequate. Now, we define f A() as:

f A(TP) = d1atan(
TP

d2
) (15)

where d1 and d2 are found by minimizing:

min
d1,d2

∑︂
i
| |τW

i − d1atan(
τP

i
d2

)| |2 (16)

Equation (16) was minimized using Nelder-Mead simplex searching method [17]. To 2 decimal
places, d1 = 18973.32 and d2 = 18726.82.

We wish to check whether f A is a strictly increasing function. We calculate its derivative:

δf A

δT
(TP) =

d1

1 + (TP

d2
)2

(17)

The atan() function has a useful property: it is a strictly increasing, one-to-one function. Thus
it follows that every unique Planckian temperature has a unique Wien counterpart. Further the
minimum temperature we consider is TP = 1667 Kelvin and this maps to TW = 1684 Kelvin.

Later, it will be useful to map a Wien temperature to its Planckian counterpart using Eq. (18).

TP = d2 tan(
TW

d1
) (18)

3.2.2. Polynomial correction function

Let f P() denote the polynomial that best maps Planckian temperatures to corresponding Wien
counterparts where f P() is found by regression. Significantly, the regression is not carried out
directly - in Kelvin units - but rather we first convert temperatures to Mired units. Remember
in Mired units the domain of interest is ΩM = [1, 600] and we will be calculating a polynomial
expansion of values in this range.

Clearly, for an nth-order polynomial, the term 600n will start to dominate the optimization
(compared to the lower-order terms). Concomitantly, high-order polynomial regressions can
suffer from numerical accuracy problems (due to these high powers). Thus, we will formulate
our polynomial regression in normalised mired units, defined:

TN = NMired(T) =
106

600T
=

104

6T
=

1666.7
T

(19)

Clearly, in normalised mired units the interval ΩM maps to ΩMN = [ 1
600 , 1]. When Eq. (19) is

applied to vectors of temperatures we write w = NMired(v). Component-wise, wi = NMired(vi).
Now, we define our polynomial mapping function as f P():

f P(TP) = NMired−1(poly(NMired(TP); q)) (20)

In Eq. (20), poly(x; q) denotes the polynomial expansion of a scalar x where the coefficients of
the polynomial are defined by the vector q. As an example, poly(x; [a0 a1 a2]

t) = a0 + a1x+ a2x2.
According to this notation, a coefficient vector with n + 1 component vectors defines an order
n polynomial expansion with an offset term. Additionally, we define the function polyvec(x, n)
which returns an n + 1 component row vector of x raised to the powers 1 through n with a ’1’ to
denote the offset, polyvec(x, n) = [1 x x2 · · · xn].
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Clearly, poly(x; q) = polyvec(x, n).q (i.e. an 1 × n + 1 vector multiplying a n + 1 × 1 vector, we
calculate the dot-product of the two vectors).

To find a good instantiation of f P(), we need to find a q that makes the error, err, small.

err =
∑︂

i
| |NMired(τW

i ) − poly(NMired(τP
i ); q)| |2 (21)

A reasonable way to determine q is to carryout a regression in NMired units. Let us define an
N×(n+1) matrix A where (in the ith row of A) Ai = polyvec(NMired(τP

i ), n). Then, we find the q
that minimizes:

min
q

| |Aq − NMired(τW )| | (22)

Equation 22 is optimally solved using the Moore-Penrose inverse: q = [AtA]−1AtNMired(τW )

[18] (t denotes matrix transpose).
How well we fit the data depends on the order of the polynomial used. The larger the number

of terms the better we fit the data. But, if we use too many terms the polynomial is likely overly
fit to the data at hand and will not generalise well to unseen data [19]. We found that there was
some benefit of using a 5th-order polynomial but no benefit of using any higher-order expansion.
The ’solved for’ best 5th-order coefficients are shown in Table 1.

Table 1. The coefficients that define
the correction function fP ().

5th-Polynomial coefficient Value

q0 0.05345

q1 0.5415

q2 1.6057

q3 −2.7681

q4 2.3133

q5 −0.7467

Table 2. The coefficients that define the
correction function fP () using the Wien corrected

temperatures by Du′v′ minimization.

