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Abstract

This thesis aims to address three critical issues in modelling higher moments

and tail risk of financial returns. First, I propose applying the Mixed Data

Sampling (MIDAS) framework to forecast Value at Risk (VaR) and Expected

Shortfall (ES) under a semiparametric approach. The new models exploit the

serial dependence in short-horizon returns to directly forecast the tail dynamics

at the desired horizon. I examine the predictive power of the new models by an

extensive comparison of out-of-sample VaR and ES forecasts with the established

models for a wide range of financial assets and backtests. The MIDAS-based mod-

els significantly outperform traditional GARCH-based forecasts and alternative

conditional quantile specifications, especially at the multi-day forecast horizons.

My analysis advocates models featuring asymmetric conditional quantile and the

use of Asymmetric Laplace density to jointly estimate VaR and ES.

Second, I carry out a comprehensive comparison of the forecasting ability and

economic importance of several prominent skewness models. My empirical analysis

advocates the use of information from option prices to forecast skewness. Option-

implied skewness and a realized skewness model, which also uses information from

options, outperform two GARCH models and skewness forecasts derived from

conditional quantiles. I further propose a new skewness estimator that corrects

the option-implied skewness for skewness risk premium. The new estimator has

the highest information content on future skewness while it consistently leads to

the lowest out-of-sample forecast errors. A portfolio strategy that employs this
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estimator is superior to the “1/N” portfolio and to the strategies based on the

rest of the skewness models considered.

Third, I investigate the role of conditional higher moments, up to the fourth

level, in an international portfolio allocation framework. The conditional moments

of return distribution are simultaneously approximated by a set of quantile

estimates using the law of total probability. My results reveal significant economic

gains to an international investor by jointly incorporating conditional higher

moments in the information set. The portfolio that employs both conditional

skewness and kurtosis outperforms the benchmark portfolio based on mean-

variance predictors and portfolio based on information up to only the third

conditional moment.
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Chapter 1

Introduction

Normality of asset return is a central assumption in traditional finance theories,

such as the Modern Portfolio Theory of Markowitz (1952), the Efficiency Market

Hypothesis of Fama (1969) and the Option Pricing Theory of Black and Scholes

(1973). However, there is a plethora of empirical evidence documenting the

departure of asset returns from normality, driven by significant asymmetry and

tail-fatness of the return distribution.1 Motivated by this well-documented fact,

my thesis contributes to a rapidly growing stream of the literature investigating

the implications of non-normality of asset returns in the context of financial

modelling and applications. More specifically, I perform three empirical studies

on modelling higher moments and tail risk in financial returns.

The contribution of the thesis is threefold. First, I develop a novel method to

improve tail forecasts of return distribution at any horizon. The new models exploit

the rich information in higher frequency returns to directly model the tail dynamics

of returns measured at a lower frequency. In my empirical application, I use the

new models to forecast two popular tail risk measures, namely Value at Risk (VaR)

and Expected Shortfall (ES). I find that the newly proposed models outperform

several established models in a wide range of financial assets and backtesting
1The evidence of non-normality in financial return distribution was explored as early as

Mandelbrot (1963). See also Cont (2001) and the references therein for other stylised facts of
financial returns.
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procedures. Second, I perform the first empirical study in the literature, which

explicitly seeks for the best model to forecast return skewness. Furthermore, I

develop a new skewness estimator that corrects for the skewness risk premium in

option-implied skewness. This new estimator consistently generates the lowest

out-of-sample forecast errors and leads to a superior investing strategy compared

to the popular “1/N” portfolio and to strategies based on alternative skewness

models. Third, I examine the practical benefits of incorporating conditional higher

moments in an international portfolio allocation framework. The robust measures

of return moments are jointly estimated from a set of conditional quantiles, while

portfolio optimisation is conducted on an expanded utility function of a risk-

averse investor. The portfolio results confirm the investor preferences towards

the higher moments of return distribution as predicted by previous theoretical

studies. Moreover, my empirical analysis also contributes to the international

diversification literature by documenting the heterogeneity in conditional higher

moments across countries.

Accurate risk models are essential to financial institutions for their risk manage-

ment decisions. However, many risk models, especially those focusing on the tail

risk such as VaR and ES, fail to correctly assess the risks of financial positions and

are often cited as the underlying cause leading to the 2007-2009 global financial

crisis (Brownlees et al., 2011). One of the most important issues is that the

calculation of these risk measures is mainly based on the 1-day ahead forecasts.

This practice is clearly insufficient to provide timely warnings to investors and

financial institutions to liquidate their positions, especially during periods of

financial turmoil (Engle, 2011). To measure the risk for longer horizons, banks

typically scale up the 1-day VaR and ES forecasts using the square-root-of-time

rule (Berkowitz et al., 2011; Pérignon and Smith, 2010). This rule is based on an

over-simplified assumption that financial returns are i.i.d normally distributed and

that the risk is constant over the scaling period. As a result, such an assumption
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often leads to the poor performance of risk models in practice since financial

return are not Gaussian and the shape of their distribution varies significantly

over time (Engle, 2011; Hansen, 1994).

Another challenge of accurately forecasting tail risk, particularly at multi-day

horizons, is the significant dependence of lower frequency returns on the higher

frequency return process. For instance, Engle (2011) and Neuberger (2012) show

that the non-normality of returns at longer horizons is crucially driven by the

so-called leverage effects in the short-horizon returns. Moreover, a correct risk

model should able to capture the multi-components nature of return volatility,

which reflect information embedded in different time horizons (see, e.g., Corsi,

2009; Engle et al., 2013) or different economic conditions (see, e.g., Cenesizoglu

and Timmermann, 2008; Lima and Meng, 2017).

The first study addresses these issues by applying the Mixed Data Sampling

(MIDAS) method introduced by Ghysels et al. (2004) to forecast VaR and ES.

The semiparametric specification of the proposed models allows the direct mod-

elling of VaR and ES at the desired horizon, whereas the serial dependence and

multi-component nature of higher frequency returns are captured by a flexible

data-driven polynomial. To the best of my knowledge, I am the first to incorpo-

rate MIDAS in forecasting ES. This is important since ES has recently gained

substantial attention among academics and practitioners. For instance, the “Min-

imum Capital Requirements for Market Risk” of Basel Committe on Banking

Supervision (2019) has moved towards using ES, as a complement of VaR, to

calculate regulatory capital requirements. This regulatory agreement is expected

to be fully implemented on January 1, 2022.

More specifically, I extend the MIDAS quantile regression of Ghysels et al.

(2016) to estimate VaR and ES at the desired forecast horizon using the daily return

process. The conditional quantile of the return distribution is specified as a mixture

of lagged higher frequency returns, which differs for each probability level and
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forecast horizon. I also extend the symmetric specification of Ghysels et al. (2016)

to allow for asymmetric effects between negative and positive lagged returns,

which subsequently yields better out-of-sample forecasts than the symmetric

counterpart in most cases. I propose two approaches to forecast VaR and ES

using MIDAS-based conditional quantiles. First, I adopt the recently proposed

model of Taylor (2019) which estimates VaR and ES via the maximum likelihood

of an Asymmetric Laplace (AL) density. Second, I follow Manganelli and Engle

(2004) to combine MIDAS quantile regression with the extreme value theory

(EVT). In both approaches, VaR and ES are jointly estimated and sidestep from

the so-call “non-elicitablity” of individual ES estimation (Gneiting, 2011). To

examine the accuracy of the new methods, I perform a comprehensive comparison

of out-of-sample VaR and ES forecasts with established models in the literature.

The empirical analysis involves an extensive dataset of 43 international equity

indices; three forecast horizons (i.e., 1-day, 5-day and 10-day, respectively); twelve

forecasting models; six statistical backtests on both VaR and ES; and two loss

functions to compare out-of-sample forecast errors.

My benchmark models consist of two alternative semiparametric approaches to

forecast VaR and ES. First, I consider the traditional GARCH-based approach of

Barone-Adesi et al. (1999, 2002) and Giannopoulos and Tunaru (2005) to estimate

VaR and ES at the desired horizon using filtered historical simulations. Several

studies find that this approach outperforms the simple historical simulation and

an analytical approximation to estimate conditional VaR and ES (Kuester et al.,

2006; Lönnbark, 2016). Moreover, I also consider a simulation method proposed

by McNeil and Frey (2000) that focuses on tail events using EVT. Novales and

Garcia-Jorcano (2018) recently find that this method provides better ES forecasts

than non EVT-based models. Second, I replace the MIDAS-based specifications

of conditional quantile with an analogue from the conditional autoregressive

VaR (CAViaR) model of Engle and Manganelli (2004). This model has the
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appealing autoregressive structure to capture impacts of volatility clustering and

autocorrelation in the return process (see, e.g., Meng and Taylor, 2018; Taylor,

2019; Žikeš and Baruník, 2016).

My empirical results reveal superior performance for the new models. The

benefits of the MIDAS framework becomes more pronounced at longer forecast

horizons. The MIDAS-based models have the lowest number of rejections for

both VaR and ES backtests at the 5- and 10-day forecast horizons. Moreover, the

asymmetric MIDAS-based models generate the lowest forecast errors for both loss

functions considered. The GARCH-based models provide acceptable results based

on binary violation sequences, but often underestimate the risks and generate

higher losses at longer forecast horizons. This is in line with the results of Slim et al.

(2017) and Degiannakis and Potamia (2017) who suggest that the performance

of the filter historical simulation approach depends largely on the parametric

specification of the filtering model, the targeting return series and the length of

the simulation period. I find that the naive aggregation of higher frequency return

series to match the forecasting horizon leads to substantial loss in the conditioning

information. In particular, the CAViaR-based models are inferior to all other

models in multi-day forecast horizons. When the model confidence set method of

Hansen et al. (2011) is employed to further compare the forecast accuracy between

competing models, the CAViaR-based models are often excluded from the set of

superior models, whereas the MIDAS-based models are included in most cases.

This finding provides supports for the results of Engle (2011) and Neuberger

(2012), who highlight the importance of accounting for serial dependence in the

short-horizon return process for long-horizon return modelling. Finally, I find

evidence supporting the approach of Taylor (2019) that use AL likelihood to

jointly forecast VaR and ES, while the EVT-based alternatives are sensitive to

the length of the in-sample estimation window.
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To examine the robustness of the proposed models, I repeat the analysis on

different market regimes, different country groups, alternative financial assets and

estimation windows. Not surprisingly, all models produce higher forecast errors

during periods of financial distress or in emerging stock markets. Moreover, the

performance of the EVT-based models is substantially worse when the models are

calibrated using a shorter estimation window. Nevertheless, the model ranking

remains robust and is in favour of the new models. Overall, I conclude that the

MIDAS framework successfully exploits the dynamics of the higher frequency

return process in forecasting the tail risk of the multi-period return distribution.

More specifically, I argue that it is important to directly forecast VaR and ES

and account for the impact of serial dependence in higher frequency process to

the tail dynamics of lower frequency return distribution. This is important for

the risk management of financial institutions since inaccurate risk measurements

would lead to higher probability of financial institutions to be under- or over-

capitalization. In either case, over-capitalization would lead to under-investment

and low probability of financial institutions, whereas under-capitalization increases

the default risk in their activities.

Another stream of the literature relates the non-normality in the return

distribution to its higher moments, especially skewness and kurtosis. The non-

smooth variation induced by jumps in the return process and changes in market

regimes result in significant asymmetry and tail-fatness in the return distribution

(Bekaert et al., 1998; Guidolin and Timmermann, 2008; Huang and Tauchen,

2005). The recent financial crisis characterised by extreme returns provides a

good example of the nontrivial existence of such higher moments. In his seminal

work, Hansen (1994) shows that these higher moments are also time-variation

(see, e.g., Brooks et al., 2005; Harvey and Siddique, 1999; Jondeau and Rockinger,

2003, , for further empirical evidence). Consequently, several empirical studies

further highlight the importance of accounting for higher moments in asset pricing
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(e.g., Dittmar, 2002; Harvey and Siddique, 2000), portfolio allocation (e.g., Harvey

et al., 2010; Jondeau and Rockinger, 2012) and risk management (e.g., Bali et al.,

2008; Kostika and Markellos, 2013).

In contrast to volatility, however, there are not established proxies for the

true physical values of higher moments in the literature. Previous studies rely

on different models and econometric techniques to estimate and forecast higher

moments of asset returns. As a result, the predictability and the practical value

of return skewness and kurtosis remain largely ambiguous. While the search for a

reliable estimate of ex-post kurtosis has not reached a consensus, the recent realised

skewness estimator of Neuberger (2012) offers a reliable proxy to investigate the

best method to model and forecast return skewness. Thus, in the second study, I

attempt to answer this question by performing the first ever horserace between

several skewness models. Furthermore, I examine the economic value of competing

models based on an out-of-sample investing strategy. My empirical analysis

involves 10 international equity indices; six forecasting models that utilise different

information and forecasting methods; three forecast horizons (i.e. 30, 60 and 90

calendar days); two statistcial tests for assessing the information content of each

forecasting model and an out-of-sample forecasting comparison under two loss

functions.

The realised skewness is comprised of two components: the skewness of short-

horizon returns estimated using daily returns; and the leverage effect between

returns and volatility is captured by option prices. To forecast this ex-post measure,

I consider five prominent models in the literature that use different approaches to

estimate return skewness. The first model is based on predictive power in lagged

realised skewness documented in Neuberger (2012) and Kozhan et al. (2013).

Thus, I use the realised skewness, lagged by one period to forecast future return

asymmetry. The next two forecasts are drawn from simulated distribution using

the popular GJR-GARCH model of Glosten et al. (1993). In the first approach,
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the conditional skewness is generated from the asymmetry-in-volatility process as

suggested by Engle (2011). In the second approach, the conditional skewness also

comes from time-varying skewness in conditional return density with time-variant

shape parameters. The fourth skewness forecasting model is conditional skewness

approximated by a set of quantile estimates recently advocated by Ghysels et al.

(2016). Next, I rely on information from option prices to estimate the forward-

looking skewness estimator similar to Conrad et al. (2013). This method does

not require long time series of historical returns and the implied skewness can be

computed directly from daily option prices. Finally, I develop a new option-implied

skewness, which adjusts for the skewness risk premium documented in Kozhan

et al. (2013) and Broll (2016). This new estimator is in parallel with the evidence

of improvement in the predictive power of option-implied volatility by accounting

for the variance risk premium (see, e.g., Kourtis et al., 2016; Prokopczuk and

Wese Simen, 2014).

My empirical results advocate the use of information from option markets to

forecast skewness. The information contents of all skewness models are on average

higher at longer forecast horizons. Interestingly, the encompassing regression

suggests that each model appears to capture different pieces of information about

future skewness. Nevertheless, the option-implied skewness is the most informative

of future skewness across indices and forecast horizons. The models incorporating

information from option markets provide better out-of-sample forecast performance

than those only employ historical returns. The best overall performance is offered

by the new implied skewness which is adjusted for the skewness risk premium.

This estimator outperforms all alternative skewness forecasts across most of the

comparisons. This finding is robust to various model specifications and estimation

methods. Overall, my results are in line with the volatility forecasting literature:

Realised and option-implied estimators are superior to GARCH-based estimators

while adjusting for the relevant risk premium improves forecasting accuracy
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(see,e.g., DeMiguel et al., 2013; Kourtis et al., 2016; Prokopczuk and Wese Simen,

2014).

To assess the economic value of skewness forecasts, I form several investing

strategies for a constant relative risk-averse investor. The optimal portfolio weight

is a linear function of conditional skewness from a competing model. I use

the popular 1/N portfolio as a benchmark investment strategy in my analysis.

DeMiguel et al. (2009) show that this simple strategy consistently outperforms

many popular theory-based portfolios as the former avoids estimation errors in

optimisation. I find that portfolios employing the two option-implied skewness

estimators outperform the rest of the skewness-based portfolios. While all skewness-

based portfolios lead to lower volatility compared to the 1/N , only the portfolio

based on the corrected implied skewness estimator leads to higher average return

and Sharpe ratio in all cases considered. Thus, this result extends the evidence of

DeMiguel et al. (2013) and Kourtis et al. (2016) that the use of option-implied

information can enhance portfolio performance. Moreover, since this is the first

study assessing the economic significance of different skewness forecasts, the best

method in my empirical analysis can serve as a benchmark for the future researches

in the literature.

Apart from predictability, a natural question is whether market participants

can exploit the time-variation in higher moments of the return distribution to

improve their portfolio allocation. To this end, I attempt to answer the following

two questions in the third study. Can the investor benefit from incorporating

conditional higher moments in her information set? If so, does information from

conditional kurtosis add value to the portfolio allocation beyond that offered by

conditional skewness?

The first question is motivated by strong evidence of non-normality in the

return distribution, which violates the core assumption of the classical mean-

variance criteria pioneered by Markowitz (1952). The theory assumes that asset
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returns are normally distributed, thus the utility of an investor is only a function

of expected returns and variance. However, early theoretical studies suggest that

a risk-averse investor has preference to the higher moments of return distribution

(Dittmar, 2002; Scott and Horvath, 1980). In particular, they are willing to

give up diversification benefits to hold assets with higher skewness and lower

kurtosis (Bali et al., 2019; Mitton and Vorkink, 2007). Recent empirical evidence

of predictable patterns in higher moments dynamics further hints at the possibility

of exploiting these characteristic to improve portfolio performance (Conrad et al.,

2013; Neumann and Skiadopoulos, 2013).

The second question is based on the evidence of time-variation and hetero-

geneity in the tail-fatness of asset returns. For example, Ibragimov et al. (2013)

and Gu and Ibragimov (2018) document that financial returns, especially those

from emerging markets, are characterised by higher likelihood of extreme obser-

vations and more heavy-tailed distributions. However, the existing literature in

portfolio allocation mainly focuses on the role of return skewness. Some notable

examples are Chunhachinda et al. (1997); Harvey et al. (2010); Patton (2004) and

Ghysels et al. (2016). Jondeau and Rockinger (2006) argue that in the case of

large departure from normality, it is necessary to expand the utility function and

consider expected higher moments of the return distribution up the fourth level

(i.e. kurtosis). Given that there is no clear reason a priori to exclude kurtosis, it

is of practical interest to investigate the marginal benefit of conditional kurtosis

over the information already embedded in conditional skewness.

I address these research questions by incorporating conditional skewness and

kurtosis into an international dynamic portfolio framework. The empirical analysis

is conducted on stock returns of 42 international indices for the period from January

1996 to December 2017. The conditional moments of returns are estimated from

a set of quantile estimates spanning over the return density. This approach

has several advantages compared to previous studies. First, the quantile-based
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conditional higher moments are robust to the outliers. Kim and White (2004) show

that return higher moments are very sensitive to outliers, which is more pronounced

in the kurtosis. Thus, using quantile-based conditional higher moments ensures

that the potential benefits of introducing conditional kurtosis are not driven by the

extreme observations. Second, all moments of the conditional return distribution

are jointly estimated using the law of total probability. This method reduces the

estimation errors of forming separate forecasts for each distributional moment as

typically done in the literature (see, e.g., Ghysels et al., 2016). Third, I consider the

total skewness and kurtosis while the limited number of studies on higher moment

portfolio focus on the comoments between asset returns and the market portfolio

(see, e.g., Gao and Nardari, 2018; Jondeau and Rockinger, 2012; Martellini and

Ziemann, 2010). Recent studies show that the idiosyncratic skewness and kurtosis

also contain predictive information about future asset returns (Bali et al., 2019;

Boyer et al., 2010). Therefore, my analysis provides a broader picture on the

effects of higher moments on the investment decisions.

My empirical analysis reveals significant time-variation and heterogeneity in

the conditional skewness and kurtosis in all equity indices. In line with Ghysels

et al. (2016), I find that emerging stock markets (EMs) have less negative skewness

than those of developed markets (DMs). The conditional kurtosis also exhibits a

similar pattern with lower kurtosis in the EMs, although the discrepancy is less

pronounced. Interestingly, after controlling for the impact of conditional skewness,

the orthogonalised kurtosis of EMs is notably higher than those of DMs. This

finding indicates that although EMs are favourable in terms of the conditional

asymmetry, their conditional distributions are more sensitive to extreme events.

A practical challenge of employing higher return moments in portfolio allocation

is the so-called “curse of dimensionality”, which refers to the dramatic increase

of the dimension in multivariate distribution modelling. To deal with this issue,

I employ the parametric portfolio policy of Brandt et al. (2009) to optimise the
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international dynamic portfolio. More specifically, the optimal weight allocated to

each market is estimated as a linear function of the distributional characteristics of

its equity returns. The portfolio results suggest that the investor should allocate

more weight to countries with positive (or less negative) conditional skewness and

less weight the countries with higher kurtosis. This strategy is consistent with the

general preference towards higher moments suggested by the theoretical works

of Scott and Horvath (1980), Kimball (1993) and Dittmar (2002). The portfolio

based on both conditional skewness and kurtosis also provides sizeable economic

gains compared to the mean-variance portfolio and the portfolio with conditioning

information only up to the third moment. More importantly, a large fraction of

the improvement can be attributable to the joint dynamics of conditional higher

moments. This finding is in line with results of Jondeau and Rockinger (2006) and

Jondeau and Rockinger (2012), who highlight the importance of incorporating

information from both skewness and kurtosis in the portfolio allocation.

The portfolio structure in my analysis also sheds further light on the current

debate about international diversification benefits. Similar to Ghysels et al. (2016),

I find that incorporating conditional skewness tilts the optimal portfolio towards

EMs due to their favourable conditional asymmetry. Nevertheless, since EMs

are more exposed to the extreme returns, introducing conditional kurtosis to

the information set considerably reduces the portfolio weights on EMs. Notably,

the EM-skewness effect disappears in the most recent period as the investor

significantly increases her holding of stocks from DMs (about 30%) by shorting

equity from EMs. This reaction can partly be explained by the recent rise of

protectionist policies, which have slowed down the globalisation and impose

negative impacts on capital inflows and prospects of emerging markets (Bekaert

et al., 2016).