5th-degree-Polynomial coefficient Value

q0 0.057397

q1 0.50396

q2 1.7085

q3 −2.8779

q4 2.3518

q5 −0.7444

Let us now consider whether our polynomial function is strictly increasing. First, we note that
the polynomial is actually applied in normalised mired units. Suppose for two temperatures TP

1
and TP

2 , where TP
2 >TP

1 , we have the corresponding corrected Wien temperatures TW
1 and TW

2 .
The increasing property - that we would like f P() to exhibit - would imply that TW

2 >TW
1 . In

normalised mired units, it is evident that NMired(TP
1 )>NMired(TP

2 ) and NMired(TW
1 )>NMired(TW

2 )

(the ordinal relations flip). However, they both always flip together and this implies that a function
in Kelvin that is increasing is an increasing function in normalised mired units (and vice versa).
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Thus, to show that f P() is increasing we need only show that poly(x; q) is increasing in the
normalised mired interval x ∈ [1/600, 1] (where x = NMired(TP)). Using the coefficients from
Table 1, we differentiate:

δpoly
δx

(x; q)
= 0.5415 + 3.2115x − 8.3042x2 + 9.2534x3 − 3.7334x4 (23)

The derivative in Eq. (23) has one real root at x = 1.369 which is outside of our normalised

mired interval. As δpoly
δx

( 1
600 ; q)

= 0.5468 and f P(1667) = 1668.40 is also positive the polynomial
is positive and strictly increasing in the domain of interest.

3.3. Correction functions through Du′v′ minimization

Here we show the best arctangent in Eq. (24) and polynomial fitting (see Table 2) when we used
the Wien corrected temperatures obtained through Du′v′ minimization.

f A(TP) = 17932.75 atan(
TP

17545.53
) (24)

3.4. Locus filters and Planckian lights

In its simplest guise, the locus filter FLocus(λ, Tlf) is a transmissive filter that maps a Wien
illuminant with temperature T1 to another Wien light with temperature T2:

FLocus(λ, Tlf)EW (λ, T1) = EW (λ, T2) (25)

Of course the locus filter is the ratio of the second light divided by the first. In [4], this filter
can be written as:

FLocus(λ, Tlf ) = e−
c2

Tlf λ (26)

where Tlf denotes the Locus Filter Temperature (LFT), which is equal to:

Tlf =
1

1
T2

− 1
T1

(27)

Locus filters have the interesting and unique property that a filter defined by a given pair of
Wien-type lights maps any light on the Wien locus to another Wien-type light [4]. If FLocus(λ, Tlf)

is applied to EW (λ, T3) then

FLocus(λ, Tlf)EW (λ, T3) = EW (λ, T4)

T4 =
1

1
Tlf
+ 1

T3

(28)

Following from Eq. (27) is straightforward to show that high LFTs induce weak filters while
low LFTs induce strong filters, regardless of the sign (negative or positive) of LFT. Here, weak
and strong, respectively mean close to or far from a filter that has a uniform transmission across
all wavelengths in the visible spectrum.

In the last section we found the TW which when inserted into Wien’s equation results in a
spectrum that was closest in shape to a Planckian with temperature TP, where TW = f (TP). In the
discussion that follows we assume the correction function f () is invertible. This means f () could
be the arctangent, f A(), or Polynomial, f P(), variants (see Eqs. (15) and (20)) as we previously
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demonstrated that both are one-to-one functions. But, the look-up-table f L() is not one-to-one so
not uniquely invertible and cannot be used. Without loss of generality, we can write

EW (λ, T1) ≈ kEP(λ, f −1(T1)) (29)

since T1 = f (f −1(T1)), and for T2

EW (λ, T2) ≈ kEP(λ, f −1(T2)) (30)

Now, we substitute Eqs. (29) and (30) into Eq. (25):

EP(λ, f −1(T2)) ≈ FLocus(λ, Tlf)EP(λ, f −1(T1)) (31)

Equation (31) teaches that a locus filter calculated - according to Locus Filter theory - for two
Wien lights has the property that it is also a Locus filter for two Planckian lights. In Eq. (31)
a Locus filter maps one Planckian light to another. Given a Locus Filter defined by Tlf and a
Planckian temperature TP

1 , what is the Planckian temperature of the filtered light? By substitution
Eq. (32) follows. Assuming the correction function f () is accurate, a Planckian light with
temperature TP

1 filtered by a locus filter with Tlf results in a second Planckian with temperature
TP

2 :

TP
2 = f −1(

1
1
Tlf
+ 1

f (TP
1 )

) (32)

Locus Filter theory was developed in a very general sense [4]. The domain of Temperatures
for Wien lights and for Locus Filter Temperatures was (−∞,+∞). A locus filter (for any LFT)
applied to any Wien light resulted in another Wien light. The trick to achieving such a general
theory was to admit negative temperature lights [20].