Finally, I perform several additional checks to further evaluate the robustness

of the main findings. In particular, I investigate the benefits of conditional higher
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moments for a real-time investor in two ways. First, I perform an out-of-sample

analysis in which the investor recursively estimates her optimal portfolio weights

based on the out-of-sample forecasts of higher moments. The portfolio policy

continues to exhibit positive (negative) preference of the investor to countries with

higher skewness (lower kurtosis). The strategy based on both higher moments

remains superior with highest average returns and lowest volatility. Second, I

examine the potential impact of transaction costs using different trading cost

scenarios. Again, the economic gains in the portfolio with conditional higher

moments remains significant. Finally, the main results are robust to several

robustness checks including alternative levels of risk aversion and inclusion of

additional quantile levels for the approximation of conditional return distribution.



Chapter 2

Forecasting VaR and ES with

Mixed Data Sampling

2.1 Introduction

The recent 2007-2009 financial crisis has challenged the accuracy of risk measure-

ment models, especially those focusing on the tail risk. Yet, two important issues

remain largely unexplored. First, a voluminous literature studies tail risk based

on Value at Risk (VaR) estimates.1 Although VaR plays a dominant role in the

internal risk management of financial institutions and regulators, this measure

fails to meet the requirements of a coherent risk metric as defined by Artzner

et al. (1999). Among the alternatives, expected shortfall (ES) has recently gained

more attention. Unlike VaR, ES is a coherent risk measure and offers information

about the expected loss based on the tail of return distribution (Acerbi and

Tasche, 2002). More specifically, the Basel Committee of Banking Supervision has

incorporated ES as the main risk measure to calculate the capital requirement of
1Previous papers examine the predictive power of risk models in producing VaR forecasts,

either explicitly (see, e.g, Berkowitz et al., 2011; Boucher et al., 2014; Brownlees and Gallo, 2010;
Chen and Gerlach, 2013; Halbleib and Pohlmeier, 2012; Nieto and Ruiz, 2016) or implicitly via
volatility forecasting (see, e.g, Bams et al., 2017; Berger and Missong, 2014; Brownlees et al.,
2011; Slim et al., 2017)
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market risk for financial institutions in its latest regulatory agreement (Basel III).

Despite its importance, there is little empirical studies focusing on ES forecasts.2

This is mainly due to the difficulty in ES estimation and backtesting procedures

(Gneiting, 2011). Second, the large extant literature focuses on the 1-day ahead

risk forecasts, which is clearly insufficient to warn the investors and financial

institutions to liquidate their positions, especially during the financial turmoil.

As emphasised by Engle (2011), p. 438, “the financial crisis was predicable one

day ahead”, and as such, the key failure of risk modelling in financial crisis lies on

their deteriorations in multi-day ahead forecasts.

This study addresses these gaps by extending the novel quantile regression

based on the Mixed Data Sampling (MIDAS) of Ghysels et al. (2016) to forecast

VaR and ES. The new methods allow for direct forecasts of VaR and ES at the

desired horizon, while the use of semiparametric specifications avoids making a

restrictive assumption about the conditional return distribution. To the best of my

knowledge, this is the first study in the literature that applies MIDAS to obtain

ES forecasts. I perform a comprehensive analysis of the forecasting accuracy of

the proposed method. The main analysis involves: 43 international indices; three

forecast horizons (i.e., 1-day, 5-day and 10-day, respectively); twelve forecasting

models; six statistical backtests on both VaR and ES; and an out-of-sample

forecast comparison with two loss functions. I also investigate model performance

under different market regimes, countries groups, alternative assets and several

model specifications.

My investigation draws on two streams of the literature. First, it is well-

established that financial return distribution is not normal and this fact is more

pronounced at the multi-day horizon. Engle (2011) and Neuberger (2012) find that

the asymmetry of return distribution increases with horizon and converges very

slowly to the normality. Moreover, the long-horizon return distribution depends
2Some notably studies are, among others, Cai and Wang (2008), Taylor (2008), Novales and

Garcia-Jorcano (2018), Taylor (2019) and Patton et al. (2019).
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crucially on serial dependence and dynamic in short-horizon return process. As the

return horizon is lengthier, the shape of return distribution, i.e., asymmetry (tail-

fatness) is mainly driven by the covariance between lagged (squared) returns and

innovations in variance (Neuberger and Payne, 2019). Fama and French (2018)

recently apply bootstrapping simulations and observe that the nonnormality

remains significant even at the 20- and 30-years returns. Consequently, a good

forecasting model at the short horizons, such as 1-day ahead, does not necessary

yield accurate forecasts at the multi-day horizons. Each quantile in a nonnormal

distribution may also evolve in different dynamics and depends on different sets

of information. For example, Cenesizoglu and Timmermann (2008) and Lima and

Meng (2017) document the asymmetric effects of economic variables on different

parts of the return distribution and time-variation in their explanatory powers.

These observations suggest that a tail risk model may benefit from the direct

estimation of tail areas such as quantile regression, rather than the traditional

approach using conditional return distribution models, such as the GARCH family.

Second, several studies document that the dynamics of return volatility are

characterised by multiple components capturing information at different time

horizons. Some notable examples are Engle and Lee (1999), Chernov et al. (2003),

Corsi (2009) and Engle et al. (2013). Given the strong correlation between

volatility and return quantiles, it is natural to calibrate a model that could capture

different components of information in modelling tail dynamics. Engle (2011) and

Neuberger (2012) highlight that long-horizon return distribution depends crucially

on the dynamics in short-horizon return process. Therefore, one needs to consider

the serial dependence in short-horizon return when forecasting VaR and ES at

the multi-horizon-ahead.

Altogether, I propose to extend the novel MIDAS quantile regression of Ghysels

et al. (2016) to directly forecast VaR and ES at the desired horizon. The MIDAS

framework introduced by Ghysels et al. (2004) provides an efficient method to link
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variables sampled at different frequencies. The use of flexible and parsimonious

lag polynomials allows MIDAS to directly forecast lower frequency variables by

exploiting the data-rich environment of higher frequencies variables. Andreou

et al. (2012) locate the MIDAS approach in the middle of the ‘direct’ and ‘iterate’

methods in the forecasting literature (Marcellino et al., 2006). A number of

studies document the advantage of applying MIDAS in various financial forecasts,

including Andreou et al. (2013) and Kuzin et al. (2013) for macroeconomic

predictions; Pettenuzzo et al. (2016) for return density; Ghysels et al. (2006)

and Ghysels et al. (2019) for volatility. Moreover, MIDAS provides a suitable

framework to capture different components in the tail dynamics by data-driven

weighting scheme with flexible shapes. Thus, we may expect the use of MIDAS

framework can enhance the estimation and predictive power of VaR and ES

forecasts.

To estimate ES, however, one needs to address the central problem of “non-

elicitability”. A measure is considered as “elicitable” if it is the correct minimiser

of at least one loss function (Gneiting, 2011). For example, VaR is elicitable since

VaR can be estimated by minimizing the ‘tick loss’ function, which is the main

ingredient in the quantile regression of Koenker and Bassett (1978). Early empirical

studies sidestep this issue in several ways. A popular approach is to estimate ES

as the mean of many VaR estimates corresponding to a tail area. In particular,

one can employ simulations on innovations of a location-scale model to produce

an empirical density from which VaR and ES can be obtained (see,e.g, Lönnbark,

2016; Novales and Garcia-Jorcano, 2018, for recent applications). However, this

method relies heavily on the distributional assumption, which I try to avoid due

to the nonnormality issues mentioned above. Instead, I follow two alternative

semiparametric approaches to directly model VaR and ES and allow their dynamics

to vary with each quantile level.
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I start from the premise that it is important to account for the serial dependence

of higher frequency (i.e. daily) return process in modelling the conditional density

at the desired horizon (Neuberger, 2012). For this purpose, I develop the proposed

models on the MIDAS-based quantile regression of Ghysels et al. (2016). In

particular, the conditional quantile is based on a mixture of lagged higher frequency

returns, which is driven by the data environment and flexibly differs for each

quantile level and forecast horizon. Moreover, I also develop an asymmetric

specification, which provides better out-of-sample forecast performance than its

symmetric counterparts of Ghysels et al. (2016) in most cases.

In the first approach, I adopt the semiparametric model of Taylor (2019)

based on the Asymmetric Laplace (AL) density. The author explores the fact

that although ES is not individually elicitable, it is jointly elicitable with VaR

under a set of suitable scoring functions (Fissler and Ziegel, 2016). Since the

AL log-likelihood is a member of this set, VaR and ES can be jointly estimated

via maximum likelihood of an AL density. In the second approach, I follow

Manganelli and Engle (2004) to combine quantile regression and extreme value

theory (EVT). The conditional VaR and ES are estimated by fitting a Generalised

Pareto Distribution (GPD) to the extreme observations that exceeded a threshold

level.

In the empirical analysis, I employ two alternative semiparametric approaches

in the literature as the benchmark methods. First, I consider the filtered his-

torical simulation approach introduced by Barone-Adesi et al. (1999, 2002) and

Giannopoulos and Tunaru (2005). I use two GARCH models to prefilter the data,

namely the GARCH(1,1) model of Bollerslev (1987) and its asymmetric version,

i.e. the GJR-GARCH(1,1) model of Glosten et al. (1993). VaR and ES forecasts

are then obtained from the empirical distribution approximated from simulated

paths of returns at the desired horizon using bootstrapping methods. Second, I

replace MIDAS-based quantile specifications by the conditional autoregressive
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VaR (CAViaR) specifications of Engle and Manganelli (2004). The CAViaR-based

dynamics have attractive autoregressive structure, yet one needs to form a single-

horizon return series that matches the forecast horizon in the model estimation

(see, e.g., Jeon and Taylor, 2013; Taylor, 2019, for applications in VaR and ES

forecasts).

I employ a battery of statistical tests to compare the out-of-sample VaR and

ES forecasts between competing models. In the first stage, I analyse their absolute

performance based on the desired properties of VaR and ES as risk metrics,

such as the correct tail coverage and interdependent exceedances. The backtests

include the unconditional coverage test of Kupiec (1995), the dynamic quantile

test of Engle and Manganelli (2004), the unconditional ES test on violation

residuals of McNeil and Frey (2000), the unconditional and conditional ES test

using probability-integral-transform (PIT) of Du and Escanciano (2017) and the

multinomial VaR test of Kratz et al. (2018). In the second stage, I investigate

the relative performance of competing models in term of minimizing two loss

functions. To this end, I form a set of superior models using the Model Confidence

Set (MCS) technique of Hansen et al. (2011).

In summary, I obtain strong evidence in favor of the new models across quantile

levels and forecasting horizons. Although my focus is to improve the multi-day

horizon VaR and ES forecasts, the MIDAS-based models provide competitive

performance to the benchmarks at the 1-day horizon as well. In fact, the asym-

metric MIDAS-based VaR and ES forecasts are often at par with asymmetric

GARCH-based models in term of absolute performance, but the former generally

yields lower forecast errors. Similar to Engle and Manganelli (2004) and Taylor

(2019), I find that the asymmetric specifications provide superior VaR and ES

forecasts at the 1-day horizon.

The benefits of MIDAS framework are more pronounced at multi-day forecast

horizons. The MIDAS-based models lead to the lowest number of test rejections
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for both VaR and ES forecasts at the 5- and 10-day horizons. The asymmetric

MIDAS-based models also generate the lowest forecast errors and are often included

in the set of superior models. In contrast, the performance of CAViaR-based

models always inferior to all other models in multi-day forecasting horizons. Thus,

the naive aggregation to single-horizon return series leads to substantial loss in

forecasting information. This observation is in line with the findings of Neuberger

(2012) who highlights the importance of accounting for the serial dependence

in higher frequency returns when modelling the dynamics of lower frequency

return distribution. Finally, I find evidence supporting the joint model of Taylor

(2019) that uses the AL likelihood in forecasting VaR and ES. The EVT-based

alternatives provide similar performance to the AL-based forecasts in the main

analysis. However, their predictive powers are sensitive to the estimation sample

and deteriorate significantly when the estimation window is shorter.

I perform a series of robustness tests on the main results. First, I investigate

model performance across different market regimes, before, during and after

the recent great financial crisis. Not surprisingly, I observe considerably higher

forecast errors during the crisis period. Nevertheless, the relative ranking between

competing models is generally unchanged with the proposed methods always

belonging to the best performing models. Second, the main results are robust

when I repeat the analysis for individual stocks, alternative asset classes and

separately for developed versus emerging stock markets.

The remainder of this chapter is structured as follows: Section 2.2 presents

the methodology, in which I provide details on the proposed models for VaR

and ES, the benchmark methods and the backtesting procedures. Section 2.3

presents the empirical studies on the out-of-sample forecast comparison. Section

2.4 presents several robustness checks on model performance spanning different

market regimes, alternative assets and alternative length of estimation windows.
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Section 2.5 identifies potential limitations. Finally, section 2.6 concludes the

chapter.

2.2 Methodology

2.2.1 New Models for VaR and ES Forecasts

Let {rt} = ln(Pt/Pt−1) be the daily continuously compounded return series where

Pt is the closing price of trading day t. The h-day horizon return is defined as

rt,h = ∑h
i=1 rt+i. The h-day VaR of an asset or portfolio returns at the (1 − α)%

confidence level is simply the conditional quantile at the probability level α,

Qα,t−1(rt,h).3

2.2.1.1 The MIDAS-based Conditional Quantile Specifications

The main ingredient of the proposed models is the MIDAS-based conditional

quantile specification introduced by Ghysels et al. (2016). The conditional quantile

of returns at any horizon is specified as a linear function of conditioning variables,

which can be sampled at different frequencies:

Qα,t−1(rt,h) = β0
α,h + β1

α,h

D∑
d=1

ϕd(κα,h)|rt−d,1| (2.1)

where the absolute daily return |rt−d,1| is the conditioning variable with a lag length

of D days. ϕ(.) is the polynomial function that linearly filters the conditioning

variable and projects to the conditional quantile. κα,h is a low-dimensional

parameter vector that parsimoniously defines the shape of the weighting function.

The vector of estimated parameters θα,h = (β0
α,h, β1

α,h, κα,h) is quantile-specific at

the considered horizon.
3Throughout the chapter, I use the terms “VaR” and “conditional quantile” at the α quantile

level interchangeably to imply the conditional VaR at the (1 − α) confidence level. To simplify
the notation, I drop the horizon subscript h whenever it does not cause confusions, keeping in
mind that the series refers to the h-day horizon from day t to t + h.
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Previous studies document superior performance of accounting for the asym-

metric effects in forecasting volatility (see, e.g., Brownlees et al., 2011), or VaR

and ES (see, e.g., Ener et al., 2012; Engle and Manganelli, 2004; Lönnbark, 2016;

Taylor, 2019). Thus, a natural extension of Eq. (2.1) is to capture the potential

asymmetric effects of positive and negative returns, which can be specified as

follow:

(2.2)
Qα,t−1(rt,h)

= β0
α,h + β1−

α,h

D∑
d=1

ϕd(κα,h)I(rt−d,1<0)|rt−d,1|+β1+
α,h

D∑
d=1

ϕd(κα,h)I(rt−d≥0)|rt−d,1|

where I(.) is the indicator function. To retain the parsimonious advantage of the

MIDAS framework, I apply one polynomial ϕd(κα,h) but allowing for different slope

coefficients for negative and positive lagged returns. I follow Ghysels et al. (2016) to

specify ϕ(κα) as the “Beta” function with two parameters, ϕ(κ1, κ2), given that it

provides highly flexible shapes (see, Ghysels et al., 2007, for technical discussions

and alternative polynomial functions). The Beta polynomial is expressed as

follows:

ϕ(κ1, κ2) =
f( d

D
, κ1, κ2)∑D

d=1 f( d
D

, κ1, κ2)

where:

f(x, a, b) = xa−1(1 − x)b−1Γ(a + b)
Γ(a)Γ(b)

Γ(a) =
∫ ∞

0
e−xxa−1dx.

In my application, I restrict κ1 = 1 and κ2 > 1 in order to have decaying weights

on the conditioning variable.4 The lag length is set at D = 100 days for all

forecasting horizons. This choice is based on the observation of Ghysels et al.
4Similar Ghysels et al. (2016), I find that optimising both two parameters can marginally

improve the goodness-of-fit in quantile estimate. However, the optimisation comes at significant
computational cost and a lower convergence rate.
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(2006) that using lags longer than 50 days has little effect on volatility forecasts

up to 20-days horizon. Moreover, Ghysels and Qian (2019) argue that the only

issue of choosing a large lag length is the loss of higher frequency data at the

beginning of estimation sample. In fact, it is more problematic in choosing a too

short lag length.5

The conditional quantile could be directly estimated using a quantile regression

model pioneered by Koenker and Bassett (1978) and first applied to the financial

data by Engle and Manganelli (2004). The conditional quantile is obtained by

minimizing the following tick loss function:

θ̂α,h = argmin
θα,h

T −1
T∑

t=1
[rt,h − Qα,t−1(rt,h)]

[
α − I(rt,h≤Qα,t−1(rt,h)

]
(2.3)

where θα,h is the unknown vector of parameters to be estimated for each quantile

level and forecast horizon. The conditional ES is defined as the expected loss

given a VaR violation occurred and can be expressed as:

ESα,t−1(rt,h) = E [rt,h|rt,h ≤ Qα,t−1(rt,h)] (2.4)

However, unlike VaR, there is no loss function such that ES is the unique minimiser

(Gneiting, 2011). Therefore, I employ to two alternative approaches to estimate

ES based on the above MIDAS-based conditional VaR specifications.

2.2.1.2 Forecast VaR and ES with Asymmetric Laplace Distribution

In the first approach, I jointly estimate VaR and ES using Asymmetric Laplace

(AL) density as proposed by Taylor (2019). This model is motivated by the work

of Koenker and Machado (1999), who link the minimisation of the ‘tick loss’

function in Eq. (2.3) to the maximum likelihood of an AL density specified as
5To check the sensitivity of this choice, I also repeat the main analysis with D = (80, 120)

days and observe similar results
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follows:

f(rt) = α(1 − α)
σ

exp

(
−(rt − Qα(rt))(α − I(rt ≤ Qα(rt))

σ

)
(2.5)

where, for this density, Qα(rt) is the time-varying location, while σ > 0 and

0 < α < 1 are the scale and skew parameters, respectively. Note that the return

process is not assumed to follow AL distribution since the skew parameter α is

chosen corresponding to the quantile level of interest. Taylor (2019) argues that if

the scale parameter σ varies over time, its maximum likelihood estimation can be

interpreted as the time-varying expectation of the ‘tick loss’ function:

σt = Et−1 [(rt − Qα(rt)) (α − I (rt − Qα(rt)))] (2.6)

Given that Bassett (2004) links the conditional ES to quantile regression by:

ESα,t−1(rt) = Et−1(rt) − 1
α

Et−1 [(rt − Qα(rt)) (α − I (rt − Qα(rt)))]

then Eq. (2.6) can be rewritten in term of conditional ES and conditional mean

µt = Et−1(rt) as follow:

σt = α(µt − ESα,t−1(rt))

Thus, for given specifications of the conditional mean, conditional VaR and ES,

the AL density in Eq. (2.5) can be rewritten in conditional terms as:

f(rt) = 1 − α

µt − ESα,t−1(rt)
exp

(
−(rt − Qα,t−1(rt))(α − I(rt ≤ Qα,t−1(rt))

α(µt − ESα,t−1(rt))

)
(2.7)

Without the loss of generality, I specify the conditional mean return as an AR(1)

formulation where µt = a0 + a1rt−1 to account for possible autocorrelation in the

return process. I follow Taylor (2019) to specify conditional ES as an exponen-
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tial function of the conditional quantile to prevent possible crossovers between

conditional VaR and ES:

ESα,t−1(rt) = [1 + exp(γ)] Qα,t−1(rt) (2.8)

where γ controls the joint dynamics of VaR and ES. The Qα,t−1(rt) can follow

either the MIDAS-based specifications in Eq. (2.1) or (2.2). Finally, I follow

the optimisation procedure of Taylor (2019) to jointly estimate VaR and ES. To

assist the optimisation, I separately estimate the coefficients in the conditional

mean using maximum likelihood and the conditional quantile using the MIDAS

quantile regression.6 Next, these optimised values are combined with 104 randomly

sampled candidates for the γ coefficient in the ES formulation to form the vectors

of starting parameters. The optimisation is then performed on the negative of the

sample log-likelihood of Eq. (2.7). I term the models which define Qα,t−1(rt) in

Eq. (2.1) and (2.2) as ‘Midas-AL’, and ‘MidasAs-AL’, respectively.

2.2.1.3 Forecast VaR and ES with Extreme Value Theory

In the second approach, I adopt the two-step estimation procedure suggested by

Manganelli and Engle (2004). First, the MIDAS quantile regression of Ghysels

et al. (2016) is estimated at a threshold level which is not as extreme as the

quantile level of interest. The standardised quantile residuals, Zαu , are then

obtained as follows:

Zαu = rt

Qαu,t−1(rt)
− 1 (2.9)

where Qαu,t−1(rt) is the conditional quantile at threshold level αu. Similar to

Manganelli and Engle (2004), I choose the threshold level at αu = 7.5%. Second,
6The estimation is based on an R code created by the author following the Matlab toolbox

provided by Eric Ghysels
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I fit the Generalised Pareto Distribution (GPD) to the standardised quantile

residuals of threshold violations, i.e, Zexceed
αu

= Zαu|Zαu > 0 ∼ GPD(ξ̂, ς̂), where

ξ̂ < 1 is the shape parameter and ς̂ is the scale parameter. Conditional VaR and

ES at any quantile level α < αu then can be computed using the results of McNeil

and Frey (2000):

Qα,t−1(Zαu) = ς̂

ξ̂

(αT

Tu

)−ξ̂

− 1


ESα,t−1(Zαu) = Qα,t−1(Zαu)
(

1
1 − ξ̂

+ ς̂

(1 − ξ̂)Qα,t−1(Zαu)

)

Qα,t−1(rt) = Qαu,t−1 [1 + Qα,t−1(Zαu)]

ESα,t−1(rt) = Qαu,t−1 [1 + ESα,t−1(Zαu)]

where Tu is the number of exceedances beyond the conditional threshold. In this

approach, I denote the model that uses the Eq. (2.1) specification in quantile

regression as ‘Midas-Evt’, whereas I use the term ‘MidasAs-Evt’ when specification

in Eq. (2.2) is used.

2.2.2 Benchmark Models

In this section, I present a set of benchmark models to examine the predictive

power of new methods on out-of-sample VaR and ES forecasts. The details of

forecasting models are presented in Table A.1 in the Appendix.

2.2.2.1 Filtered Historical Simulation

The first benchmark method is the Filtered Historical Simulation (Fhs) introduced

by Barone-Adesi et al. (1999, 2002) for VaR and extended to ES by Giannopoulos

and Tunaru (2005). Kuester et al. (2006) and Lönnbark (2016) find that this

approach outperforms the simple historical simulation as well as the analytical

approximation in VaR forecasts. The Fhs algorithm involves a bootstrap procedure
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using return innovations of a conditional location-scale model to simulate return

paths at the considered horizon. Given a reasonably large number of trials, these

paths can form an empirical distribution, from which conditional VaR and ES can

be obtained.

I consider two GARCH models to prefilter the data, namely the GARCH(1,1)

model of Bollerslev (1987) and its asymmetric version, i.e., GJR-GARCH(1,1)

model of Glosten et al. (1993). Brownlees et al. (2011) document that the latter

provides better volatility forecasting performance relative to alternative GARCH-

type models. To be consistent with the MIDAS-based models, I model conditional

mean as an AR(1) process:

rt = a0 + a1rt−1 + σtzt (2.10)

while the conditional variance process is defined as:

GARCH: σ2
t = β0 + β1ε

2
t−1 + β2σ

2
t−1 (2.11)

GJR-GARCH: σ2
t = β0 + β1ε

2
t−1 + β2I(εt−1<0)ε

2
t−1 + β3σ

2
t−1 (2.12)

where εt = σtzt is the residuals from the mean equation and zt ∼ fz(.) is the series

of standardised resdiuals. A common agreement in the literature is the need to

account for fat tails and asymmetries in the conditional distribution of zt, i.e., fz(.)

(see, e.g., Brooks et al., 2005; Giot and Laurent, 2003; Slim et al., 2017). In my

empirical application, I utilise the standardised Skewed Generalised Error (SGE)

distribution of Theodossiou (2015), i.e., zt ∼ SGE(0, 1, λ, η). This distribution

allows for nonnormality in the return distribution, where the shape parameters

−1 < λ < 1 and η > 0 control the asymmetry and tail thickness, respectively.

The distributional density is symmetric when λ = 0 and skews to the left (right)

when λ < 0 (λ > 0). When λ = 0 and η = 2, it gives the standardised normal
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distribution (see, e.g., Anatolyev and Petukhov, 2016; Feunou et al., 2016, for

application of SGE distribution to financial data).

To estimate conditional VaR and ES at h-day horizon, I perform the following

algorithm:

1. On day t, I randomly sample {z∗
t+1, z∗

t+2, .., z∗
t+h} with replacement from the

set of standardised residuals.

2. The sampled residuals are plugged into the conditional mean and variance

equations (i.e., Eq. (2.10) - (2.12)) to generate a simulated path of returns

{r∗
t+1, r∗

t+2, ..., r∗
t+h}. The bootstrapped h-day return is then constructed as

r∗
t,h = ∑h

i=1 r∗
t+i.

3. I repeat the above steps B = 10, 000 times to form an empirical return

distribution at the h-day horizon, {rb
t,h} = {r1

t,h, r2
t,h, ..., rB

t,h}.

The conditional VaR is obtained as the αth percentile of the simulated return

distribution:

QB
α (rt,h) = {rb

t,h}Bα (2.13)

and the corresponding conditional ES is:

ESB
α (rt,h) = 1

Bα

B∑
b=1

rb
t,hI(rb

t,h
<QB

α (rt,h)) (2.14)

where I(rb
t,h

<QB
α (rt,h)) is an indicator function. I term the VaR and ES forecasts

from this method as “GARCH-Evt” when the conditional variance in Eq. (2.11)

is used and “GJR-Fhs” when Eq. (2.12) is used.

2.2.2.2 EVT-based Filter Historical Simulation

An alternative simulation approach is to combine FHS with EVT as proposed

by McNeil and Frey (2000). To this end, I fit a GPD to those standardised
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residuals that exceeded the threshold, which correspond to the 7.5% percentile of

the standardised residuals. Next, I follow McNeil and Frey (2000) to simulate the

conditional return distribution at the h-day horizon using the following algorithm:

1. Similar to the FHS, I randomly sample {z∗
t+1, z∗

t+2, .., z∗
t+h} with replacement

from the set of standardised residuals.

2. If the bootstrapped z∗ is lower than the threshold level, I replace it with a

simulated value from a GPD (ξ̂,η̂), where ξ̂ and η̂ are the estimated GPD

parameters from in-sample standardised residuals. Otherwise, the sampled

standardised residuals is used.

3. Steps (3) and (4) of the FHS algorithm are then applied to form an empirical

return distribution at the h-day horizon using B = 10, 000 trails, {rb
t,h} =

{r1
t,h, r2

t,h, ..., rB
t,h}.

The conditional VaR and ES are then obtained by Eq. (2.13) and (2.14) as above. I

term the VaR and ES forecasts from this approach “GARCH-Evt” and “GJR-Evt”,

depending on whether the filtering model is GARCH(1,1) and GJR-GARCH(1,1),

respectively.

2.2.2.3 CAViaR-based Models

In the next benchmark method, I replace the MIDAS-based specifications with

two analogues drawing from the CAViaR model of Engle and Manganelli (2004):

Symmetric Absolute Value:

Qα,t−1(rt) = β0 + β1Qα,t−2(rt−1) + β2|rt−1| (2.15)

Asymmetric Slope:

Qα,t−1(rt) = β0 + β1Qα,t−2(rt−1) + β−
2 I(rt−1<0)|rt−1|+β+

2 I(rt−1≥0)|rt−1| (2.16)
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The conditional VaR and ES are estimated using either AL density or EVT as

described earlier. A contrasting difference between this benchmark method and

MIDAS-based models is the treatment of higher frequency observations. The

CAViaR model works exclusively on single-horizon setting. This means that

one needs to aggregate higher frequency returns to match the target forecasting

horizon to perform model estimation. I term the forecasting models “Sav-AL” and

“Sav-Evt” when symmetric absolute value specification is utilised. Alternatively, I

refer the models as “As-AL” and “As-Evt” when the asymmetric slope specification

is employed.

2.2.3 Evaluation Methods of VaR and ES forecasts

I employ two alternative ways to evaluate the accuracy of out-of-sample VaR and

ES forecasts. First, I assess the absolute performance of VaR and ES forecasts

corresponding to their usages as risk measures. Second, I evaluate the relative

performance of competing models using two loss functions.

2.2.3.1 Absolute Performance Evaluation

VaR backtests

I employ two popular tests to investigate the accuracy of VaR forecasts,

including the unconditional coverage (UC ) test of Kupiec (1995) and the dynamic

quantile (DQ) test of Engle and Manganelli (2004). Under the null hypothesis of

the UC test, the number of VaR violations is not statistically different from the

chosen quantile level. The test can be performed using the log-likelihood ratio

(LR) statistic:

LR = 2[Tuln(Tu/(αT )) + (T − Tu)ln((T − Tu)/(T − αT ))]
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where T is the number of observations, α is the probability level and Tu is the

number of VaR exceedances. The LR test statistic follows a χ2(1) distribution.

Apart from unconditional coverage, DQ further examines the dependence between

VaR violations. The test statistic involves a transformation of VaR series to a

hit sequence, Hitt = I(rt<Qα,t−1(rt)) − α. Under the null hypothesis of correct VaR

forecasts, Hitt should have a zero unconditional and conditional expectation given

the information set available at time t − 1. The test can be performed using

a linear regression Hitt = Xβ + εt, where X is a set of potential explanatory

variables. Similar to Bali et al. (2008), I include a constant, the current level of

VaR and five lags of Hitt. The test statistic is specified as:

DQ = b̂′X ′Xb̂′

α(1 − α)

where b̂ are the estimated coefficients of the linear regression and the DQ test

statistic follows χ2(7) distribution, where 7 is the column dimension of X.

ES backtests

I consider three backtesting procedures for ES forecasts. First, I employ the

discrepancy test of McNeil and Frey (2000). After standardizing by corresponding

VaR estimates, the standardised discrepancies between VaR violations and ES

forecasts should have unconditional mean of zero under the correct risk model.

This null hypothesis can be tested using bootstrap method with 10,000 trials as

documented in McNeil and Frey (2000).

Second, I adopt the unconditional and conditional ES tests of Du and Escan-

ciano (2017) due to their analogy with the VaR backtests. Instead of explicitly

employing ES estimates, they implicitly examine the accuracy of the risk model in

tail coverage. These tests are based on the observation that VaR violations should

form a class of martingale difference sequence (MDS), indexed by the considered

quantile level. Du and Escanciano (2017) argue that the cumulative violations also
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form MDS and provide meaningful information about the conditional tail when a

violation occurs to backtest ES. The cumulative violation process is defined as

the integral of VaR violations:

Ht(α) = 1
α

∫ α

0
ht(u)du

where ht(u) = I(rt<Qu,t−1(rt)) is the hit indicator at quantile level, u, at time t.

If the risk model is correctly specified, ht(u) has mean u. Similar to Du and

Escanciano (2017), I define ut = F (rt|θ̂α, Ωt−1) for computational purposes, where

F (.|Ωt−1) is the conditional cumulative return distribution given the estimated

parameters of the risk model, θ̂α. Then, ht(u) = I(rt<Qu,t−1(rt)) = I(ut<u) and the

cumulative violations process can be written as:

Ht(α, θ̂α) = 1
α

∫ α

0
I(ut<u)du = 1

α
(α − ût)I(ût<α)

The unconditional ES test can be conducted by testing the null hypothesis

H0 : E
[
Ht(α, θ̂α)

]
= α/2 using a standard t-test:

UES =
√

T
(
H(α) − α/2

)
var(Ht(α)) ∼ N(0, 1) (2.17)

where T is the number of forecasts and var(Ht(α)) =
√

α(1/3 − α/4), and H(α) is

the sample mean of {Ĥ(α)}T
t=1. Finally the conditional ES test can be obtained by

checking whether {Ht(α, θ̂α) − α/2}∞
t=1 are uncorrelated with the null hypothesis

being H0 : E
[
Ht(α, θ̂α) − α/2|Ωt−1

]
= 0. I define the lag-j autovariance, γT,j,

and autocorrelation, ρT,j, of {Ht(α)}T
t=1 for j ≥ 0 as:

γT,j = 1
T − j

T∑
t=j+1

[Ht(α) − α/2] [Ht−j(α) − α/2] and ρT,j = γT,j

γT,0
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To be consistent with the DQ test, I chose a lag order m = 5. The test can then

be conducted using a simple Box-Pierce test statistic.

CES(m) = N
T∑

j=1
ρ̂2

T,j ∼ χ2
m (2.18)

Finally, I employ the multinomial VaR (MultiVaR) test of Kratz et al. (2018) to

evaluate the accuracy in tail coverage by simultaneously testing VaR estimates at

multiple quantile levels. From a practical viewpoint, this test has the advantage

of not having to store predictive distribution F (.|Ωt−1) from the risk model at

each forecast. For a given starting quantile level of interest, α, I consider a series

of VaR forecasts at levels α1, .., αN given by:

αj = α + j − 1
N

(1 − α), j = 1, .., N

I choose the starting quantile level α = 0.025, which is equivalent to backtesting ES

forecasts at the 2.5% quantile level. This choice is motivated by the requirement

of Basel Committe on Banking Supervision (2019) for ES forecasts.7 I define

It,j = I(rt<Qαj ,t−1) as the violation indicator. The sequence Xt = ∑N
j=1 It,j counts

the number of VaR estimates being violated at each time t. Similar to individual

VaR forecasts, for the sequence (Xt) to have a correct tail coverage, it should

satisfy the following two properties:

1. The unconditional coverage: P (Xt ≤ j) = αj+1, j = 0, ..., N for all t.

2. The conditional coverage: Xt is independent of Xs for all s ̸= t.

Kratz et al. (2018) show that the two above conditions can be tested using multi-

nomial distribution of the sequence. Let MN(T, (p0, ..., PN)) be the multinomial

distribution where T is the number of trials. At each trial, there are N + 1
7The use of quantile regressions cannot guard against the possibility of the well-known

“quantile crossing”. On any day when the issue is observed, I apply the recently developed
method of monotonically rearrangement of Chernozhukov et al. (2010) to correct the problem.
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outcomes (0, 1, ..., N) depending on how many VaR levels are breached, together

with corresponding probabilities p0, ..., pN . The observed cell count is defined as:

Oj =
T∑

t=1
IXt=j, j = 0, 1, ..., N

then, the random vector (O0, O1, ..., OT ) should follow the multinomial distribution

if the two conditions are satisfied, (O0, O1, ..., OT ) ∼ MN(T, (α1 − α0, ..., αN+1 −

αN)). The formal hypotheses are given by:

H0: φj = αj, for j = 1, ..., N

H1: φj ̸= αj, for at least one j ∈ {1, ..., N}

where 0 = φ0 < φ1 < ... < φN < φN+1 = 1 is an arbitrary sequence of parameters.

Kratz et al. (2018) propose several test statistics to examine the hypotheses. In my

application, I choose the Nass test (Nass, 1959) with N = 4 as this test exhibits a

good compromise between size and power of the test (for technical details, refer

to Kratz et al., 2018).

2.2.3.2 Relative Performance Evaluation

To evaluate the relative accuracy and facilitate decision making between different

forecasting methods, it is necessary to employ loss functions. Models that generate

lower expected loss are arguably preferred over those with higher loss values. To

simplify the notation in this subsection, let Q̂t = Qα,t−1(rt) be the conditional

VaR and ÊSt = ESα,t−1(rt) be the conditional ES. Since VaR is elicitable using

Eq. (2.3), Giacomini and Komunjer (2005) argue that this function is a natural

choice to compare VaR forecasts:

LQ(Q̂t) = (rt − Q̂t)
[
α − I(rt≤Q̂t)

]
(2.19)
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Fissler and Ziegel (2016) suggest a family of strictly consistent loss functions in

which VaR and ES forecasts are jointly elicitable. I adopt a member of this family

defined in Fissler et al. (2015) to jointly compare the forecast errors of VaR and

ES estimates from competing models as follows:

LF ZG(Q̂t, ÊSt) = (I(rt<Q̂t) − α)Q̂t − I(rt<Q̂t)rt

+ exp(ÊSt)
1 + exp(ÊSt))

(
ÊSt − Q̂t + 1

α
I(rt<Q̂t)(Q̂t − rt)

)
(2.20)

+ ln

(
2

1 + exp(ÊSt)

)

Using these loss functions, I apply the model confidence set (MCS) method of

Hansen et al. (2011) to form a set of superior models. The MCS procedure starts

with the initial set of forecasting models, M0, to deliver the superior set of models

M∗
1−α∗ , which contains smaller number of models, m∗ < M0 , for a given significant

level α∗.8 In the main analysis, I use α∗ = 5% to construct the 5% MCS.9 The

test applies an elimination rule where at each step, a significance test is conducted

to eliminate the worst performing model based on an equivalence test, δM, and an

elimination rule eM, as follows:

H0,M : E(∆Li,j,t) = 0, for all i, j ∈ M

HA,M : E(∆Li,j,t) ̸= 0, for some i, j ∈ M

where M ⊂ M0 is the set of remaining models at each step and ∆Li,j,t is the loss

difference between model i and j at time t. If the null hypothesis H0,M is not

rejected by the equivalence test δM, the MCS is defined as M∗
1−α∗ = M. Otherwise,

the worst performing model is eliminated using the elimination rule eM. I employ
8Note that I use α∗ to differentiate the significant level of MCS analysis to the quantile level,

α, in VaR and ES forecasts.
9The 10% MCS is presented in Table A.10 and provides similar result.
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the equivalence test based on the range statistic in Hansen et al. (2011):10

TM = max
i∈M

|ti,j| (2.21)

where

ti,j = ∆Li,j√
V̂ ar(∆Li,j)

; ∆Li,j = T −1
T∑

t=1
∆Li,j,t

where ∆Li,j is the average sample loss difference between models i and j, V̂ ar(∆Li,j)

is estimate of the asymptotic variance of ∆Li,j , computed using a block-bootstrap

with 10, 000 trials and a block size set at l = 4 observations.11

The elimination rule is then specified as:

eM = arg max
i∈M

sup
j∈M

ti,j (2.22)

where the model with the highest value of ti,j is eliminated if the null hypothesis

is rejected. The test is sequentially repeated until the MCS is reached at a given

confidence level.

2.3 Empirical Analysis

2.3.1 Data and Descriptive Statistics

I employ daily U.S. dollar-denominated returns for 42 international indices and the

MSCI world index. The sample period is from January 2, 1996 to December 31,

2017 for most of the markets with a total of 5740 days.12 The full list of countries
10I also employ the alternative test statistic in Hansen et al. (2011), which is the semi-quadratic

statistic. The results are presented in Table A.11 and yields similar results.
11The MCS results with alternative block sizes (2 and 6) or the use stationary bootstrapping

in A.12 give similar results
12The only two exceptions are Portugal ,which starts on May 04, 1998 and Russia, which

starts on April 02, 1997.
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Table 2.1 List of International Indices

Country Source
World World Portfolio MSCI

Developed Markets Australia, Austria, Belgium, Canada,
Denmark, Finland, France, Germany, The
Netherlands, Hongkong, Ireland, Israel,
Italia, Japan, South Korea, New Zealand,
Norway, Portugal, Singapore, Spain,
Sweden, Switzerland, United Kingdom,
United States

FTSE

Emerging Markets Brazil, Chile, China, Czech Republic,
Hungary, India, Indonesia, Malaysia,
Mexico, Pakistan, Peru, Philippines,
Poland, Russia, South Africa, Taiwan,
Thailand, Turkey

S&P/IFCI

is provided in Table 2.1. I obtain total return indices for 24 developed markets

from the FTSE, and for the 18 emerging markets indices from the S&P/IFCI

database. The series correspond to highly liquid and investable indices, which

track real returns for a foreign investor investing on each country in the equity

market. Furthermore, they are often used in the literature of international portfolio

diversification literature (see Christoffersen et al., 2012; Ghysels et al., 2016).

Table 2.2 reports the descriptive statistics for the index return series. Panel A

displays information about the 1-day return horizon, while Panels B and C present

the metrics for the 5- and 10-day horizons, respectively. The columns provide the

mean and quantiles for the cross-sectional distribution of the statistics presented

in rows, including the annualised mean, annualised standard deviation, skewness,

kurtosis and the Jarque-Bera statistic. With the only exception of Portugal, all

markets have positive mean returns over the sample in all the three horizons.

The return series have, on average, negatively skewed and leptokurtic empirical

distributions. Notably, average skewness increases in absolute value with horizons,

which is in line with the findings of Neuberger (2012) and Ghysels et al. (2016).
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Table 2.2 Descriptive Statistics of International Indices

This table reports the descriptive statistics for the cross-section of index returns. The columns
show the mean and quantiles from the distribution of cross-sectional statistics presented in
the rows. Panel A reports the statistics for the 1-day horizon, while Panels B and C show the
corresponding statistics for the 5- and 10-day horizon, respectively. The last row in each panel
reports the Jaque-Bera test statistics under the null hypothesis of normally distributed in the
return series.

Mean 5% 25% Median 75% 95%

Panel A: 1-day
Mean 0.070 0.024 0.053 0.076 0.086 0.114
Std dev 0.262 0.186 0.222 0.248 0.292 0.410
Skewness -0.206 -0.736 -0.355 -0.192 -0.069 0.300
Kurtosis 12.305 7.291 9.238 10.848 13.230 22.826
Jarque-Bera 30544.96 4426.63 9074.24 14904.09 25029.66 106849.23

Panel B: 5-day horizon
Mean 0.350 0.119 0.265 0.380 0.431 0.569
Std dev 0.631 0.421 0.515 0.598 0.710 1.065
Skewness -0.472 -0.945 -0.695 -0.566 -0.281 0.141
Kurtosis 9.162 5.383 6.228 7.917 10.363 18.562
Jarque-Bera 3083.68 306.03 526.61 1163.91 2698.50 11688.43

Panel C: 10-day horizon
Mean 0.700 0.238 0.530 0.759 0.863 1.137
Std dev 0.855 0.562 0.691 0.810 0.971 1.435
Skewness -0.521 -1.181 -0.718 -0.517 -0.277 0.078
Kurtosis 7.749 4.433 5.342 6.557 8.915 16.746
Jarque-Bera 909.35 57.40 147.94 316.02 930.40 4735.75

Indeed, the Jarque-Bera statistics strongly reject the null hypothesis of normality

for all indices and horizons.

2.3.2 Estimates of MIDAS-based Models

In this chapter, I am interested in the VaR and ES forecasts of two commonly

used quantiles in the literature, at α = (0.01, 0.05) probability levels, respectively.

I consider three forecast horizons: 1-day, 5-day and 10-day. The choice of 1-day

horizon allows for direct comparison of my results to the established methods in

the literature, which mainly focus on 1-day ahead forecasts. The choice of 10-day

horizon is motivated by the baseline horizon used for the capital requirements

under the Basel III regulatory agreement.
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The main focus of this study is to improve the out-of-sample performance

of VaR and ES forecasts using MIDAS-based models. However, the estimation

results of the proposed models provide some worthy observations. For this purpose,

I present the estimated parameters of the MIDAS-based models using the first

estimation window of 2500 daily returns. I start by the estimation results for

the MSCI world index at α = 0.05.13 Next, I further examine the variations in

parameter estimates across countries.

Table 2.3 presents results for the AL-based models described in section 2.2.1.

Columns (1) are the results for the Midas-AL model, while columns (2) are the

results for the MidasAs-AL model. The row “Log-L” provides the maximised

log-likelihood value of AL density presented in Eq. (2.7), while “Hit” is the

empirical violation rate of the estimation sample.

I observe strong time-variation in the conditional VaR as the slope coefficients

β1
α,h (β1−

α,h,β1+
α,h) are statistically significant at conventional levels. The γ coefficient

governing the dynamics of conditional ES is also always significant across models

and horizons. Not surprisingly, the negative and positive returns have different

impacts on the quantile dynamics, although the asymmetry is less pronounced at

longer horizons. For example, the β1+
α,h estimate at the 1-day horizon is -0.354 and

not statistically significant, whereas its value at the 10-day horizon is 9.548 and

highly significant with the magnitude almost equal to that of β1−
α,h (-10.842). The

MidasAs-AL model provides better goodness-of-fit than the symmetric counterpart

as shown by the “Log-L” values. Finally, the percentages of VaR exceedances

are always close to 5%, signalling good tail coverages for both models over the

estimation period.