In Ref. [20], we have shown that the Planckian locus stops in the middle of the chromaticity
diagram and cannot extend further (see Fig. 4). However, Wien’s law provides the opportunity
to generate a longer locus. As seen in Fig. 4, unlike the normal Wien locus (blue solid line)
which sweeps from monochromatic red (limT→0+) to infinite temperature which is a somewhat
desaturated blue (limT→∞+ ) an additional negative temperature locus was admitted. This negative
locus (blue dotted line) sweeps from monochromatic blue (limT→0−) to the same point of +ve
infinity (limT→∞+=limT→∞−). Indeed, negative temperatures do not extend the Planckian locus
via Planck’s law, as Wien’s law does. Thus, without recourse to an extended Wien locus, we

Fig. 4. Planckian locus compared to the negative Wien locus [20].
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might have a blue Locus Filter filtering a bluish Planckian light. The result can be a bluer light
than the infinite-temperature Planckian (red filled circle in Fig. 4) and, therefore, cannot be
interpreted as Planckian light. Thus, our correction function f () extends Locus Filter Theory to
Planckian lights with a caveat: not all filtered Planckian lights are themselves Planckian (though,
empirically, many are).

4. Numerical experiments and results

4.1. Applying correction functions

To find the best analytical functions that model the relationship between Planckian color
temperatures and the Wien-corrected counterparts, we used a training set ranging from 1 to
600 Mired with 1 Mired step, corresponding to color temperatures from 1667 to 106 Kelvin
with non-uniform steps. Figure 5(a) shows the corrected Wien temperatures versus Planckian
temperatures, in Kelvin units. Here, the x-axis is the natural logarithm of actual desired Planckian
temperature, and the y-axis is the temperature that drives Wien’s equation such that the resulting
spectrum is close (in terms of angular error) to the Planckian light. The solid black line shows
the temperature conversion using the look-up-table. In dashed line, we show the conversion
using 5th-order polynomial. The average distance between LUT and polynomial fitting is just 15
degrees Kelvin. The dotted line records the conversion using the arctangent function. Here the
average distance between LUT and arctangent curves is just 43 Kelvin. In Fig. 5(b), we replot
the relationship between Planck and corrected Wien temperatures merely in Mired units. Both
analytic fits using the 5th-order polynomial and arctangent functions almost overlay the LUT
mapping, indicating that the analytic functions work similarly to the look-up-table.

Fig. 5. The relationship between Planckian color temperature and the corrected Wien
temperature using the look-up-table mapping, 5th order polynomial, and arctan function in
(a) Kelvin, and (b) Mired units.

To illustrate what the corrected Wien temperature means, let us return to our example in
Fig. 1(b). In Fig. 6, we show in a solid line the 15000K Planckian spectrum. The dotted line is
the spectrum of light generated by corrected Wien temperature, i.e., TW = 12866K. In fact, this
example is corrected by the LUT method in terms of angular error minimization. The dashed
line is for the 15000K Wien formula. It is evident that by correcting the color temperature that
drives Wien’s function we arrive at a much more similar spectrum. Indeed, the angular error
reduces from 3 to 0.6 degrees.
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Fig. 6. A 15000K Planckian light and the corrected temperature of 12866K Wien light
compared to the 15000K Wien light, all spectra are normalized to have a maximum power
equal to one.

4.2. Accuracy of analytical correction functions

To assess how well the analytical correction functions (i.e., f A and f P) work, we generate the
actual Planckian light spectrum for temperature TP and its Wien approximation for temperature
TW = f A(TP) and TW = f P(TP). This calculation is carried out in the discrete domain so both
spectra are represented as 81-vectors (a sampling from 380 to 780 nm with a 5 nm step). Then,
to determine the closeness of the spectrum-pair we use Eq. (3) to calculate the angular error.

For every Planckian spectrum in the domain Ω (approximately a million spectra), we generate
corresponding Wien spectra according to the methods set forth in this paper. The error in
the approximation is calculated as the angle between the two spectra. The errors of different
correction algorithms are reported in Table 3.