Table 2.4 reports the estimated parameters for the EVT-based models. Columns

(1) correspond to the Midas-Evt model, while columns (2) refer to the MidasAs-Evt

model. I also report the likelihood value of Eq. (2.7) using estimated VaR and
13The estimation results for α = 0.01 provide similar conclusions.
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Table 2.3 Estimation of AL-based Models at the 5% quantile for the
MSCI World Index

This table provides estimated parameters of two AL-based models under the MIDAS framework
for the 5% quantile level for the MSCI World index. The results are presented for 1-, 5- and
10-day return horizons. The parameters are estimated using the first moving window with
2500 observations. Columns (1) are the results for the Midas-AL model, while Columns (2)
are the results for the MidasAs-AL model, which specify the conditional quantile as in Eq.
(2.1) and (2.2), respectively. The numbers in parentheses below the estimated parameters are
p-values, based on bootstrapped standard errors with 1,000 replications. For parameter κ2, the
null hypothesis is κ2 = 1. The row Log-L reports the maximised log-likelihood value of AL
distribution described in Eq. (2.7), while the row Hit (%) denotes the percentage of times the
VaR is exceeded.

1-day horizon 5-day horizon 10-day horizon

Model (1) (2) (1) (2) (1) (2)

-0.003 -0.004 -0.012 -0.016 -0.036 -0.045
β0

α,h (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
-1.743 -2.706 -4.265 -7.321 -1.865 -10.842
(0.000) (0.000) (0.000) (0.000) (0.007) (0.000)

-0.354 0.966 9.548β1
α,h

β1−
α,h

β1+
α,h


(0.069) (0.088) (0.000)

8.523 7.147 4.968 3.060 20.039 2.613
κ2 (0.000) (0.000) (0.000) (0.011) (0.034) (0.000)

-1.064 -1.162 -1.228 -0.959 -0.878 -1.081
γ (0.000) (0.000) (0.000) (0.000) (0.013) (0.000)

Log-L 7092.82 7179.12 931.39 945.11 388.72 406.47
Hit(%) 4.833 4.750 5.000 5.000 5.000 4.583

ES for comparison purposes, although the estimation of EVT-based models does

not involve AL density maximisation. The estimation results are generally in line

with those reported in Table 2.3. The asymmetric effects of lagged returns become

less pronounced at longer horizon. Both models have Hit percentages close to 5%.

Finally, the likelihood values are only slightly lower than their counterparts in

Table 2.3, which directly maximise the AL likelihood.

Tables 2.5 and 2.6 provide a summary of the cross-sectional parameter estimates

for the newly proposed models. Some observations are worth noting. First, the

coefficients of negative lagged returns (β1−
α,h) have greater magnitude on average

than those of lagged positive returns (β1+
α,h). This finding provides evidence

of asymmetric effects of lagged returns across countries and forecast horizons.

Second, the cross-sectional standard deviation of parameter κ2 is relatively more
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Table 2.4 Estimation of EVT-based Models at the 5% quantile for the
MSCI World Index

This table provides estimated parameters of two EVT-based models under the MIDAS framework
for the 5% quantile level for the MSCI World index. The results are presented for 1-, 5- and
10-day return horizons. The parameters are estimated using the first moving window with 2500
observations. Columns (1) are the results for the Midas-Evt model, while Columns (2) are the
results for the MidasAs-Evt model, which specify the conditional quantile in Eq. (2.1) and (2.2),
respectively. The numbers in parentheses below the estimated parameters are p-values, based on
bootstrapped standard errors. For parameter κ2, the null hypothesis is κ2 = 1. The row Log-L
reports the maximised log-likelihood value of AL distribution described in Eq. (2.7), while the
row Hit (%) denotes the percentage of times the VaR is exceeded.

1-day horizon 5-day horizon 10-day horizon

Model (1) (2) (1) (2) (1) (2)

-0.002 -0.004 -0.011 -0.016 -0.031 -0.033
β0

α,h (0.001) (0.000) (0.003) (0.000) (0.003) (0.000)
-1.625 -2.726 -3.201 -7.124 -1.375 -9.564
(0.000) (0.000) (0.000) (0.000) (0.077) (0.000)

0.035 2.116 6.545β1
α,h

β1−
α,h

β1+
α,h


(0.160) (0.031) (0.000)

8.608 6.073 5.230 2.777 18.960 2.557
κ2 (0.000) (0.000) (0.000) (0.002) (0.000) (0.027)
ξ 0.085 0.185 -0.156 -0.227 0.064 0.053
β 0.349 0.294 0.467 0.520 0.585 0.380

Log-L 7000.13 7166.88 931.06 943.69 386.45 404.36
Hit(%) 5.125 5.250 5.000 5.000 5.417 4.583

pronounced than those of other parameters, particularly at the multi-day horizons.

Although κ2 does not have a direct economic interpretation, this coefficient

provides information about the shape of the weighting function applied to the

lagged conditioning variable. Since I apply the same lag length in all estimations,

this observation highlights the flexibility of the MIDAS framework in capturing

significant heterogeneity in tail dynamics across market indices and forecasting

horizons (see, e.g., Gu and Ibragimov, 2018, for similar evidence of heterogeneity

in the tail of international index return using the “Cubic law”).

2.3.3 Out-of-Sample Forecast Evaluation

I now focus on the out-of-sample (OOS) VaR and ES forecasts from the MIDAS-

based models and the benchmark models presented in Section 2.2.2. To this

end, I employ a rolling window approach with a fixed length of 2500 daily
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Table 2.5 Cross-sectional Estimates of AL-based Models at the 5%
quantile

This table provides the average of estimated parameters across countries of the AL-based models
at the 5% quantile level. Results are reported at 1-day, 5-day and 10-day return horizons,
respectively. The parameters are estimated using the first moving window of 2500 observations.
Columns (1) are the results for the Midas-AL model, while Columns (2) are the results for the
MidasAs-AL model, which specify the conditional quantile in Eq. (2.1) and (2.2), respectively.
The numbers in parentheses display cross-sectional standard deviation of the above parameters.

1-day 5-day 10-day

Model (1) (2) (1) (2) (1) (2)

-0.006 -0.008 -0.018 -0.021 -0.031 -0.034
β0

α,h (0.003) (0.004) (0.018) (0.019) (0.038) (0.032)
-1.674 -2.296 -3.908 -5.705 -5.089 -9.298
(0.278) (0.380) (1.555) (2.541) (3.232) (5.675)

-0.660 -1.678 -0.325β1
α,h

β1−
α,h

β1+
α,h


(0.424) (2.144) (6.731)

12.606 14.234 21.294 14.901 32.993 12.892
κ2 (7.252) (7.097) (52.672) (24.515) (65.669) (24.757)

-0.914 -0.984 -0.959 -0.961 -1.094 -1.196
γ (0.185) (0.182) (0.228) (0.218) (0.356) (0.377)

Table 2.6 Cross-sectional Estimates of EVT-based Models at the 5%
quantile

This table provides the average of estimated parameters across countries of the Evt-based models
at the 5% quantile level. Results are reported at 1-day, 5-day and 10-day return horizons,
respectively. The parameters are estimated using the first moving window of 2500 observations.
Columns (1) are the results for the Midas-Evt model, while Columns (2) are the results for the
MidasAs-Evt model, which specify the conditional quantile in Eq. (2.1) and (2.2), respectively.
The numbers in parentheses display cross-sectional standard deviation of the above parameters.

1-day 5-day 10-day

Model (1) (2) (1) (2) (1) (2)

-0.005 -0.006 -0.014 -0.018 -0.021 -0.035
β0

α,h (0.004) (0.004) (0.017) (0.016) (0.032) (0.032)
-1.436 -2.157 -3.432 -4.708 -4.445 -6.723
(0.288) (0.422) (1.367) (2.114) (2.526) (4.324)

-0.450 -1.415 -0.327β1
α,h

β1−
α,h

β1+
α,h


(0.397) (1.887) (3.800)

11.826 12.823 17.905 19.390 17.246 22.111
κ2 (7.527) (7.474) (53.094) (40.973) (49.149) (56.400)

0.067 0.074 -0.007 0.011 -0.043 0.066
ξ (0.123) (0.109) (0.256) (0.208) (0.362) (0.397)

0.434 0.407 0.497 0.476 0.512 0.423
ς (0.057) (0.048) (0.172) (0.138) (0.197) (0.208)
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observations. I estimate the parameters for each model using the most recent

2500 daily observations and obtain VaR and ES forecasts for all quantile levels

and for 1-, 5- and 10-day ahead. Then, I move the estimation window 10 days

forward and iterate this procedure until I reach the end of the sample. Thus, this

procedure yields a total of 324 OOS forecasts, spanning the period from August 2,

2005 to December 30, 2017.

2.3.3.1 Absolute Forecasting Performance

The results for VaR forecasts of competing models at the 1% and 5% quantile

levels are presented in Table 2.7. Panel A shows the results for the 1-day horizon,

whereas Panels B and C display the results for the 5- and 10-day forecast horizons,

respectively. The first two columns present the empirical hit percentage over the

OOS period. For each test in the next columns, I report the number of rejections

across the countries. Finally, column “Total” is the sum of rejections across

quantile levels for each test. For example, the value of 3 for the GARCH-Fhs

model at the 1% quantile in the UC column of Panel A indicates that the 1%

VaR forecasts of this model at the 1-day horizon are rejected by UC test in 3 out

of 43 indices. Thus, for each forecasting horizon, the best model has the lowest

value in each column.

The MIDAS-based models has competitive results to the benchmark models at

the 1-day horizon, but provide superior results at the 5- and 10-day horizons. All

models perform reasonably well in the UC test at 1-day horizons and the levels of

hit percentage are close to the quantile level. At longer forecast horizons, however,

all benchmark models significantly underestimate the risk as the hit percentage

often exceeds the quantile level. In contrast, the MIDAS-based models continue

to produce violation rates that are close to the quantile levels. In particular, the

two MIDAS-based models with AL density provide the best performance since

they are not rejected in any market at both quantile levels at the 10-day horizon.
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The results from the DQ test offer three additional insights. First, the asym-

metric models often provide smaller number of test rejections than the symmetric

alternatives, especially at the 1-day horizon. However, this effect is considerably

weaker at the 10-day horizon, which is in line with the in-sample estimates of the

previous subsection. Second, the performance of CAViaR-based models deteriorate

significantly at the 5- and 10-day forecast horizons. For instance, the 5% VaR

forecast of the As-AL model is rejected in only 3 out of 43 indices at the 1-day hori-

zon. This number changes remarkably at the 10-day horizon, indicating that the

As-AL model is rejected in 33 out of 43 markets. Third, the MIDAS-based models

consistently provide competitive performance in all three forecasting horizons. In

fact, the Midas-Evt model has the lowest number of rejections in both the 5- and

10-day forecast horizons. The contrasting performance between MIDAS-based

and CAViaR-based models at the multi-day horizon highlights the deficiency of

temporal aggregation to match target horizon in VaR forecasts and consistent

with the simulation study in Ghysels et al. (2016).

Next, I focus on the result for ES forecasts in Table 2.8. In the columns, I

present evaluation results for the four ES backtests described earlier in Section 2.2.3.

These tests include the discrepancy test of McNeil and Frey (2000) (denoted UES1),

the unconditional (UES2) and conditional (CES) tests of Du and Escanciano

(2017) and the multi-VaR test of Kratz et al. (2018). Again, for each test, I report

the number of rejections across countries, while column ‘Total’ is the sum of this

number across quantile levels. Lower number in each column indicates superiority.

The results are generally in line with those in Table 2.7. First, all models

provide acceptable results in two unconditional ES tests with no clear superiority

of one model over another. Second, similar to VaR forecasts, the models with

asymmetric specification in conditional quantile yield smaller numbers of test

rejection. This observation, however, is less pronounced at the 5- and 10-day fore-

cast horizons. Finally, the CAViaR-based models are clearly the worst performing
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models, whereas the MIDAS-based models are superior at multi-day forecasting

horizons. Particularly in the multi-VaR test, all benchmark models are inferior to

the new models at 5-day and 10-day horizons.14 This finding further highlights

the benefit of MIDAS framework in exploiting the richness of daily returns to

forecast the tail dynamics at multi-day return horizons.

2.3.3.2 Relative Forecasting Performance

While the absolute performance evaluation is useful to validate the competing

models, it provides little insight about their relative performance. Next, I in-

vestigate the relative performance of forecasting models based on the two loss

functions presented in the previous section. Table 2.9 reports the average OOS

forecast losses for all models under consideration. Panel A shows results for the

1-day horizon, while Panels B and C report results for the 5- and 10-day forecast

horizons, respectively. In each panel, I compute the cross-sectional average of the

mean forecast losses across the 43 indices. The LQ and LF ZG loss functions are

reported separately for the 1% and 5% quantile levels. In each column, I highlight

the cell corresponding to the best method in rows.

The most accurate methods often appear in the final two rows, which are

the asymmetric MIDAS-based models. The MidasAs-AL model yields the most

accurate forecasts at the 1% quantile, while the MidasAs-Evt is often the best

model at 5% quantile. The only exception is the 1-day horizon, for which the

GJR-Fhs model achieves the best performance. The CAViaR-based models also

perform well at the 1-day horizon, but their average losses rise significantly at

multi-day forecast horizons.

Table 2.10 presents the MCS results for the LQ and LF ZG loss functions

separately for each quantile level and forecast horizons. The entry in each column

presents the number of times (out of 43 indices), that the model in row is excluded
14The only exception is the MidasAs-AL model at 5-day horizon
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Table 2.7 Results of Out-of-Sample VaR Absolute Forecasting Perfor-
mance
This table summarises the performance of out-of-sample VaR forecasts across 43 international equity indices.
Forecasts are based on rolling window of 2500 observations. Panel A provides the results for the 1-day horizon,
while Panels B and C reports the results for the 5- and 10-day forecast horizons, respectively. The columns
labelled Hit(%) report the percentage of times the VaR estimates are exceeded. The next six columns display
the absolute performance of VaR forecasts, based on the unconditional coverage test (UC) of Kupiec (1995) and
the dynamic quantile test (DQ) of Engle and Manganelli (2004). For each test in column, I report the number
of test rejections out of 43 indices at 5% significant level. Lower number implies superior performance.

Hit(%) UC DQ
Models 1% 5% 1% 5% Total 1% 5% Total

Panel A: 1-day horizon
GARCH-Fhs 1.065 5.021 3 1 4 15 20 35
GARCH-Evt 0.997 5.064 0 0 0 14 19 33
GJR-Fhs 1.063 4.966 3 5 8 11 7 18
GJR-Evt 0.996 5.054 2 4 6 4 5 9
Sav-AL 1.074 4.994 3 1 4 21 21 42
Sav-Evt 1.042 5.188 1 1 2 21 24 45
As-AL 1.069 4.908 5 4 9 12 3 15
As-Evt 1.020 5.024 0 3 3 14 5 19
Midas-AL 1.030 4.950 2 1 3 14 21 35
Midas-Evt 1.021 5.119 1 0 1 19 24 43
MidasAs-AL 1.042 4.897 4 4 8 10 4 14
MidasAs-Evt 0.998 4.975 2 4 6 11 5 16

Panel B: 5-day horizon
GARCH-Fhs 1.529 5.951 7 6 13 15 11 26
GARCH-Evt 1.513 5.920 7 10 17 13 10 23
GJR-Fhs 1.389 5.628 4 4 8 9 7 16
GJR-Evt 1.342 5.520 4 3 7 8 4 12
Sav-AL 1.195 5.030 0 0 0 22 24 46
Sav-Evt 1.267 5.104 0 0 0 16 17 33
As-AL 1.237 4.946 2 4 6 27 15 42
As-Evt 1.269 5.075 1 0 1 19 12 31
Midas-AL 1.023 4.706 1 1 2 11 5 16
Midas-Evt 1.012 4.808 0 1 1 7 4 11
MidasAs-AL 0.924 4.675 1 2 3 12 4 16
MidasAs-Evt 1.015 4.782 0 1 1 8 5 13

Panel C: 10-day horizon
GARCH-Fhs 1.514 5.692 3 2 5 11 5 16
GARCH-Evt 1.514 5.641 2 2 4 13 3 16
GJR-Fhs 1.181 5.307 0 3 3 5 5 10
GJR-Evt 1.188 5.276 1 3 4 6 5 11
Sav-AL 1.261 6.265 3 3 6 21 34 55
Sav-Evt 1.557 5.579 5 1 6 23 17 40
As-AL 1.329 6.530 3 10 13 15 33 48
As-Evt 1.659 5.548 8 1 9 20 14 34
Midas-AL 1.061 4.811 0 0 0 8 1 9
Midas-Evt 1.079 4.427 0 1 1 7 1 8
MidasAs-AL 0.918 4.913 0 0 0 8 2 10
MidasAs-Evt 1.188 4.676 1 1 2 13 2 15
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Table 2.8 Results of Out-of-Sample ES Absolute Forecasting Perfor-
mance
This table summarises the performance of out-of-sample ES forecasts across 43 international equity indices.
Forecasts are based on rolling window of 2500 observations. Panel A provides results for the 1-day horizon,
while Panels B and C reports results for the 5- and 10-day forecast horizons, respectively. The next six columns
display the absolute performance of ES forecasts, based on the unconditional ES test of zero discrepancy (UES1)
of McNeil and Frey (2000), the unconditional (UES2) and conditional ES (CES) tests of Du and Escanciano
(2017), the multi-VaR test of Kratz et al. (2018). For each test in column, I report the number of test rejections
out of 43 indices at 5% significant level. Lower number implies superior performance.

UES1 UES2 CES
Models 1% 5% Total 1% 5% Total 1% 5% Total MultiVaR

Panel A: 1-day horizon
GARCH-Fhs 1 1 2 2 1 3 16 35 51 1
GARCH-Evt 0 0 0 1 1 2 16 33 49 2
GJR-Fhs 1 0 1 1 3 4 7 12 19 4
GJR-Evt 2 1 3 3 2 5 8 12 20 4
Sav-AL 0 1 1 4 0 4 22 42 64 3
Sav-Evt 1 1 2 4 1 5 23 41 64 5
As-AL 1 2 3 8 3 11 11 15 26 4
As-Evt 1 2 3 6 4 10 11 8 19 4
Midas-AL 0 1 1 5 0 5 25 40 65 3
Midas-Evt 1 0 1 4 0 4 20 41 61 3
MidasAs-AL 0 2 2 4 2 6 11 10 21 1
MidasAs-Evt 1 2 3 3 2 5 10 10 20 3

Panel B: 5-day horizon
GARCH-Fhs 1 1 2 3 4 7 1 4 5 8
GARCH-Evt 1 0 1 4 5 9 0 4 4 9
GJR-Fhs 3 2 5 3 3 6 1 4 5 7
GJR-Evt 2 2 4 0 2 2 1 2 3 5
Sav-AL 4 1 5 2 0 2 22 34 56 2
Sav-Evt 0 0 0 0 0 0 7 28 35 2
As-AL 3 3 6 13 0 13 15 13 28 3
As-Evt 2 0 2 3 0 3 11 14 25 4
Midas-AL 0 0 0 1 0 1 5 8 13 1
Midas-Evt 0 0 0 0 0 0 4 4 8 1
MidasAs-AL 1 0 1 2 1 3 4 5 9 3
MidasAs-Evt 1 2 3 2 1 3 3 4 7 1

Panel C: 10-day horizon
GARCH-Fhs 1 0 1 0 3 3 2 2 4 6
GARCH-Evt 1 0 1 0 3 3 3 2 5 4
GJR-Fhs 1 0 1 1 1 2 2 4 6 3
GJR-Evt 0 0 0 2 1 3 2 3 5 3
Sav-AL 3 2 5 9 0 9 16 16 32 7
Sav-Evt 0 1 1 3 2 5 12 13 25 6
As-AL 4 6 10 17 2 19 11 13 24 8
As-Evt 0 1 1 3 2 5 9 10 19 8
Midas-AL 0 1 1 1 0 1 4 4 8 1
Midas-Evt 0 0 0 4 1 5 2 2 4 1
MidasAs-AL 0 2 2 0 1 1 3 2 5 1
MidasAs-Evt 0 3 3 6 2 8 3 3 6 1
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from the 5% MCS. For example, the entry for LQ function of the GARCH-Fhs

model at the 1% quantile level and 1-day horizon is 7. This number indicates

that the model is excluded from the MCS in 7 out 43 cases. Therefore, a smaller

number indicates superior performance cross-sectionally.

The main findings from the MCS results are threefold. First, in line with the

absolute performance evaluation, there is significant benefit of using asymmetric

models at 1-day horizon, but the impact is less pronounced as the forecast horizon

gets longer. Second, the MidasAs-AL model provides the best overall performance

and often be included in the set of superior models in most cases. For example,

this model is always included in the MCS in all indices at both quantile levels at

the 10-day forecast horizon. The GARCH-based models also perform well but are

often inferior to the asymmetric MIDAS-based models. Third, the CAViaR-based

models perform worst at the multi-day forecast horizon and are often excluded

from MCS, especially at the 1% quantile level.

Overall, I obtain promising results for the MIDAS-based models for VaR and ES

forecasts. The proposed models consistently belong to the best performing models

with low number of rejections across backtests in all quantile levels and forecasting

horizons. The new methods also yield the lowest forecast errors and are often

included in the set of superior models, especially at forecasting horizons longer

than 1-day ahead. In contrast, the alternative models that rely on a single-horizon

returns are always inferior to all other models at multi-day forecast horizons.

This finding suggests significant benefits of accounting for serial dependence in

short-horizon return process to predict the tail dynamics of long-horizon return

distribution. Finally, I also find evidence supporting the asymmetric specification

in conditional quantile. In terms of ES forecasting method, the jointly model using

AL density generally provide better forecasts than the EVT-based alternative.
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2.4 Robustness Checks

2.4.1 Model Performance and Market Regimes

I first evaluate model performance across different market regimes. Especially,

I separate the out-of-sample forecasts into three subsamples: (i) the pre-crisis

period from August 2, 2000 to July 31, 2007; (ii) the crisis period from August 1,

2007 to December 31, 2009; (iii) the post-crisis period from January 1, 2010 to

December 31, 2017.

Tables A.2 and A.3 in the Appendix report the average OOS forecast losses

and MCS results for the competing models for each forecasting horizon, quantile

level and sub-period. Not surprisingly, the forecast losses increase significantly

during the crisis period in all cases. This finding is in line with the recent result

of Kourtis et al. (2016) and Symitsi et al. (2018) in the context of volatility and

covariance forecasting, respectively. The MIDAS-based models generate slightly

higher forecast losses than GARCH-based models during crisis at 1-day and 5-day

horizon, but outperform the latter at 10-day horizon. During the pre-crisis and

post-crisis sub-samples, the MIDAS-based models yield the best performance

compared to all other competing models. Consistent with results of the full-

sample results, the CAViaR-based forecasts often belong to the worst performing

models in all sub-samples and particularly at the multi-day horizons. Finally, the

MidasAs-AL model is often included in the superior set across three sub-samples,

where the superiority is more pronounced at multi-day forecasting horizons.

2.4.2 Alternative Assets

My main results focus on the international equity indices. To further investigate

the predictive power of the new models, I repeat the main analysis with alterna-

tive assets. To this end, I obtain stock prices of 20 largest companies globally

listed the “Global Top 100 companies by market capitalisation” report by the
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PricewaterhouseCoopers (PwC) on March 3, 2018. The companies are: Apple,

Microsoft, Amazon.com, Tencent, Berkshire Hathaway, JPMorgan Chase, Johnson

& Johnson, Exxon Mobile, Bank of America, Royal Dutch Shell, Walmart, Wells

Fargo, Intel, Anheuser-Busch InBev, Taiwan Semiconductor, AT&T, Chevron,

PetroChina, Novartis. The data is collected from DataStream with the maximum

available sample period from January 3, 1997 to December 31, 2017.15 I also

consider two alternative asset classes, including: the Barclays U.S. Aggregate

Bond Index from September 29, 2003 to December 31, 2017 as a proxy for the

bond class. I also consider the S&P Goldman Sachs Commodity Total Return

Index (GSCI) from January 1, 2003 to December 31, 2017 as a proxy for the

commodity class. These two indices are investable and track the return of an

investor from a fully collateralised portfolio of bonds and commodities. For these

two indices, I collect data from the CapitalIQ database.

Table A.4 reports the average OOS forecast losses across the considered assets.

In line with the main analysis, the MIDAS-based models provide clearly the best

VaR and ES forecasts. The asymmetric models yield slightly lower forecast losses

than the symmetric counterparts. This observation is generally in line with the

model confidence set results in Table A.5. An interesting observation is that

the performance of CAViaR-based models with AL density are not considerably

inferior to the GARCH-based models compared to the analysis involving only

stock indices.

2.4.3 Alternative Rolling Window Length

The OOS forecasts in the main analysis are conducted using rolling window of 2500

observations. This choice is largely driven by the convergence rates of the CAViaR-

based models. The single-horizon setting leads to substantial loss of observations

for the model estimation. For example, the CAViaR-based models are optimized
15Some stocks have shorter historical length but the first observation is no later than January

1, 2005
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using only 250 non-overlapping return observations at the 10-day forecast horizon.

Nevertheless, one may concern that using long estimation windows may give

unfair advantage to the MIDAS-based methods, for example, compared to the

GARCH-based models. To explore this issue, I repeat my analysis using rolling

window of 1,500 and 2,000 observations, respectively. In the former case, I exclude

the CAViaR-based models due to their low rates of convergence. Tables A.6 and

A.7 in the Appendix show that my main conclusions are robust to the length of

rolling windows. Notably, the performance of EVT-based models deteriorates

remarkably in shorter estimation windows. This observation is not surprising

since the numbers of extreme exceptions in these cases are lower, which thereby

increases estimation errors and reduces the goodness-of-fit in the GPD estimation.

2.4.4 Performance for Different Country Groups

The return distributions in developed and emerging markets are typically charac-

terised by distinct features. For example, Bekaert et al. (1998) show that return

process in emerging countries significantly departs from normality due to frequent

market jumps resulting from the non-smooth transition periods in the globalisation

process. In the third chapter, I also document that the conditional distribution of

emerging markets is less negatively skewed and has higher kurtosis than those of

developed countries. Therefore, it is of interest to compare the model performance

between the two groups of country.

Table A.8 provides the average OOS forecast losses separately for each country

group. The forecast losses are substantially higher for the emerging countries in all

cases. This observation may result from relatively more noisy data of the emerging

stock markets. Nevertheless, the relative performance between competing models

is consistent with the main results. The lowest forecast losses are often recorded

in the final two rows, which correspond to the asymmetric MIDAS-based models.

The MCS results in Table A.9 indicate that the asymmetric MIDAS-based model
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with AL density provides the best overall performance in both country groups.

Therefore, I conclude that the performance of the new models is robust to different

characteristics in the return process.

2.5 Suggestions for Future Research

My main analysis in this chapter focuses on VaR and ES forecast, given their

practical importance to financial institutions and regulations. Thus, my result

provides additional evidence on the benefits of MIDAS framework in forecasting

different characteristics of return distribution (see, e.g., Ghysels et al., 2019,

for recent evidence on the superiority of MIDAS in volatility forecasting). An

interesting question for future research is whether the MIDAS framework can

also improve return density forecast or equity risk premium, for example, by the

combination of quantile forecasts (see, e.g, Lima and Meng, 2017; Wilhelmsson,

2013, for similar application).

Another extension of the current study could include the macroeconomic and

financial variables in the conditioning variables. Several studies document signifi-

cant explanatory power of economic variables on conditional return distribution

features such as mean (Campbell and Diebold, 2009), volatility (Engle et al., 2013),

correlation (Colacito et al., 2011) or different parts of return density (Cenesizoglu

and Timmermann, 2008). Thus, additional information from macroeconomic

conditions can further improve the forecast of tail dynamics in conditional return

distribution. The MIDAS framework provides suitable setting to incorporating

such variables, which typically sampled at different frequencies.

Finally, as I focus on the univariate VaR and ES forecast, a direct extension

can explore multivariate VaR and ES forecasts (see, e.g Polanski and Stoja, 2017)

or investigate potential benefits of MIDAS-based forecasts in a portfolio allocation

(see, e.g, Dias, 2016, for the value of controlling for tail risks in portfolio selection).
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2.6 Conclusion

Using the MIDAS framework, I propose new models to directly forecast VaR

and ES at the desired horizon and quantile level. The semiparametric approach

allows flexible dynamics in different quantile levels and avoid making distributional

assumptions. In addition, the MIDAS framework utilises the data-rich environment

of higher frequency return process to improve the forecast of the tail dynamics

in longer horizon. Using a large cross-section of international stock indices, I

examine the predictive performance of the proposed models relative to several

popular forecasting models at various quantile levels and forecast horizons. Using

a battery of backtesting procedures, I obtain strong evidence in favor of the

proposed models, which consistently belong to the best performing methods. The

MIDAS framework significantly outperforms the GARCH-based models and the

alternative semiparametric models which rely on single-period quantile regression.

Finally, models that incorporate asymmetry in the quantile dynamics, and use of

the AL density to jointly estimate VaR and ES, generally provide the best forecasts

across quantile levels and return horizons. This result is robust to different market

regimes, alternative assets and forecast specifications.



Chapter 3

Forecasting Skewness

3.1 Introduction

A vast body of theoretical and empirical works showcases that investors tend to

prefer assets with positive return skewness and, as such, the latter may be priced

in capital markets. For example, Rubinstein (1973), Kraus and Litzenberger (1976)

and Harvey and Siddique (2000) use classical capital asset pricing model and argue

that return coskewness with the aggregate market portfolio is an important pricing

factor. Drawing on behavioural models, Hong and Stein (2003), Brunnermeier

et al. (2007), Mitton and Vorkink (2007) and Barberis et al. (2008) show that asset

idiosyncratic skewness also provide significant role in pricing securities. Recent

empirical studies of Conrad et al. (2013), Bali and Murray (2013) and Amaya

et al. (2015) provide strong evidence on the importance of return skewness in

explaining the cross-sectional heterogeneity of stock returns.

Motivated by strong evidence of return asymmetry, the literature takes a step

further to promote the use of skewness forecasts to enhance financial decision-

making. For instance, Patton (2004), Jondeau and Rockinger (2006), Guidolin

and Timmermann (2008), Harvey et al. (2010), DeMiguel et al. (2013) and Ghysels

et al. (2016) investigate the economic gains from incorporating various measures
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of skewness in investment decisions. Bali et al. (2008), Engle (2011) and Kostika

and Markellos (2013) explore the use of skewness metrics in risk management

applications. However, different skewness models tend to be employed across

studies. As a result, there is a lack of consensus on how to best model and forecast

skewness, which may hinder skewness-driven decisions.

To address this gap in the literature, I carry out a broad comparison of the

forecasting ability and economic importance of several prominent skewness models.

I also develop a new option-implied skewness estimator that outperforms the

rest of the models in most of the statistical tests. My analysis is comprehensive

in that I consider: (i) 10 international indices; (ii) six forecasting models that

utilise different information; (iii) three forecasting horizons (i.e, 30, 60 and 90

calendar days respectively); (iv) two tests for assessing the information content

of each forecasting model; (v) an out-of-sample forecasting horserace under two

loss functions and (vi) an investment evaluation of skewness forecasts under four

portfolio performance metrics. I also perform a series of robustness checks.

To the best of my knowledge, this is the first study in the literature that

explicitly aims to identify good skewness forecasting models in financial markets.

The only study that contains a test for information contents of a set of direct and

indirect skewness models is concurrent work of Aretz and Arısoy (2019). There are

several important differences between their work and this study. First, the focus

of their paper is on empirical asset pricing, while I concentrate on forecasting and

portfolio optimisation. Second, they focus on U.S. stocks, while I consider market

indices, similar to Ghysels et al. (2016). Third, the forecasting models in their

work are different than the ones I employ. For instance, they study models that

account for specific stock characteristics, which are not available at the index level.

Fourth, their forecasting experiment consists of Mincer-Zarnowitz regressions,

while I include several additional tests to provide a broader analysis of skewness

forecasting.
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In my analysis, I draw parallels to the volatility forecasting literature. It may

appear surprising that there is a lack of studies on the relative predictive ability

of skewness models, given the rich literature around assessing and comparing

volatility forecasts (see, Kourtis et al., 2016, and the references therein). However,

in contrast to volatility, there is not an established proxy in the literature for

the true physical skewness. Also, third-moment forecasting is notoriously more

challenging than volatility forecasting for several reasons. First, historical skewness

is generally known not to be persistent, while historical volatility is (Singleton and

Wingender, 1986). Second, although volatility forecasts can be easily scaled to

any horizon of interest, skewness estimates are heavily affected by the frequency

of the returns used to perform the estimation (Neuberger, 2012; Neuberger and

Payne, 2019). Equivalently, one cannot simply use high-frequency returns to

forecast skewness of lower frequency returns. Third, skewness is considerably

more sensitive to outliers compared to volatility (Kim and White, 2004).

I proxy true skewness using the realised skewness estimator of Neuberger

(2012), also used by Aretz and Arısoy (2019). The realised skewness is comprised

of two components, that are the realised skewness of higher frequency returns

and the leverage effects between returns and innovations in volatility. Neuberger

and Payne (2019) shows that the latter plays dominant role in driving skewness

dynamics. Similar to realised volatility, realised skewness has the advantage that

it can be computed for any horizon using high-frequency returns, even though

extra information from the option markets is required to capture the leverage

effect.

Using the ex-post realised skewness, I compare the information content and out-

of-sample forecasting performance of five existing skewness forecasting models with

distinct features. The first competing model I consider is realised skewness, lagged

by one period. This choice is motivated by the finding of Neuberger (2012) that

lagged realised skewness has some explanatory power on future realised skewness.
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I further employ two conditional skewness estimators based on the popular GJR-

GARCH model of Glosten et al. (1993) which can produce conditional return

skewness in multiple horizons via an asymmetry-in-volatility process. The first

GARCH-based skewness estimator comes from the assumption of time-invariant

shape parameters in the specification of the GJR-GARCH model, as considered by

Engle (2011). The second comes from Bali et al. (2008) and assumes time-varying

shape parameters in the spirit of the autoregressive conditional density model of

Hansen (1994). The fourth skewness forecasting model in my analysis is based on

the estimation of conditional quantiles via a Mixed Data Sampling (QMIDAS)

approach, as proposed by Ghysels et al. (2016). Two features of QMIDAS-based

skewness are that it is less sensitive to outliers and that it can be computed using

returns of higher frequency than the horizon of interest. The fifth model I include

in my analysis is an option-implied skewness estimator, similar to Conrad et al.

(2013). This is a forward-looking estimator, since it is solely computed by option

prices and does not rely on historical asset returns.

I complement my set of skewness forecasting models with a new model that

also relies on option market information. This is motivated by evidence in Kozhan

et al. (2013) about the existence of a skewness risk premium in the S&P 500 index,

which can be quantified by the difference between option-implied and realised

skewness.1 I confirm that a skewness risk premium exists for almost all indices

in my dataset. Based on this finding, I propose an adjustment of the standard

option-implied skewness that corrects it for the skewness risk premium. The new

estimator is analogue to the volatility estimator proposed by DeMiguel et al. (2013)

that employs the variance risk premium to improve the predictive performance of

implied volatility.
1Broll (2016) also provides evidence on the skewness risk premium in the currency markets.

More recently, Lin et al. (2019) show that skewness risk premium in the S&P 500 index is
economically meaningful and has predictive power on future excess returns
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In my empirical analysis, I find that the information content about future

realised skewness increases on average with the forecasting horizon for all models.

Each of my main models also appears to encapsulate different type of information

about future skewness, as my encompassing regression results show. Models that

use information from the option markets are more informative of future skewness

and perform better out-of-sample compared to skewness models that are only

computed by asset returns. The lagged realised skewness and the option-implied

estimators result have higher explanatory power and lead to lower forecasting

errors than the GARCH and QMIDAS models in most cases considered. The best

overall forecasting performance is offered by the implied skewness estimator which

accounts for the skewness risk premium. This estimator is superior to the rest of

the skewness models across most of my comparisons. Notably, it explains up to

32.34% of the variation in the future realised skewness of the S&P 500. Overall,

my results are consistent with parallel results in the volatility forecasting literature:

Realised and option-implied estimators are superior to GARCH-based estimators

while accounting for the relevant risk premium improves forecasting accuracy (see,

e.g., DeMiguel et al., 2013; Kourtis et al., 2016; Prokopczuk and Wese Simen,

2014). The findings are also robust to a set of different model specifications and

estimation methods I assume in my supplementary tests.

Finally, I examine the economic significance of each skewness model in the

context of an international diversification setting, using the “1/N” portfolio as a

benchmark investment strategy.2 To this end, I use the parametric approach of

Brandt et al. (2009) to construct a portfolio strategy for each skewness model,

where the portfolio weights are a linear function of the corresponding skewness

forecast. I find that portfolios employing the two option-implied skewness estima-

tors outperform the rest of the skewness-based portfolios with regards to mean

returns and Sharpe ratios. This result extends the evidence of DeMiguel et al.
2The choice of the benchmark is based on the work of DeMiguel et al. (2009) who find that

1/N is superior out-of-sample compared to several sample-based portfolio strategies.
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(2013) and Kourtis et al. (2016) that the use of option-implied information can

enhance portfolio performance. While all skewness-based portfolios lead to lower

risk compared to 1/N , only the portfolio based on the corrected implied skewness

estimator leads to higher mean return and Sharpe ratio in all cases considered.

In terms of economic gains, the new skewness estimator I develop in this work is

superior to all other models across all time-periods and asset universes I consider,

under all performance metrics, apart from portfolio turnover.

The rest of the chapter is organised as follows. Section 3.2 presents my data, the

proxy for the true return skewness and the competing forecasting models I employ.

In section 3.3, I examine the information content and out-of-sample performance

of the models. I also discuss the portfolio performance of the skewness-based

strategies. The robustness tests are covered in section 3.4, while I draw some

limitations and future research directions in section 3.5. The last section concludes

the chapter.

3.2 Methodology

3.2.1 Data

In my analysis, I adopt two main sets of data. First, I collect daily dividend-

adjusted levels for 10 equity indices corresponding to 7 international regions (see

Table 3.1 for details of these indices and the time periods). I source this data

from Thomson-Reuters Datastream. For each index, I also employ a time-series

of the London Interbank Offer Rate (LIBOR), quoted in the same currency, in

order to proxy the corresponding risk-free rate. LIBOR data are collected from

the FRED database of the Federal Reserve Bank of St. Louis.

The second dataset consists of market prices for all European vanilla options

written on the considered indices. I obtain this data from IVolatility. I apply

several standard filters from the literature to this dataset (see, e.g., Conrad et al.,
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Table 3.1 List of Indices

This table lists the indices I employ in this work along with the region where each
index is listed. It also reports the time period I consider for each index.

Equity Index Region Time Period

AEX Netherlands 01/2006 - 12/2015
DAX Germany 06/2001 - 12/2015
DJIA United States 01/2000 - 12/2015
STOXX 50 Europe 02/2002 - 12/2015
FTSE 100 United Kingdom 01/2006 - 12/2015
HANGSENG Hong Kong 12/2007 - 12/2015
KOSPI 200 South Korea 12/2007 - 12/2015
NASDAQ 100 United States 01/2000 - 12/2015
RUSSELL 2000 United States 10/2002 - 12/2015
S&P500 United States 01/2000 - 12/2015

2013; Stilger et al., 2017). First, I exclude all options with zero bid prices, zero

open interest and those with prices smaller than 3/8$. Second, I only consider

out-of-the-money (OTM) calls/puts with moneyness level between 0.8 and 1.2 and

maturity ranging from 7 to 270 days to ensure the respective option contracts are

liquid enough. Third, I discard all options that violate the theoretical arbitrage

bounds in the model of Merton (1973). Finally, at each day, I only account for

maturities that have at least two OTM calls and two OTM puts.

3.2.2 Realised Skewness

Skewness of asset returns is a latent variable, such as volatility. For the latter, there

is a widely-used and theoretically justified proxy, i.e. realised volatility computed

from high-frequency data as the sum of squared returns sampled at equal intervals

(see Andersen et al., 2001; Barndorff-Nielsen and Shephard, 2002). However,

estimating skewness, especially for lengthier horizons, is not as straight-forward.

As Neuberger (2012) shows, one cannot simply use the sum of high-frequency

cubic returns to accurately proxy long-term skewness. This is because the latter

is also driven by a leverage effect, given by the correlation between innovations

in volatility and asset returns. While one could instead rely on non-overlapping

long-term returns to estimate skewness, the resulting estimator would be subject
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to significant sampling errors due to a likely small number of observations. To

resolve these issues, the recent work of Neuberger (2012) proposes a new skewness

estimator, coined as “realised skewness”, which uses option data to capture the

leverage effect and the use of data at higher frequency to estimate the skewness

attributed to higher frequency return process. In this work, I adopt realised

skewness to proxy the true skewness of index returns.3

I denote the asset price at the end of day t with St and its logarithmic

value with st = lnSt. The log return from day t to day t + T is then rt,t+T =

ln(St+T /St).4 Under the assumption that the asset price St follows a Martingale

process, Neuberger (2012) shows that the realised third (central) moment of the

return rt,t+T can be expressed as:

RTM(rt,t+T ) =
∑

i∈Mt,t+T

3
((

∆vE
i,t+T

)
(eri − 1) + F (ri)

)
(3.1)

In the above equation, F (r) = 6(rer −2er +r +2), Mt,t+T is the set of trading days

in the period t, t + T and ∆vE
i,t+T is the change of the index’s entropy variance

from the end of day i − 1 to the end of day i. As in Neuberger (2012), the entropy

variance is the option-implied variance of a contract that pays St+T ln St+T at day

t + T :

vE
i,t+T = 2EQ

i,t+T

[
St+T

Si

ln
(

St+T

Si

)
− St+T

Si

+ 1
]

, (3.2)

where the expectation is taken under the option-implied probability measure

conditional on the information on day i.

The entropy variance can be calculated following Bakshi and Madan (2000).

The latter work shows that any payoff of an asset can be replicated using a

portfolio of a risk-free zero-coupon bond and a continuum of OTM calls and

puts written on the asset with varying strike prices. Let Bi,t+T = e−rf (t+T −i)) be

the price of the bond, where rf is the risk-free rate and t + T − i is the time to
3Aretz and Arısoy (2019) also use this estimator as a proxy of the true skewness.
4Then the return on day t is simply rt = rt−1,t.
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maturity. Using the spanning rule of Bakshi and Madan (2000), I can calculate

the value of the fixed leg of the entropy by:

vE
i,t+T = 2

Bi,t+T

[∫ Si

0

Pi,t+T (K)
KSi

dK +
∫ ∞

Si

Ci,t+T (K)
KSi

dK

]
, (3.3)

where Ci,t+T (K) and Pi,t+T (K) are respectively the prices of an OTM call and

put with strike price K and t + T − i time to maturity. To compute the above

integrals, I use the approximation of Kozhan et al. (2013). In particular, for a

given day i, suppose that I have N + 1 available calls and puts with increasing

strike prices K0, K1,...,KN and maturity t + T . I define the strike price differences

by:

∆Kj =



K1 − K0, j = 0

Kj+1−Kj−1
2 , 0 < j < N

KN − KN−1, j = N

(3.4)

I then use the available OTM calls and puts in my dataset, Ci,t+T (Kj) and

Pi,t+T (Kj), to approximate vE
i,t+T as

vE
i,t+T ≈ 2

Bi,t+T

 ∑
Kj<Si

Pi,t+T (Kj)
SiKj

∆Kj +
∑

Si<Kj

Ci,t+T (Kj)
SiKj

∆Kj

 . (3.5)

I use this approximation to estimate the quantities ∆vE
i,t+T for each trading day i

in Mt,t+T and, in turn, compute the realised third moment as in Eq. (3.1). The

realised skewness RS(rt,t+T ) of the index return rt,t+T is then given by:

RS(rt,t+T ) = RTM(rt,t+T )
(RV (rt,t+T ))3/2 , (3.6)
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where RV (rt,t+T ) is the realised variance of rt,t+T , calculated using the generalised

variance measure of Neuberger (2012).