Table 3. Statistics of the angular error between Planckian lights and
their equivalent Wien lights when the color temperature is
uncorrected and when corrected with different functions.

Uncorrected fLcorrected fAcorrected f Pcorrected

Mean (Ω) 6.4 0.66 0.68 0.67

Mean (ΩS) 0.94 0.31 0.44 0.31

95th quant. (Ω) 6.7 0.68 0.69 0.68

Max (Ω) 6.7 0.69 0.71 0.69

The first column of Table 3 records the "uncorrected" error: the Planckian color temperature
is used directly in the Wien equation. Then, we correct the Planckian temperature using the
functions f L , f A , and f P , with the results reported in the second, third, and fourth columns,
respectively.

The rows of the table record 4 error statistics. In the first row we record the mean angular error
for the domain Ω. In the second row we record the mean angular error for a smaller S subset of
the temperature domain: ΩS = [3500, 10000], which contains 6501 color temperatures that are
broadly indicative of the lights we encounter in the natural world. In the 3rd and 4th rows we
record the 95% quantile and maximum errors (for Ω).

We see that the maximum error - the angle between the Planckian and Wien temperature spectra
is 6.72 degrees when no correction is carried out, and , 0.69, 0.69, and 0.71 when, respectively,
LUT, 5th-order polynomial, and arctangent are used. To 2 decimal places, a 5th-order polynomial
has the same max error as the look-up-table. For the arctangent, the max error is about 0.71
which is almost as good.
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Since the chromaticity of lights is an important factor, Table 4 presents the results of the
color chromaticity difference (Du′v′) between Planckian lights and their corrected counterparts.
Here, the efficiency of our fit becomes even more evident. The results are rounded to three
decimal places, and it is clear that the means of Ω and ΩS both decrease significantly through our
correction functions. For example, even the max of Ω for all correction functions is less than the
threshold [14]. In comparison the uncorrected maximum error is 6 times the threshold.

Table 4. Statistics of the Du′v′ between Planckian lights’ chromaticity
and their equivalent Wien lights when the color temperature is

uncorrected and when corrected with different functions.

Uncorrected fLcorrected fAcorrected f Pcorrected

Mean (Ω) 0.023 0.002 0.001 0.002

Mean (ΩS) 0.002 0.000 0.000 0.000

95th quant. (Ω) 0.024 0.002 0.002 0.002

Max (Ω) 0.024 0.002 0.002 0.002

4.3. Locus filtering of Planckian lights

A locus filter maps a Wien illuminant with one temperature so it has the same shape as a second
Wien light with another temperature. A useful property of locus filters is that any locus filter
applied to any Wien light results in a second Wien illuminant [4]. In Subsection 3.4, we extended
the Locus Filter theory to apply to Planckian lights. However, we remarked that not all filtered
Planckian lights are themselves Planckian. Let us consider this point in more detail.

We say that a given locus filter is compatible with the set of Planckian lights which, when
filtered, are also describable by Planck’s Equation. Filters that make lights more warm have a
positive LFT and can always be applied to all Planckian lights. However, a filter that is bluish,
and has a negative LFT, is only compatible with a subset of the Planckian lights. A bluish
Planckian light filtered by a bluish filter can result in an even bluer light (that is beyond the end
of the Planckian locus, i.e., the infinity point).

In Fig. 7, for negative LFTs only, we delimit the set of possible LFTs when filtering a Planckian
light of a given temperature, where the conversion to and from Wien lights is implemented in
Eqs. (15) and (18), using the arctangent conversion function and its inverse. The area below the
blue line delimits all the LFTs that are possible for lights of a given temperature (Mired units, left
graph and Kelvin, right graph). For this test we assume Planckian temperatures are in the range
(0, 1000000].

Fig. 7. Compatible Locus Filter Temperatures (Negative LFTs) for Planckian temperatures
in terms of (a) Mired, and (b) Kelvin
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In Table 5, we apply some Locus Filters with compatible LFTs (with positive and negative
values) to several Planckian lights and calculate the color temperature of the Filtered Planckian.
The first three columns of the table show the change in temperature when applying filters with a
locus filter with positive LFT values of 5000, 7500, and 10000 to different Planckian lights. The
last two columns are for some compatible negative LFTs, −20000 and −15000. As an example, a
4000K Planckian light filtered by a locus filter with LFT = 5000 is found to shift to a Planckian
with color temperature 2200K. However, the same light shifts to 5040K when filtered with a
locus filter with LFT = −20000.