RV (rt,T ) =
∑

i∈Mt,t+T

2 (eri − 1 − ri) (3.7)

If there is not enough option prices available for a exact maturity T on a given

date, I compute the third moment and the realised variance using option data

for the nearest maturities T (say T1 and T2) for which I have the necessary data,

so that T1 < T < T2. I then apply a simple linear interpolation to compute the

two realised central moments, as in Chang et al. (2013) and Kozhan et al. (2013).

The realised skewness coefficient is then computed using Eq. (3.6). RS(rt,t+T ) is

the quantity the forecasting models compete to predict throughout this work. I

consider three T of 30, 60 and 90 calendar days.

Given the importance of realised skewness in this work, I present its main

features in Table 3.2. I report the mean and standard deviation of the realised

variance, third moment and skewness of each index over the whole sample. Similar

to Neuberger (2012), I find that the realised third moment is always negative

and increases faster with the horizon than the second moment for all indices. For

example, the realised variance of the S&P 500 rises from 0.332 at 30 days to 0.996

at 90 days, while the realised third moment increases from -0.321 to -2.039 for the

same increase in the horizon. In the same fashion, the realised skewness is negative

and increases with the horizon for all indices, apart from KOSPI. To also illustrate

the evolution of realised skewness in my data, Figures 3.1, 3.2 and 3.3 plot the

realised skewness of the returns of 30, 60 and 90 calendar days, respectively, for

each index considered.
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Table 3.3 List of Skewness Forecasting Models

This table summarises the competing skewness forecasting models under consideration.

Abbreviation Description

LRS Lagged Realised Skewness, defined as in Neuberger (2012)
GARCH-1 Skewness extracted from the GJR-GARCH model of Glosten et al. (1993),

assuming a Skewed Generalised Error distribution (Theodossiou, 2015)
for the daily index returns with time-invariant shape parameters

GARCH-2 Skewness extracted from the GJR-GARCH model of Glosten et al. (1993),
assuming a Skewed Generalised Error distribution (Theodossiou, 2015)
for the daily index returns with time-variant shape parameters

QMIDAS Skewnss extracted from a Quantile regression with MIxed Data Sampling
model, similar to Ghysels et al. (2016)

IS Option-implied skewness, defined as in Conrad et al. (2013) and computed
following the method of Kozhan et al. (2013)

CIS A new option-implied skewness estimator that corrects for the skewness
risk premium

3.2.3 Skewness Forecasting Models

3.2.3.1 Lagged realised skewness (LRS)

In this work, I examine the predictive ability and economic significance of six

skewness forecasting models which I summarise in Table 3.3. These models have

distinct features and may capture different information about future realised

skewness. The first predictor of the future realised skewness (RS(rt,t+T )) simply

is the lagged realised skewness (LRS), given by RS(rt−T,t). Even though skewness

is known not to be persistent over time (see, e.g., Singleton and Wingender, 1986),

Neuberger (2012) provides evidence that LRS has some forecasting ability on the

realised skewness of the S&P 500 for horizons of up to 3 months. An advantage

of this estimator is that it does not rely on a particular distributional assumption

while it has a hybrid nature utilising information from both the equity and the

option markets.
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3.2.3.2 GARCH forecasts with time-invariant parameters (GARCH-

1)

GARCH models and their extensions are popular choices in the literature for

modelling the conditional skewness of asset returns (see, e.g., Engle, 2011; Feunou

et al., 2016; Harvey and Siddique, 1999; Jondeau and Rockinger, 2003). In this

context, I consider two approaches that yield skewness forecasts from the GJR-

GARCH model of Glosten et al. (1993). I choose this model among other GARCH

alternatives as it allows asymmetries in the conditional variance, so that this

can increase differently following a negative shock to the daily returns series

than following a positive shock of the same magnitude. As such, it can produce

significant skewness in the conditional distribution of multi-period returns (Engle,

2011).

To specify the GJR-GARCH model, I assume that daily index returns follow a

Skewed Generalised Error distribution (SGE), as this is proposed by Theodossiou

(2015). The distribution has been widely used in various financial applications

(see, e.g., Anatolyev and Petukhov, 2016; Feunou et al., 2016), mainly due to the

flexibility it offers for modelling financial data. In addition, Feunou et al. (2016)

show that SGE results in superior parametric models for capturing the daily

conditional skewness compared to other common distributions. The probability

density function of the SGE distribution is given by:

f(y|µ, σ, λ, κ) = C

σ
exp

(
− |y − µ + δσ|κ

(1 + sign(y − µ + δσ)λ)κθκσκ

)
, (3.8)

with

C = κ

2θΓ(1/κ)) ; δ = 2λAS(λ)−1; θ = Γ(1/κ)1/2Γ(3/κ)−1/2S(λ)−1

S(λ) =
√

1 + 3λ2 − 4A2λ2; A = Γ(2/κ)Γ(1/κ)−1/2Γ(3/κ)−1/2,
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where Γ(.) is the Gamma function and µ, σ, λ, and κ are respectively the mean,

standard deviation, asymmetry (skewness parameter) and tail-thickness (kurtosis

parameter) of the distribution. The shape parameters, λ and κ satisfy the

conditions −1 < λ < 1 and κ > 0. The distribution skews to the left (right) when

λ < 0(> 0) and is symmetric when λ = 0. It exhibits fatter (thinner) tails than

the normal distribution when κ < 2 (κ > 2.).

The GJR-GARCH model under the conditional SGE distribution is specified

as:

rt = µt + σtzt (3.9)

σ2
t = b0 + b1ε

2
t−1 + b2Izt−1≤0ε

2
t−1 + b3σ

2
t−1 (3.10)

zt ∼ SGE (0, 1, λ, κ) (3.11)

where b2 captures the leverage effect imposed in the conditional variance process

and zt follows a standardised SGE distribution with zero mean and unit variance

and time-invariant shape parameters λ and κ. The latter parameters are estimated

by maximizing the sample log-likelihood function for zt.

To compute a GJR-GARCH-based skewness estimate for a specific time horizon,

I first estimate the GJR-GARCH model above using the available sample. I then

apply a Monte-Carlo simulation approach, similar to Engle (2011) and Lönnbark

(2016), in order to compute an empirical return distribution for the forecasting

horizons. In particular, at each day t, for a given simulation path i, I simulate

the next day return using the estimated coefficients and a random standardised

innovation zt, drawn from SGE(0, 1, λ̂t, κ̂t), where λ̂t and κ̂t are the estimates of

λ and κ at day t. I iterate this process to obtain a time series of daily returns for

the trading days available in the next T trading trading days, where T trading = 22,

44 or 66, for the forecast horizons of 30, 60 and 90 calendar days, respectively.

The simulated path is then summed up to obtain the T -horizon simulated return
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r̃i
t,t+T . I repeat this procedure 10,000 times to obtain the empirical distribution of

T -horizon returns. The GJR-GARCH estimate of the skewness is then the sample

skewness of the set of the simulated T -horizon returns. I coin this forecasting

model with GARCH-1.

3.2.3.3 GARCH forecasts with autoregressive conditional parameters

(GARCH-2)

The next set of skewness forecasts comes from a richer variation of the GJR-

GARCH model discussed above. In particular, I allow the shape parameters

governing return asymmetry to be time-variant, in the spirit of Hansen (1994).

The dynamics in shape parameters (λ, κ) in the distribution of zt in Eq. (3.9)

depend on past information in an autoregressive structure. Bali et al. (2008) show

that such a model allows for a more accurate representation of the conditional

return distribution for several U.S. indices.

I follow Bali et al. (2008) to specify the dynamics of the shape parameters as:

λ̃t = λ0 + λ1zt−1 + λ2λ̃t−1 (3.12)

κ̃t = κ0 + κ1zt−1 + κ2κ̃t−1, (3.13)

where λ̃t and κ̃t are the unrestricted estimates of λ and κ. The unrestricted

estimates are then logistically transformed to be bounded as in the definition of

SGE distribution (|λt|< 1 and κt > 0):

λt = −0.99 + 1.98
1 + e−λ̃t

(3.14)

κt = 2 + eκ̃t (3.15)

The innovation in Eq. (3.9) is then distributed as zt ∼ SGE (0, 1, λt, κt). Em-

pirically, the shape parameters are again estimated by maximizing the sample



3.2 Methodology 74

log-likelihood function before estimating the GJR-GARCH model. I then follow

the same simulation approach as for the first version of the GJR-GARCH model

to compute the skewness estimates in this case. In the rest of the paper, I refer to

the time-varying version of the GARCH-based skewness forecasts with GARCH-2.

3.2.3.4 Quantile-based skewness forecasts with MIxed Data Sampling

(QMIDAS)

The next forecasting model I employ relies on the estimation of the conditional

quantiles of the return distribution to estimate skewness, similar to Ghysels

et al. (2016). This is motivated by Kim and White (2004) who suggest that

quantile-based skewness estimators are more robust to outliers than moment-

based estimators. To estimate conditional quantiles, I follow the Mixed Data

Sampling approach (QMIDAS) of Ghysels et al. (2016). The main advantage

of the QMIDAS model is that it can directly estimate conditional quantiles of

returns at any horizon while still exploiting information in higher-frequency data.

Furthermore, it does not rely on any specific distributional assumption for the

return process. As shown in the first study, the use of MIDAS framework provides

reliable conditional quantiles by accounting for the impacts of short-horizon return

process to long-horizon distribution. The QMIDAS model is described by the

following equations:

qα(rt,t+T ) = β0
α,T + β1

α,T Zt−1(κα,T ) (3.16)

Zt−1(κα,T ) =
D∑

d=0
ϕd(κα,T )|rt−1−d|, (3.17)

where qα(rt,t+T |Ωt−1) is the α-quantile of the T -horizon return. The known

conditioning variable Zt−1(κα,T ) is a sum of weighted absolute returns as in

Ghysels et al. (2016) and reflects the high-frequency information. Each weight in

Eq. (3.17) is determined parsimoniously by a lag polynomial function ϕ(.) of a
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low-dimensional parameter vector κα,T . I specify ϕ(.) and estimate the quantiles

as discussed in the Internet Appendix IV of Ghysels et al. (2016).5 In my main

results, I choose D = 250 to account for potential long-memory effects in the

return process. I have also assumed alternative lag lengths of 200 or 300 days

with similar results, as I discuss in section 3.4.3.

After estimating the conditional quantiles from the QMIDAS model, I employ

the approach of Aretz and Arısoy (2019) to extract the moment-based skewness

from the quantiles. First, the first three conditional moments of the return

distribution between two consecutive quantiles αj−1 and αj are approximated by

Ê
[
rt,t+T |qαj−1 < rt,t+T < qαj

]
=

qαj−1 + qαj

2 (3.18)

Ê
[
r2

t,t+T |qαj−1 < rt,t+T < qαj

]
=

q2
αj−1

+ qαj−1 × qαj
+ q2

αj

3 (3.19)

Ê
[
r3

t,t+T |qαj−1 < rt,t+T < qαj

]
=

q3
αj−1

+ q2
αj−1

× qαj
+ qαj−1 × q2

αj
+ q3

αj

4 , (3.20)

Let J be the number of conditional quantiles, I then approximate the true

conditional moments of the return density using the law of total probability by:6

Ê
[
rm

t,t+T

]
=

J∑
j=2

αj − αj−1

αJ − α1
Ê
[
rm

t,t+T |qαj−1 < rt,t+T < qαj

]
(3.21)

for m = 1, 2, 3. Finally, I compute the QMIDAS-based skewness as

QSt(rt,t+T ) =
Ê
[
r3

t,t+T

]
− 3Ê [rt,t+T ] (Ê

[
r2

t,t+T

]
− Ê [rt,t+T ]2) − Ê [rt,t+T ]3

(Ê
[
r2

t,t+T

]
− Ê [rt,t+T ]2)3/2

.

(3.22)
5I would like to thank Eric Ghysels for making available the code for this

estimation at https://www.mathworks.com/matlabcentral/fileexchange/
45150-midas-matlab-toolbox.

6In this application, I use 15 quantile levels spanning over the return density, i.e., α ∈
{0.01, 0.025, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 0.8, 0.85, 0.9, 0.95, 0.975, 0.99}

https://www.mathworks.com/matlabcentral/fileexchange/45150-midas-matlab-toolbox
https://www.mathworks.com/matlabcentral/fileexchange/45150-midas-matlab-toolbox
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3.2.3.5 Implied skewness (IS)

Conrad et al. (2013) advocates the use of information of the option markets to

construct forward-looking estimator of the ex-ante skewness. In this context,

implied skewness is defined as the ratio of the implied third central moment to

the cube of the implied volatility:

ISt (rt,t+T ) = ITMt (rt,t+T )
(IVt (rt,t+T ))3/2 = 3(vE

t (rt,t+T ) − IVt (rt,t+T ))
IVt (rt,t+T )3/2 , (3.23)

where ITMt (rt,t+T ) = 3
(
vE

t (rt,t+T ) − IVt (rt,t+T )
)

is the implied third moment

and IVt (rt,t+T ) is the implied variance. The latter can be calculated as

IVt (rt,t+T ) = 2
Bt,t+T

[∫ St

0

Pt,t+T (K)
K2 dK +

∫ ∞

St

Ct,t+T (K)
K2 dK

]
. (3.24)

To compute the implied third moment and skewness, I approximate the entropy

variance as in section 3.2.2 and the implied variance following the same approach as

for the entropy variance. I then input these approximations in Eq. (3.23) to derive

option implied skewness forecasts.7 I note that apart from being forward-looking,

implied skewness is also model-free by construction. I denote skewness forecasts

from this method as IS.

3.2.3.6 Implied skewness corrected for the skewness risk premium

(CIS)

It has been recently documented that correcting implied volatilities for the variance

risk premium improves their predictive ability (DeMiguel et al., 2013; Kourtis

et al., 2016; Prokopczuk and Wese Simen, 2014). Motivated by this evidence, I

first examine whether a skewness risk premium exists in the equity markets under
7To estimate the implied skewness for a day t that does not have enough options with a

maturity matching the horizon k, I again use interpolation as in the case of realised skewness.
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study. I then introduce a new option-implied estimator of the true skewness that

corrects for the skewness risk premium.

Kozhan et al. (2013) provide evidence of the existence of an economically

significant third-moment risk premium for the S&P 500 index, reflected in the

discrepancy between the implied and the realised skewness of the index. I choose

to employ relative risk premia in my analysis instead of using simply the difference

between realised and implied skewness (or third moment), given the evidence of a

positive relationship between the level of the third moment and the third moment

risk premium provide by Kozhan et al. (2013). The same type of connection

between the level of the variance and the variance risk premium has also motivated

DeMiguel et al. (2013), Prokopczuk and Wese Simen (2014) and Kourtis et al.

(2016) to employ a relative variance risk premium in their respective work. To

study whether their findings extend to other indices, I estimate (relative) third-

moment and skewness risk premium as well as the variance risk premium from

time t to t + T for each of the indices as:

V RP t,t+T = IVt,t+T

RVt,t+T

(3.25)

TMRP t,t+T = ITMt,t+T

RTMt,t+T

(3.26)

SRP t,t+T = ISt,t+T

RSt,t+T

(3.27)

Table 3.4 reports the averages and standard errors of the above premium for each

index and horizon under consideration. The implied moments are on average higher

than the realised moments in absolute terms in all cases, apart from KOSPI, where

only the absolute implied skewness is lower than the absolute realised skewness.

In general, the magnitude of the skewness risk premium is slightly higher than

the variance risk premium while the third-moment risk premium is considerably

higher than both. In line with Kozhan et al. (2013), I find that the variance risk

premium and third-moment risk premium are highly positively correlated, with
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correlations ranging from 0.342 to 0.887. I however observe a negative relation

between the skewness risk premium and the variance risk premium in most cases,

stemming from the inverse relationship between variance and skewness.

Given the existence of a skewness risk premium for almost all indices, the

forecasting ability of the implied skewness estimator Eq. (3.23) could be enhanced

if I incorporate the premium in the estimation procedure. To this end, I propose to

adjust the implied skewness by dividing it to a historical average relative skewness

risk premium, under the assumption of the historical premium captures well the

premium for the forecasting period of interest. This adjustment is similar to the

correction that DeMiguel et al. (2013) and Prokopczuk and Wese Simen (2014)

apply to improve the forecasting performance of implied volatility. I estimate

the historical skewness premium for each day t using the available skewness risk

premium over the previous 252 trading days:8

SRP t,t+T = 1
252 − T

t−T∑
i=t−252+1

SRP i,i+T . (3.28)

my corrected implied skewness estimator (CIS) is then defined as:

CISt,t+T = ISt,t+T

SRP t,t+T

. (3.29)

3.3 Empirical Analysis

3.3.1 Information Content of Skewness Forecasts

I launch my empirical analysis with an in-sample evaluation of the information

content of the forecasts produced by each skewness model. I estimate Mincer-

Zarnowitz regressions (Mincer and Zarnowitz, 1969), i.e., I regress the T -day

realised skewness on each model’s corresponding skewness forecasts for each equity
8I also consider alternative averaging periods of about 18 and 24 months and I obtain similar

results.
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index using the whole sample available:

RSt,t+k = α + βF̂ i
t,t+T + βρρt + et,t+T , (3.30)

where F̂ i
t,t+T is the skewness forecast at day t produced by model i with a forecasting

horizon of T calendar days. The two GARCH variations I assume along with

the QMIDAS model are estimated using the whole sample before extracting the

corresponding skewness forecasts. In my regressions, I control for the correlation

ρt between index returns and the corresponding variance risk premium over the

prior 12 months, as proposed by Aretz and Arısoy (2019). The latter work shows

that such a control can help address the bias in RSt,t+T that results from a possible

violation in the assumption in Neuberger (2012) that prices follow a martingale.

Tables 3.5, 3.6 and 3.7 report the regression results for forecasting horizons of

30, 60 and 90 days, respectively. I report for each index, the values of the intercept

and the coefficients in Eq. (3.30) as well as the adjusted R2’s. I also report in

parentheses t-statistics for the intercept and the coefficients, computed using the

heteroscedasticity and autocorrelation consistent standard errors of Newey and

West (1987) with T lags. Finally, I present the average values of the coefficients

and adjusted R2 for each model, across all indices.

I find that skewness forecasts become more informative as the horizon increases,

as indicated by the average adjusted R2’s. For example, the average adjusted R2

for the lagged realised skewness forecasts increases from 10.88% at the monthly

horizon to 11.14% at the bimonthly horizon and to 12.98% at the quarterly horizon.

The most informative forecasts are offered by models that use forward-looking

information from option markets, namely the lagged realised and option-implied

estimators of skewness. Indicatively for the S&P 500, at the quarterly horizon,

the LRS, IS and CIS models yield an adjusted R2 of 25.55%, 27.64% and 32.34%,

respectively. In the same setting, GARCH- and QMIDAS-based forecasts do not
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Table 3.5 Information Content of Skewness Forecasts (30 days)

This table reports the results from Mincer-Zarnowitz regressions. I regress the realised skewness of each index
in Table 3.1 on the forecasts generated from each model in Table 3.3. The forecasting horizon is 30 calendar
days. The GARCH and QMIDAS models are estimated using the whole sample. In the regressions, I control
for the the empirical correlation (ρt) between daily index returns and the index variance risk premium over the
prior 12 months in order to account for any bias in the realised skewness estimates. α and β respectively denote
the intercept and the coefficient of the forecast in the regression. In addition, βρ is the coefficient of ρt, R

2 is
the adjusted R2 coefficient while the numbers in parentheses denote t-statistics, estimated using Newey-West
(1987) heteroskedasticity and autocorrelation consistent standard errors. Significant coefficients at the 5% level
are highlighted in bold. The bottom panel of the table contains the average values of α, β and βρ across indices.

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

AEX
α -0.932 -0.875 -0.851 -0.715 -0.836 -0.908

(-11.42) (-1.31) (-1.30) (-3.55) (-6.68) (-7.57)
β 0.165 0.201 0.222 0.432 0.224 0.218

(2.39) (0.36) (0.41) (2.03) (2.61) (2.01)
βρ -1.776 -2.072 -2.080 -1.979 -1.863 -1.599

(-4.00) (-4.13) (-4.14) (-3.96) (-4.08) (-3.12)
R

2 10.00% 7.65% 7.67% 9.17% 9.99% 10.05%
DAX

α -0.811 -0.998 -0.997 -1.198 -0.941 -0.951
(-11.68) (-11.10) (-10.81) (-6.46) (-10.55) (-11.29)

β 0.221 0.055 0.055 -0.210 0.072 0.107
(3.77) (0.70) (0.68) (-0.80) (1.23) (1.25)

βρ -1.196 -1.611 -1.610 -1.692 -1.407 -1.350
(-3.22) (-3.42) (-3.41) (-3.21) (-3.36) (-3.17)

R
2 9.86% 6.71% 6.70% 6.78% 7.05% 7.09%

DJIA
α -0.621 -0.716 -0.373 -0.224 -0.299 -0.467

(-8.32) (-4.22) (-4.72) (-0.38) (-2.97) (-5.26)
β 0.375 0.213 0.606 1.176 0.666 0.676

(5.30) (1.80) (8.01) (1.30) (7.33) (5.98)
βρ -0.760 -1.429 1.021 -1.134 -0.825 -0.359

(-2.22) (-3.09) (2.52) (-2.62) (-2.15) (-1.00)
R

2 17.06% 4.64% 22.10% 3.82% 13.53% 18.67%
STOXX 50

α -0.845 -1.296 -1.413 -0.690 -0.672 -0.768
(-11.24) (-2.89) (-4.71) (-1.73) (-5.86) (-6.62)

β 0.224 -0.173 -0.292 0.519 0.246 0.341
(4.02) (-0.46) (-1.10) (1.01) (3.82) (3.09)

βρ 0.414 0.525 0.574 0.655 0.650 0.630
(1.17) (1.31) (1.45) (1.54) (1.80) (1.71)

R
2 5.29% 0.61% 0.90% 1.01% 5.31% 4.62%

FTSE 100
α -1.193 -0.842 -0.858 -0.958 -1.030 -0.984

(-11.87) (-2.21) (-2.35) (-4.25) (-7.72) (-5.95)
β 0.081 0.305 0.314 0.510 0.139 0.288

(1.23) (1.23) (1.23) (1.56) (2.13) (2.15)
βρ -1.632 -2.025 -2.039 -1.688 -1.444 -1.170

(-2.60) (-3.07) (-3.06) (-2.53) (-2.34) (-1.79)
R

2 6.61% 6.84% 6.83% 7.09% 8.39% 8.23%
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Table 3.5 Information Content of Skewness Forecasts (30 days)(continued)

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

HANGSENG
α -0.479 0.665 1.758 -0.811 -0.237 -0.239

(-4.16) (1.55) (2.32) (-4.55) (-1.18) (-1.70)
β 0.258 2.167 3.332 -0.892 0.335 0.630

(2.45) (3.27) (3.27) (-1.29) (2.56) (3.85)
βρ 0.196 -0.053 0.020 0.132 -0.141 -0.818

(0.24) (-0.07) (0.03) (0.15) (-0.17) (-0.99)
R

2 6.55% 18.01% 16.79% 0.90% 6.89% 15.35%
KOSPI

α -0.524 0.873 1.782 -1.061 -0.520 -0.626
(-6.61) (0.63) (1.12) (-8.85) (-3.71) (-5.49)

β 0.406 1.725 2.417 -0.377 0.515 0.349
(5.16) (1.27) (1.67) (-1.44) (3.04) (2.75)

βρ 0.039 0.715 0.662 0.623 0.619 0.760
(0.06) (0.85) (0.81) (0.65) (0.83) (0.99)

R
2 16.87% 3.28% 4.66% 2.67% 10.99% 8.48%

NASDAQ 100
α -0.556 -1.059 -1.177 -0.523 -0.306 -0.438

(-7.74) (-5.78) (-6.84) (-1.96) (-3.24) (-5.09)
β 0.430 -0.124 -0.308 0.862 0.497 0.673

(6.42) (-0.59) (-1.43) (1.62) (6.73) (6.46)
βρ -0.486 -0.984 -0.761 -0.803 -0.465 -0.086

(-1.21) (-1.63) (-1.25) (-1.45) (-1.07) (-0.19)
R

2 19.87% 2.46% 3.40% 4.29% 17.56% 19.67%
RUSSELL 2000

α -0.837 -1.108 -1.125 -1.016 -0.269 -0.515
(-10.02) (-16.19) (-16.68) (-15.58) (-2.31) (-4.80)

β 0.186 -0.108 -0.132 0.024 0.571 0.587
(2.81) (-1.44) (-1.83) (0.22) (6.59) (5.22)

βρ -0.502 -0.399 -0.341 -0.587 -0.435 0.011
(-1.20) (-0.81) (-0.70) (-1.23) (-1.09) (0.03)

R
2 4.14% 1.81% 2.47% 0.78% 12.43% 9.03%

S&P500
α -0.872 -1.081 -1.207 -0.044 -0.440 -0.589

(-9.26) (-4.96) (-5.75) (-0.10) (-2.94) (-5.21)
β 0.266 0.073 -0.016 1.609 0.459 0.608

(3.75) (0.50) (-0.11) (2.65) (5.11) (5.86)
βρ -1.723 -2.573 -2.360 -2.178 -1.517 -1.206

(-3.38) (-3.59) (-3.28) (-3.84) (-2.91) (-2.50)
R

2 12.58% 6.69% 6.60% 8.26% 14.70% 15.82%

Aggregated results
Average α -0.767 -0.644 -0.446 -0.724 -0.555 -0.649
Average β 0.261 0.433 0.620 0.366 0.372 0.448
Average βρ -0.743 -0.991 -0.691 -0.865 -0.683 -0.519
Average R

2 10.88% 5.87% 7.81% 4.48% 10.68% 11.70%
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Table 3.6 Information Content of Skewness Forecasts (60 days)

This table reports the results from Mincer-Zarnowitz regressions. I regress the realised skewness of each index
in Table 3.1 on the forecasts generated from each model in Table 3.3. The forecasting horizon is 60 calendar
days. The GARCH and QMIDAS models are estimated using the whole sample. In the regressions, I control
for the the empirical correlation (ρt) between daily index returns and the index variance risk premium over the
prior 12 months in order to account for any bias in the realised skewness estimates. α and β respectively denote
the intercept and the coefficient of the forecast in the regression. In addition, βρ is the coefficient of ρt, R

2 is
the adjusted R2 coefficient while the numbers in parentheses denote t-statistics, estimated using Newey-West
(1987) heteroskedasticity and autocorrelation consistent standard errors. Significant coefficients at the 5% level
are highlighted in bold. The bottom panel of the table contains the average values of α, β and βρ across indices.

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

AEX
α -1.156 -0.817 -0.825 -1.058 -0.856 -0.886

(-9.54) (-1.55) (-1.60) (-5.89) (-5.61) (-8.69)
β 0.002 0.192 0.188 0.085 0.229 0.253

(0.02) (0.64) (0.64) (0.59) (2.14) (3.06)
βρ -2.669 -2.826 -2.828 -2.852 -2.422 -2.135

(-3.92) (-3.92) (-3.91) (-3.73) (-3.94) (-3.38)
R

2 19.70% 19.92% 19.92% 19.94% 22.01% 23.64%
DAX

α -1.057 -1.065 -1.061 -1.324 -1.132 -1.119
(-11.20) (-11.57) (-11.32) (-9.73) (-13.41) (-14.27)

β 0.107 0.080 0.083 -0.151 0.039 0.061
(1.79) (1.26) (1.28) (-1.28) (0.83) (1.03)

βρ -0.765 -1.155 -1.162 -1.302 -0.867 -0.829
(-1.61) (-1.98) (-1.98) (-2.00) (-1.74) (-1.64)

R
2 3.57% 3.39% 3.42% 3.51% 2.71% 2.91%

DJIA
α -0.789 -0.906 -0.678 -0.953 -0.826 -0.806

(-7.85) (-4.09) (-7.58) (-5.72) (-6.25) (-6.90)
β 0.309 0.113 0.420 0.257 0.293 0.357

(3.66) (1.09) (5.65) (1.13) (2.72) (2.94)
βρ -1.169 -1.962 0.560 -2.049 -1.414 -1.083

(-2.39) (-3.25) (0.97) (-3.08) (-2.47) (-2.10)
R

2 13.79% 6.15% 21.60% 6.51% 8.14% 11.80%
STOXX 50

α -1.078 -1.017 -1.086 -1.517 -1.030 -1.097
(-9.97) (-2.73) (-3.04) (-4.22) (-7.26) (-9.95)

β 0.113 0.115 0.084 -0.317 0.124 0.111
(1.62) (0.54) (0.37) (-0.84) (1.55) (1.21)

βρ -0.126 -0.210 -0.182 -0.063 -0.015 -0.040
(-0.18) (-0.28) (-0.24) (-0.09) (-0.02) (-0.05)

R
2 1.23% 0.10% -0.00% 0.16% 1.29% 0.74%

FTSE 100
α -1.319 -1.223 -1.304 -1.529 -1.140 -1.088

(-8.39) (-3.16) (-3.55) (-8.66) (-7.23) (-8.20)
β 0.049 0.075 0.042 -0.170 0.151 0.240

(0.56) (0.42) (0.22) (-0.99) (1.73) (2.52)
βρ -1.654 -1.799 -1.759 -1.183 -1.177 -1.161

(-2.12) (-2.39) (-2.33) (-1.26) (-1.60) (-1.72)
R

2 5.70% 5.57% 5.50% 6.22% 8.23% 10.03%



3.3 Empirical Analysis 84

Table 3.6 Information Content of Skewness Forecasts (60 days)(continued)

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

HANGSENG
α -0.533 0.649 1.774 -0.112 -0.515 -0.382

(-3.78) (0.98) (1.43) (-0.32) (-2.44) (-2.43)
β 0.207 1.577 2.457 2.241 0.147 0.462

(1.44) (1.96) (1.95) (1.56) (1.32) (2.69)
βρ -0.156 -0.330 -0.305 -0.299 -0.120 -0.477

(-0.25) (-0.72) (-0.65) (-0.60) (-0.18) (-0.85)
R

2 3.74% 16.71% 16.92% 8.65% 1.41% 8.04%
KOSPI

α -0.620 1.405 2.093 -0.948 -0.694 -0.686
(-8.37) (1.07) (1.34) (-7.30) (-9.33) (-7.99)

β 0.322 1.667 2.035 -0.131 0.298 0.290
(2.99) (1.71) (1.87) (-0.50) (2.50) (2.31)

βρ -0.870 -1.608 -1.688 -1.342 -1.020 -0.918
(-0.68) (-1.21) (-1.29) (-1.02) (-0.74) (-0.69)

R
2 8.10% 5.09% 6.20% 1.34% 4.64% 6.24%

NASDAQ 100
α -0.547 -1.330 -1.337 -0.811 -0.290 -0.438

(-5.49) (-5.62) (-6.15) (-4.11) (-2.79) (-4.24)
β 0.520 -0.186 -0.232 0.573 0.657 0.701

(7.42) (-1.01) (-1.16) (1.74) (9.00) (7.69)
βρ -0.316 -0.821 -0.744 -0.557 -0.024 0.313

(-0.68) (-1.16) (-1.04) (-0.73) (-0.06) (0.73)
R

2 28.79% 3.53% 3.93% 5.58% 28.76% 32.66%
RUSSELL 2000

α -0.978 -1.575 -1.568 -1.455 -0.579 -0.762
(-6.51) (-18.23) (-18.77) (-18.50) (-2.64) (-4.41)

β 0.225 -0.270 -0.270 -0.227 0.502 0.447
(2.20) (-3.95) (-4.01) (-3.66) (3.38) (3.28)

βρ -0.120 0.345 0.364 -0.055 0.258 0.327
(-0.26) (0.76) (0.80) (-0.11) (0.55) (0.76)

R
2 5.18% 11.85% 12.38% 8.15% 10.63% 9.24%

S&P500
α -0.913 -1.555 -1.580 -1.437 -0.406 -0.654

(-7.83) (-5.07) (-5.55) (-11.97) (-2.56) (-5.34)
β 0.344 -0.084 -0.107 -0.078 0.633 0.584

(4.95) (-0.60) (-0.73) (-0.63) (6.53) (6.69)
βρ -1.570 -2.302 -2.237 -2.430 -1.098 -0.967

(-2.95) (-3.42) (-3.28) (-4.03) (-2.08) (-1.89)
R

2 21.61% 11.47% 11.57% 11.44% 25.89% 26.45%

Aggregated results
Average α -0.899 -0.743 -0.557 -1.114 -0.747 -0.792
Average β 0.220 0.328 0.470 0.208 0.307 0.351
Average βρ -0.942 -1.267 -0.998 -1.213 -0.790 -0.697
Average R

2 11.14% 8.38% 10.14% 7.15% 11.37% 13.17%
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Table 3.7 Information Content of Skewness Forecasts (90 days)

This table reports the results from Mincer-Zarnowitz regressions. I regress the realised skewness of each index
in Table 3.1 on the forecasts generated from each model in Table 3.3. The forecasting horizon is 90 calendar
days. The GARCH and QMIDAS models are estimated using the whole sample. In the regressions, I control
for the the empirical correlation (ρt) between daily index returns and the index variance risk premium over the
prior 12 months in order to account for any bias in the realised skewness estimates. α and β respectively denote
the intercept and the coefficient of the forecast in the regression. In addition, βρ is the coefficient of ρt, R

2 is
the adjusted R2 coefficient while the numbers in parentheses denote t-statistics, estimated using Newey-West
(1987) heteroskedasticity and autocorrelation consistent standard errors. Significant coefficients at the 5% level
are highlighted in bold. The bottom panel of the table contains the average values of α, β and βρ across indices.

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

AEX
α -0.944 -1.240 -1.250 -1.263 -0.839 -0.836

(-8.06) (-2.50) (-2.54) (-6.51) (-5.94) (-8.90)
β 0.293 0.031 0.026 0.034 0.315 0.379

(3.48) (0.15) (0.13) (0.28) (3.34) (5.89)
βρ -1.060 -1.910 -1.904 -1.975 -1.562 -1.240

(-1.67) (-2.43) (-2.43) (-2.35) (-2.49) (-2.37)
R

2 18.90% 11.83% 11.82% 11.89% 18.21% 25.79%
DAX

α -1.146 -1.114 -1.094 -1.575 -1.129 -1.096
(-6.51) (-9.06) (-8.42) (-5.89) (-13.21) (-13.98)

β 0.131 0.104 0.112 -0.290 0.134 0.178
(0.99) (1.63) (1.70) (-1.04) (2.24) (2.91)

βρ -0.124 -0.520 -0.535 -0.586 -0.207 -0.177
(-0.31) (-1.01) (-1.03) (-1.00) (-0.46) (-0.41)

R
2 1.86% 2.50% 2.69% 1.59% 2.47% 4.74%

DJIA
α -0.885 -1.595 -0.846 -1.452 -0.840 -0.908

(-6.75) (-6.40) (-10.70) (-10.85) (-7.03) (-7.44)
β 0.310 -0.121 0.324 -0.225 0.365 0.329

(3.47) (-1.37) (4.62) (-1.69) (4.45) (3.92)
βρ -0.049 -0.081 0.970 0.103 -0.029 -0.114

(-0.14) (-0.17) (1.97) (0.22) (-0.07) (-0.31)
R

2 10.22% 1.47% 21.94% 2.72% 5.75% 7.39%
STOXX 50

α -1.024 -1.455 -1.469 -0.961 -1.033 -1.071
(-7.47) (-4.27) (-4.06) (-2.99) (-7.23) (-10.39)

β 0.249 -0.045 -0.057 0.449 0.200 0.227
(2.67) (-0.29) (-0.31) (1.19) (2.40) (2.49)

βρ 0.246 0.239 0.247 0.234 0.285 0.371
(0.41) (0.34) (0.35) (0.34) (0.42) (0.56)

R
2 6.31% 0.12% 0.14% 1.15% 4.48% 5.57%

FTSE 100
α -1.111 -1.988 -1.984 -1.899 -1.134 -1.149

(-7.24) (-4.72) (-4.74) (-9.83) (-7.97) (-8.81)
β 0.270 -0.172 -0.185 -0.500 0.246 0.256

(3.78) (-1.08) (-1.09) (-2.44) (3.37) (3.42)
βρ -0.423 -0.483 -0.465 0.582 0.061 -0.359

(-0.57) (-0.59) (-0.57) (0.60) (0.07) (-0.47)
R

2 8.24% 2.29% 2.33% 6.05% 9.10% 11.11%
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Table 3.7 Information Content of Skewness Forecasts (90 days)(continued)

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

HANGSENG
α -0.766 1.074 2.249 -1.713 -0.753 -0.682

(-4.94) (1.51) (1.91) (-2.96) (-3.91) (-6.51)
β 0.046 1.816 2.490 -1.686 0.035 0.106

(0.24) (2.60) (2.57) (-1.63) (0.38) (5.00)
βρ 1.777 1.357 1.364 1.631 1.768 1.093

(1.54) (2.08) (2.07) (1.56) (1.52) (1.32)
R

2 4.10% 30.95% 30.35% 13.64% 4.06% 19.66%
KOSPI

α -0.813 1.856 2.553 -0.630 -0.664 -0.567
(-6.22) (1.57) (1.86) (-4.34) (-5.21) (-4.11)

β -0.007 1.623 1.874 0.320 0.216 0.297
(-0.03) (2.27) (2.46) (1.97) (2.61) (3.23)

βρ -0.039 -0.526 -0.557 -0.283 0.178 0.604
(-0.03) (-0.51) (-0.56) (-0.24) (0.13) (0.47)

R
2 -0.19% 8.01% 9.28% 4.08% 1.66% 7.00%

NASDAQ 100
α -0.660 -1.648 -1.652 -0.381 -0.694 -0.781

(-5.09) (-6.79) (-7.25) (-0.91) (-4.35) (-5.83)
β 0.576 -0.137 -0.166 1.403 0.531 0.520

(8.27) (-0.97) (-1.08) (2.69) (7.05) (7.42)
βρ 0.668 0.802 0.828 1.158 0.774 0.861

(1.20) (1.07) (1.10) (1.63) (1.40) (1.57)
R

2 34.58% 1.91% 2.18% 8.37% 22.50% 28.96%
RUSSELL 2000

α -0.813 -1.896 -1.890 -1.798 -0.726 -0.817
(-5.02) (-17.17) (-16.93) (-21.20) (-3.82) (-5.03)

β 0.454 -0.301 -0.300 -0.334 0.507 0.475
(4.48) (-3.91) (-3.81) (-4.51) (4.47) (4.59)

βρ 0.465 0.995 0.986 1.030 0.515 0.727
(0.92) (1.79) (1.76) (1.77) (1.05) (1.57)

R
2 20.28% 17.48% 17.23% 17.58% 18.83% 19.95%

S&P500
α -0.906 -2.178 -2.176 -1.834 -0.568 -0.750

(-6.28) (-6.30) (-6.37) (-9.99) (-3.27) (-5.91)
β 0.447 -0.214 -0.238 -0.251 0.655 0.580

(5.66) (-1.77) (-1.78) (-1.69) (6.36) (7.67)
βρ -0.959 -1.540 -1.505 -1.832 -0.911 -0.498

(-1.45) (-1.69) (-1.65) (-2.16) (-1.34) (-0.80)
R

2 25.55% 9.73% 9.80% 9.44% 27.64% 32.34%

Aggregated results
Average α -0.907 -1.018 -0.756 -1.351 -0.838 -0.866
Average β 0.277 0.258 0.388 -0.108 0.320 0.335
Average βρ 0.050 -0.167 -0.057 0.006 0.087 0.127
Average R

2 12.98% 8.63% 10.78% 7.65% 11.47% 16.25%
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bear any significant information about the realised skewness. I observe a similar

pattern across most considered cases with the GARCH and QMIDAS forecasts

failing to have any explanatory power on future realised skewness in the majority

of horizon-index pairs in my analysis. The superiority of the lagged realised

and option-implied skewness estimates is consistent with similar findings from

the volatility forecasting literature, where realised or option-implied volatilities

are known to better predict future realised volatility compared to GARCH-

based estimators (see, e.g., Kourtis et al., 2016). The poor performance of the

GARCH/QMIDAS models in this test can be partly due to the inability of these

models to capture the time-varying nature of the leverage effect, documented by

Bandi and Renò (2012), Wang and Mykland (2014) and Kalnina and Xiu (2017).

While the leverage effect is either explicitly estimated by the coefficient b2 in

the GJR-GARCH model or implicitly captured by the slope coefficient β1 in the

MIDAS model, these coefficients are estimated using a long sample, which makes

them less representative of the forecasting horizon.

Among the models that use option-based information, the simple option-implied

skewness (IS) performs similarly to the lagged realised skewness model (LRS) with

one model being slightly superior to the other for some indices/horizons/metrics

and vice versa. For instance, at the quarterly horizon, LRS forecasts subsume

significant information about the future realised skewness for 7 out of 10 indices,

while IS contains significant relevant information for 9 out of 10 indices. For the

same horizon, LRS corresponds to a higher average adjusted R2 across indices

(12.98% vs 11.47%). Both of these models, however, are inferior to the implied

skewness estimator that corrects for the skewness risk premium (CIS) in the

majority of the scenarios I consider. Focusing again on the quarterly horizon,

CIS predicts the realised skewness in a statistically significant manner for all

indices in my sample. At the same time, it offers the highest average adjusted R2

equal to 16.25%. CIS is generally superior to the remaining models on average
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across all horizons, highlighting the important of accounting for the skewness risk

premium when forecasting skewness. This result is again analogue to findings

in the volatility forecasting literature that promote the use of the variance risk

premium in volatility forecasting using implied volatilities.

I can reach two additional conclusions from the results in Tables 3.5-3.7. First,

I observe that the intercept is statistically significant in almost all scenarios

I consider, indicating that the forecasts are generally biased estimates of the

future realised skewness. I explore the bias in skewness forecasts for models

with significant slope coefficients more formally by jointly testing the hypothesis

H0 : α = 0; β = 1 with a standard Wald-type test. The hypothesis is indeed

rejected for most of the markets and forecast horizons in my analysis. Second,

I observe that the control for the bias in the realised skewness I include in the

Mincer-Zarnowitz regressions has significant explanatory power in the majority of

cases considered while it enters the regression with a negative coefficient. This

result shows that the martingale assumption in Neuberger (2012) is violated in

most cases and the realised skewness is generally a biased estimator of the true

skewness.

I further investigate the relative importance of each forecasting model in the

context of encompassing regressions. Encompassing regressions also allow us to

identify whether a forecasting model subsumes the information contained in the

rest of the models. The encompassing regression extends the Mincer-Zarnowitz

regressions Eq. (3.30) as follows:

(3.31)RSt,t+k = α + βLRSF̂ LRS
t,t+T + βGARCH−2F̂

GARCH−2
t,t+T

+ βQMIDASF̂ QMIDAS
t,t+T + βCISF̂ CIS

t,t+T + βρρt + et,t+T .

I exclude the GARCH-1 and IS models from the regressions as they can be

considered as the restricted versions of the GARCH-2 and CIS models, respectively.