Table 5. Color temperature shifts after applying locus filters on Planckian
lights. The first column records the color temperature in Kelvin for 4 input

lights, ranging from 4000K to 10000K. Other columns show the LFT ranging
from −20000 to 10000. In position (i, j) we see the output color temperature

for the ith input light filtered by a locus filter with the jth LFT.

input Planck
temperature

output Planck temperature for locus filter temperature (LFT) of

(5000) (7500) (10000) (−20000) (−15000)

4000 2200 2588 2838 5040 5522

6000 2686 3287 3703 8800 10478

8000 3011 3791 4357 14365 20274

10000 3242 4166 4863 24454 65430

In Fig. 8, we illustrate how a Planckian radiator behaves before and after applying a locus filter
in the CIE (u′, v′) color chromaticity diagram. A 10000K Planckian light is filtered with a locus
filter with a negative locus filter temperature (LFT = −20000) makes it cooler (see Fig. 8(a)).
Also, in Fig. 8(b), the same light is filtered with a locus filter with a positive temperature (LFT
= 5000) making it warmer. In both cases, the new filtered lights are, as they must be, on the
Planckian locus.

Fig. 8. CIE(u′, v′) chromaticity of a 10000K Planckian radiator before and after applying a
locus filter (a) with −20000K LFT, and (b) 5000K LFT

4.4. Discussion

For many applications, there is no inherent complexity in using Planck’s formula. This includes
rendering images using Planckian lights with the same correlated color temperature as an actual
illuminant, which is useful in the formulation of Color Rendering Indices [21], among other
applications.
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However, in computer vision, the derivation of photometric invariants - combinations of
camera responses which are invariant to a change in light color temperature - the use of Wien’s
formula was crucial. Indeed, in the foundational paper [5] the authors point out that for high color
temperatures, Wien’s approximation only produces spectra being "broadly" similar to Planckian
lights of the same temperature. Consequently, the derivation and empirical evaluation of their
photometric invariant is only for lights with temperatures up to 10000K. Through the temperature
correction function derived here, we can use Wien’s formula for all lights. Concomitantly, the
theory of photometric invariants [5] is extended to account for illuminants described by the
Planckian locus.

Another compelling reason to be interested in using Wien’s - with our temperature correction -
instead of Planck’s formula is in regard to Locus Filters (and color filters in general). A locus
filter [4] has the property that it will always map a Wien illuminant of a given temperature T
to a new Wien light with a derived temperature T ′. Where T ′ is computed given knowledge of
the starting temperature T and the locus filter at hand. The Planckian locus stops at the infinity
temperature which corresponds to a bluish light with low saturation. Filtering blue lights with a
blue color filter (including blue locus filters) must result in an even bluer light, which cannot be
described using Planck’s formula and so Planck’s equation is not sufficient for describing all
typical lights. Wien’s formula does not have this stopping point. And, as we briefly discussed
in this paper, as we move towards colors even bluer than that generated by an infinite Planck
temperature we get new blue lights that are described by negative temperatures (see Fig. 4). In
[22], it is shown how by re-expressing Planckian lights using Wien’s formula, Locus filter theory
can be applied - in its full generality - to Planckian lights.

5. Conclusion

Planck’s famous equation defining a black-body radiator is tolerably well approximated by a
simpler formula called Wien’s approximation. However, for higher color temperatures (say
T> 4000 Kelvin), the Wien approximation is not as accurate, and the difference between the
actual Planckian and the Wien approximation becomes visually noticeable for temperatures
exceeding 10000 K. In this paper, we have shown that we can map a Planckian color temperature
TP to a newly converted temperature TW = f (TP) in such a way that the spectra generated by
Wien’s approximation become much closer to the desired Planckian. We defined two analytical
correction functions, polynomial, and arctangent functions that can map any Planckian color
temperature to the Wien domain. The arctangent function is an elegant formula with an invertible
property. Through the application of our correction functions, the generated spectra are very
similar to the desired Planckian spectra. Using the analytic correction function, we found that the
theory of locus filter is extended to the Planckian radiators. Then, applying locus filters with
different temperatures to the Planckian lights generated new lights over the Planckian locus.
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