Table 3.8 presents the regression coefficients and the adjusted R2’s from my

encompassing regressions for each index and horizon I consider. As before, I find
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Table 3.8 Encompassing Regressions

This table reports the results from regressing the realised skewness on forecasts generated from the LRS, GARCH-
2, QMIDAS and CIS models, within the same regression, for each index in Table 3.1. The GARCH-2 and
QMIDAS models are estimated using the whole sample. In the regressions, I control for the the empirical
correlation (ρt) between daily index returns and the index variance risk premium over the prior 12 months in
order to account for any bias in the realised skewness estimates. α and βi respectively denote the intercept
and the coefficient of the forecast of model i in the regression. In addition, βρ is the coefficient of ρt, R

2 is
the adjusted R2 coefficient while the numbers in parentheses denote t-statistics, estimated using Newey-West
(1987) heteroskedasticity and autocorrelation consistent standard errors. Significant coefficients at the 5% level
are highlighted in bold. Panel A, B and C respectively present results for a forecasting horizon of 30, 60 and 90
calendar days. (1) - (10) are the ten international indices of order listed in Table 3.1.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: 30 days
α -0.113 -0.664 0.868 -0.876 0.041 1.309 1.557 0.140 -0.506 0.854

(-0.18) (-2.26) (2.12) (-1.48) (0.12) (1.79) (1.34) (0.32) (-4.29) (2.30)
βρ -1.443 -1.371 0.741 0.549 -1.081 -0.574 -0.107 0.111 0.313 -0.410

(-2.88) (-2.94) (2.20) (1.39) (-1.58) (-0.72) (-0.18) (0.25) (0.70) (-0.68)
βLRS 0.160 0.220 0.188 0.170 0.069 0.038 0.325 0.279 0.083 0.184

(2.08) (3.78) (2.50) (2.86) (1.14) (0.35) (4.55) (3.90) (1.21) (2.51)
βGARCH−20.132 0.113 0.386 -0.108 0.346 2.296 1.942 0.113 -0.170 -0.124

(0.24) (1.21) (5.63) (-0.47) (1.31) (2.46) (1.82) (0.51) (-2.12) (-0.94)
βQMIDAS0.528 -0.057 1.545 -0.101 0.514 0.177 -0.291 0.838 0.255 2.149

(2.41) (-0.19) (2.61) (-0.18) (1.45) (0.27) (-1.52) (1.42) (2.29) (4.32)
βCIS 0.183 0.096 0.333 0.235 0.385 0.375 0.185 0.429 0.485 0.474

(1.72) (1.21) (3.69) (2.04) (3.07) (2.49) (1.82) (4.20) (4.28) (4.49)
R

2 13.82% 12.68% 31.07% 6.87% 11.38% 21.10% 21.73% 26.29% 11.31% 20.08%

Panel B: 60 days
α -0.477 -0.912 -0.476 -1.043 -0.536 2.584 2.721 -0.243 -1.205 -0.676

(-0.65) (-3.82) (-3.06) (-2.36) (-1.12) (2.16) (2.09) (-1.40) (-7.14) (-2.13)
βρ -2.510 -1.093 0.392 -0.283 -0.905 -0.399 -1.694 0.929 0.713 -0.715

(-3.66) (-2.08) (0.65) (-0.46) (-1.12) (-0.71) (-1.84) (2.18) (1.74) (-1.26)
βLRS -0.080 0.125 0.169 0.108 -0.010 -0.005 0.220 0.270 -0.043 0.170

(-0.92) (1.82) (2.41) (1.47) (-0.10) (-0.03) (2.02) (3.67) (-0.47) (2.78)
βGARCH−20.207 0.089 0.336 0.429 0.297 3.723 2.301 -0.169 -0.254 -0.090

(0.45) (1.09) (4.81) (1.57) (1.65) (2.63) (2.57) (-1.43) (-2.19) (-0.47)
βQMIDAS0.062 -0.067 0.079 -0.747 -0.158 -2.415 -0.179 0.611 0.035 0.100

(0.35) (-0.46) (0.44) (-1.59) (-1.15) (-2.01) (-0.74) (3.03) (0.35) (0.65)
βCIS 0.311 0.057 0.053 0.075 0.317 0.251 0.184 0.455 0.333 0.456

(3.40) (0.97) (0.70) (0.81) (2.73) (1.58) (1.58) (5.62) (3.06) (5.78)
R

2 24.76% 5.32% 24.03% 2.51% 12.13% 20.15% 15.46% 39.63% 16.01% 28.17%

Panel C: 90 days
α -0.138 -0.549 -0.931 -0.421 -0.821 1.295 4.329 0.076 -1.076 -0.677

(-0.35) (-1.46) (-5.94) (-0.77) (-2.14) (1.09) (2.23) (0.32) (-5.92) (-2.16)
βρ -1.513 -0.381 1.307 0.220 0.359 1.033 0.184 1.028 0.994 -0.349

(-2.89) (-0.87) (2.81) (0.46) (0.53) (1.81) (0.18) (2.58) (2.56) (-0.61)
βLRS 0.120 0.077 0.124 0.183 0.163 -0.154 -0.143 0.387 0.182 0.189

(1.33) (0.82) (1.68) (2.03) (1.75) (-1.16) (-1.12) (6.05) (2.13) (2.47)
βGARCH−20.197 0.170 0.294 0.147 0.171 1.838 2.845 -0.030 -0.102 -0.013

(1.14) (2.17) (4.94) (0.89) (1.40) (2.18) (2.48) (-0.36) (-1.10) (-0.09)
βQMIDAS0.078 0.117 -0.210 0.246 -0.331 -0.258 -0.263 0.913 -0.071 0.014

(0.84) (0.43) (-2.27) (0.64) (-2.23) (-0.39) (-1.22) (3.20) (-0.70) (0.08)
βCIS 0.359 0.184 -0.027 0.144 0.190 0.086 0.353 0.269 0.262 0.448

(4.15) (3.87) (-0.46) (1.73) (2.55) (3.05) (3.58) (4.55) (3.91) (7.11)
R

2 28.11% 9.04% 25.63% 8.42% 14.80% 36.87% 19.08% 42.73% 28.50% 34.15%
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that the option-based models tend to be capture more information about the future

realised skewness compared to the models that only use information from past

returns. The CIS model again produces the most informative estimates, based on

the number it appears as a significant predictor in the regressions. An interesting

observation here is that each model tends to capture different information about

the realised skewness, as forecasts that are significant in my Mincer-Zarnowitz

tests are in most cases significant in the multivariate setting too.9 For example,

at the monthly horizon and for the DJIA index, all forecasts are significant at the

5% level either in isolation or collectively as it can be respectively seen in Table

3.5 and in Panel A of Table 3.8. As a result, adjusted R2’s for the encompassing

regression can be considerably larger to their analogues in the single-forecast

regressions. Indicatively, if I consider again the DJIA index, the highest adjusted

R2 that a single model can yield on its own at the monthly horizon is 22.10%

while the encompassing regression results in an adjusted R2 of 31.07%.

3.3.2 Out-of-Sample Analysis

I evaluate the predictive ability of each of the six skewness models in an out-of-

sample empirical analysis. To this end, I compute two popular loss functions for

each model/index/horizon triplet, i.e., the Root Mean Squared Error (RMSE)

and the Mean Absolute Error (MAE), defined respectively as:

RMSE =

√√√√ 1
M

M∑
t=1

(
RSt,t+T − F̂t,t+T

)2
(3.32)

MAE = 1
M

M∑
t=1

|RSt,t+T − F̂t,t+T | (3.33)

9There are only a handful of cases where one of the models appears to be uninformative in
the multivariate framework while it produces significant results on its own.



3.3 Empirical Analysis 91

where F̂t,t+T is the skewness forecast and M is the total number of out-of-sample

skewness forecasts. To compute the forecasts from the GARCH and QMIDAS

models, I use a rolling window of 1250 daily observations.

The results loss functions are presented in Tables 3.9, 3.10 to Table 3.11 for

the monthly, bi-monthly and quarterly horizons, respectively. I report RMSE’s in

Panel A and MAE’s in Panel B of each table. The models with the lowest forecast

errors are highlighted in bold. I also run Diebold-Mariano predictive accuracy

tests (Diebold and Mariano, 1995) using heteroscedasticity and autocorrelation

consistent standard errors (Newey and West, 1987) to test whether the difference

of the loss function produced by a model is significantly larger than that of the

best model. Models that produce significantly less accurate forecasts than the best

model at the 5% (10%) significance level are marked with two (one) asterisks.

In line with the in-sample results, I observe that the option-based models offer

significantly superior predictive ability compared to the models that only rely on

index returns. The GARCH and QMIDAS models lead to inferior out-of-sample

performance in all cases, apart from the HANGSENG and KOSPI indices. The

relative forecasting performance of the LRS, IS and CIS models are boosted

out-of-sample by the use of forward-looking information and the lower sensitivity

to estimation errors. On the contrary, the rest of the models involve the estimation

of a relatively large number of parameters which makes them more sensitive to

estimation errors and deteriorates their out-of-sample performance.

At the monthly and bi-monthly horizon implied skewness adjusted for the

skewness risk premium (CIS) produces the lowest forecasting errors. For example,

according to the MAE criterion, it is the superior model for predicting the skewness

of 8 out 10 indices. The MAE’s produced by CIS are significantly lower at the

5% level than the rest of the forecasts in most cases. At the quarterly horizon,

the results are mixed with LRS, IS or CIS producing the best forecast in different
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cases, depending on the loss function or the index assumed.10 Nevertheless, CIS is

never outperformed at the 5% significance level by any of the remaining models.

I conclude my out-of-sample analysis using the nonparametric approach of

Hansen et al. (2011), known as Model Condidence Set (MCS), to identify a

collection of models that outperform the rest of the models under a given loss

function at specific level of confidence. Similar to the second chapter, I use the

range statistic in Eq. (2.21) to test the null hypothesis that two models lead to

the same loss at a specific time. To compute the MCS, I use a block bootstrap

process with a block of 2 observation and 10,000 replications.11

I present the results from my MCS tests in Tables 3.12 and 3.13 for the RMSE

and MAE losses, respectively, assuming a significance level of 5%. Three main

observations from these results are noteworthy. First, corrected implied skewness

(CIS) enters the MCS in almost all considered cases, ranked first in the majority

of them, except for some indices at quarterly horizon. Second, IS and, to a

lesser extent, LRS are included in the MCS in several cases highlighting again

the importance of option-implied information when forecasting skewness. Third,

the GARCH- and QMIDAS-based skewness estimators do not enter the MCS

in almost all scenarios. For example, under the RMSE criterion, the GARCH

and QMIDAS model are favoured by the MCS test only for the HANGSENG

index, where all three are included in the MCS, and for KOSPI, where only the

GARCH-1 model is included. Overall, the findings from my out-of-sample analysis

are consistent with the in-sample results from the previous section.

3.3.3 Economic Value of Skewness Forecasts

I assess the economic significance of the skewness models in an international

diversification setting. I aim to identify which of the six skewness forecasting
10An exception is the GARCH-2 that leads to the lowest losses for the HANGSENG index.
11I have considered alternative block lengths with similar results.
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methods is more beneficial for an international investor and whether any of them

can lead to portfolios that outperform naïve diversification, i.e., my benchmark

in this exercise. DeMiguel et al. (2009) show that the naïve diversification, also

known as the “1/N” portfolio, performs consistently better than many popular

theory-based portfolio choice methods as the latter are subject to sampling errors

that deteriorate portfolio performance significantly. In particular, I construct

parametric portfolios that are based on each skewness forecasting model using

the approach of Brandt et al. (2009). This framework allows us to directly assess

the impact of the skewness forecasts on portfolio performance without having

to rely on any specific distributional assumptions about the index returns. The

same approach has been also adopted by DeMiguel et al. (2013), who show that

a portfolio that exploits option-implied skewness leads to higher Sharpe ratio

compared to 1/N in a sample of U.S. stocks.

I consider an investor that at time t uses the information on a skewness forecast

to select a portfolio of N indices. The investor’s portfolio weight on the i index is

a linear function of the skewness forecast as

wm
i,t = w

1/N
i,t + θm

t

1
N

f̃m
i,t. (3.34)

In the above, w
1/N
i,t = 1/N is the weight of the 1/N portfolio which stands for the

benchmark in the parametric portfolio framework. f̃m
i,t is the 30-day ahead forecast

of the skewness of the index i, generated by the model m and standardised so

that the cross-sectional mean and variance at time t are 0 and 1 respectively. The

parameter θm
t is the loading on each standardised forecast and is the same across

indices. When θm
t is positive (negative), the investor will assign a larger weight

on her portfolio on assets with a higher (lower) skewness prediction.

Each of the six forecasting models augments the benchmark portfolio w
1/N
t

by a zero-cost portfolio that is determined by the forecasts generated by the
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model. As such each forecasting model yields a unique portfolio strategy defined

by the weights wm
t . By studying the out-of-sample performance of each strategy,

I can then assess the economic value of the corresponding forecasting model. In

this fashion, I compute several popular performance metrics from daily portfolio

returns. At each day t and for each model m, I compute the parameter θm
t which

leads to the minimum variance of the daily portfolio returns over the previous

252 days. I input this value in Eq. (3.34) to derive the portfolio weights at day

t for model m and the corresponding portfolio return rm
t . I repeat this process

until the last day of my sample to yield a series of M portfolio returns/weight

vectors for each skewness forecasting model and for the 1/N portfolio. Then, for

each portfolio model m, including the 1/N portfolio, I compute the out-of-sample

portfolio mean return, volatility and Sharpe ratio as:

µ̂m = 1
M

M∑
t=1

rm
t (3.35)

(σ̂m)2 = 1
M − 1

M∑
t=1

(rm
t − µ̂m)2 (3.36)

ŜR
m = µ̂m

σ̂m
(3.37)

I also explore the significance of the difference of the variance between a

portfolio strategy and 1/N by testing the null hypothesis: H0 : (σ̂m)2−
(
σ̂1/N

)2
= 0.

I estimate p-values for this test using the non-parametric bootstrap framework of

Ledoit and Wolf (2011), assuming an average block size of 10 and 5,000 trials. I

also compute the average daily portfolio turnover for each portfolio strategy, which

assesses the sensitivity of a portfolio strategy to transaction costs (see Kourtis

(2015) as:

τ̂m = 1
M − 1

M−1∑
t=1

∥w̃
(m)
t+1 − w̃

(m)
t+ ∥1, (3.38)
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where w̃
(m)
t+ stands for the portfolio weights at the beginning of the period t + 1,

before rebalancing takes place, while ∥·∥1 stands for the 1-norm.

In Table 3.14, I report the above metrics for portfolios of the indices in my

dataset, excluding the HANGSENG and KOSPI indices for which the resulting

out-of-sample period would be considerably small to yield any reliable conclusions.

I also exclude the DJIA, NASDAQ and RUSSELL 2000 indices in order to reduce

the bias of the portfolio towards the U.S. market. As a robustness check, I have

also included the DJIA, NASDAQ and RUSSELL 2000 and rerun my analysis. My

qualitative results remain similar to the ones presented in this section, as discussed

in the next section. I consider two time-periods. In Panel A, I report results for

the period 01/2011-12/2015, i.e. the maximum period for which out-of-sample

forecasts are available for all models. In Panel B, I report results for the period

03/2008-12/2015, i.e. the maximum period for which out-of-sample forecasts are

available for the LRS, IS and CIS models. As such, I do not include results for

the GARCH and the QMIDAS models in panel B.

Starting with the period 01/2011-12/2015, I observe that all skewness-based

portfolios offer a lower risk than 1/N with the difference between the variances

being statistical significance at the 5% level in most cases, apart from the LRS and

QMIDAS portfolios. The lowest variance is offered by the portfolio that is based

on the implied skewness estimator that corrects for the skewness risk premium

(CIS). This portfolio is the only one that outperforms 1/N in terms of either

average return or Sharpe ratio. In particular, the CIS-based portfolio leads to an

annualised mean return of 12.61% and an out-of-sample Sharpe ratio of 0.7199.

In comparison, 1/N yields an average annualised return of 9.24% and a Sharpe

ratio of 0.5004.

The second best alternative out of the skewness-based portfolios is the one that

relies on the vanilla option-implied estimator (IS). This portfolio produces higher

average return and Sharpe ratio compared to all other skewness-based portfolios,
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Table 3.14 Out-of-sample Performance of Skewness-based Portfolios

This table presents the out-of-sample performance of the equally-weighted portfolio (1/N)
and of the parametric portfolios that use the skewness forecasts from each model considered
in the paper. The portfolios include as assets the following indices: AEX, DAX, STOXX
50, FTSE100 and S&P 500. The table reports the annualised out-of-sample average daily
return (MEAN), variance of daily returns (VAR) and Sharpe ratio (SR) for each portfolio
strategy as well as the average daily turnover (TRN). It also reports p-values from testing
the hypothesis that the variances between a portfolio strategy and 1/N are equal. The
p-values are computed using the block-bootstrap approach of Ledoit and Wolf (2011),
assuming an average block size of 5 and 5,000 replications. Panel A and B respectively
present results for the periods 01/2011-12/2015 and 03/2008-12/2015.

MEAN VAR p-value SR TRN

Panel A: 01/2011-12/2015
LRS 0.0761 0.0323 0.07 0.4233 0.1649
GARCH-1 0.0872 0.0331 0.01 0.4792 0.0674
GARCH-2 0.0796 0.0332 0.00 0.4371 0.0728
QMIDAS 0.0798 0.0338 0.52 0.4342 0.0876
IS 0.0877 0.0332 0.00 0.4816 0.1850
CIS 0.1261 0.0307 0.00 0.7199 0.3277
1/N 0.0924 0.0341 1.00 0.5004 0.0039

Panel B: 03/2008-12/2015
LRS 0.0552 0.0191 0.07 0.3986 0.2379
IS 0.0633 0.0175 0.00 0.4793 0.4095
CIS 0.0914 0.0159 0.00 0.7252 0.4219
1/N 0.0630 0.0220 1.00 0.4249 0.0032

apart from CIS. The superior performance of both option-implied skewness-based

portfolios is however accompanied by a higher turnover while the portfolios that

result from the GARCH-based skewness tend to yield lower levels of turnover.

Finally, LRS underperforms all portfolios with regards to mean and risk-adjusted

returns, even though it results in lower variance compared to all portfolios, apart

from CIS.

Focusing on the second time period under consideration (03/2008-12/2015),

which is longer than the first, I observe that option-implied skewness leads to even

better relative portfolio performance. In particular, both the IS and CIS strategies

outperform both 1/N and LRS across all performance measures, except turnover.

The CIS strategy is again superior than the rest of the strategies, yielding an

average return of 9.14%, a variance of 0.0159 and a Sharpe ratio of 0.7252. It again
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outperforms 1/N which in turn leads to an average return of 6.3%, a variance

of 0.0220 and a Sharpe ratio of 0.4249. Finally, LRS leads to the worse overall

performance out of the 4 strategies considered in this setting.

Overall, I show that the use of option-implied skewness offers significant benefits

in terms of out-of-sample portfolio performance. Especially, accounting for the

skewness risk premium when forecasting skewness leads to superior portfolios

compared to 1/N or to portfolios constructed using other methods for estimating

skewness. These results extend recent studies that advocate the use of option-

implied information in portfolio selection (DeMiguel et al., 2013; Kourtis et al.,

2016; Prokopczuk and Wese Simen, 2014).

3.4 Robustness Checks

3.4.1 Alternative Method to compute Implied and Re-

alised Skewness

I carry out a series of checks to confirm the robustness of the main conclusions

from my empirical analysis. I first examine whether my results are sensitive to

the methodology I use to extract information for option markets. In particular,

instead of the trapezoidal approximation of the integrals in Eq. (3.3) and (3.24)

discussed in section 2, I adopt the interpolation/extrapolation method discussed in

p. 1818 of DeMiguel et al. (2013) to extract option prices from implied volatilities

and, subsequently, compute implied and realised skewness. Tables B.1 to table

B.6 in the Appendix repeat the in-sample and out-of-sample analyses using this

alternative framework to estimate all realised/implied skewness values. The results

are consistent with the main findings.
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3.4.2 Alternative Specification of the GARCH-2 Model

In my main analysis, when deriving the GARCH-2 model, I specify the dynamics

of the shape parameters in a GARCH-type structure similar to Bali et al. (2008).

Feunou et al. (2016) finds that introducing an asymmetric specification in the

shape parameters dynamics improves the in-sample fit of the GARCH-2 model

to the S&P 500 index. To investigate this result in an international setting, I

change the dynamics of the shape parameters in Eq. (3.12) and (3.13) to allow

for asymmetric responses in the return innovations as in Feunou et al. (2016):

λ̃t = λ0 + λ−
1 I(zt−1≤0)zt−1 + λ+

1 I(zt−1>0)zt−1 + λ2λ̃t−1 (3.39)

κ̃t = κ0 + κ−
1 I(zt−1≤0)zt−1 + κ+

1 I(zt−1>0)zt−1 + κ2κ̃t−1 (3.40)

Table B.7 to table B.12 in the appendix report the results of my analysis using the

alternative specification of the GARCH-2 model described above. I find that the

predictive ability of the GARCH-2 model under the new specification is similar

in-sample to the original specification. However, thee out-of-sample performance

of the more sophisticated model is worse as it leads to higher losses. This result is

due to the increased impact of the estimation errors on out-of-sample forecasting

performance, driven by an increase in the number of unknown parameters in the

specification of the GARCH-2 model proposed by Feunou et al. (2016).

3.4.3 Alternative Specification of the QMIDAS Model

For the estimation of equation Eq. (3.17) in the specification of the QMIDAS

modle, I have chosen a lag length D of 250 days in my main analysis. I study the

sensitivity of the forecasting performance of QMIDAS-based skewness to D by

considering two alternative lags, namely D = 200 and D = 300 days. In Tables

B.13 to table B.24 I report empirical results for D = 200 and in Tables B.19-B.24

for D = 300. Overall, my results indicate that my main findings for the forecasting



3.5 Suggestions for future research 104

performance of the QMIDAS skewness estimator are robust to these alternative

values for D.

3.4.4 Alternative Estimation Windows for the GARCH

and QMIDAS Models

My out-of-sample results rely on a rolling window of 1250 observations for the

estimation of two GARCH and the QMIDAS model. In this robustness test, I

also consider windows of 1000 and 1500 observations. I present the corresponding

results in Table B.25 to table B.28 in the Appendix. I find that these alternatives

do not alter the conclusions I draw in the main part of the paper.

3.4.5 Alternative Asset Universe for the Portfolio Analy-

sis

In my final robustness test, I examine the out-of-sample performance of the

skewness-based portfolios presented in section 5 for an alternative asset universe.

In particular, I assume that the assets available to the investor further include

all U.S. indices, excluding only HANGSENG and KOSPI from the original list of

indices. The relevant results are presented in Table B.29 in the appendix and are

similar to the corresponding results in section 3.3.3.

3.5 Suggestions for future research

In my analysis, I mainly focus on indices from developed international markets

and on forecasting horizons of up to three months, as option data are more reliable

in these settings and longer forecasting horizons are less important for financial

decision-making than the ones I assume. An interesting extension of my work is

then to consider more indices from developing markets or to perform my tests
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at the stock level. As option markets are less liquid in developing markets or for

individual stocks, the performance of option-based models could decrease in such

settings. However, this decrease could be mitigated by using stock characteristics

(see, e.g., Aretz and Arısoy, 2019; Boyer et al., 2010) or additional country-level

economic variables (similar to Ghysels et al., 2016) as additional predictors of

future skewness. Such predictors can also help with supporting the performance

of skewness estimators for horizons of more than three months. I leave such

extensions for future research.

Another possible extension is to combine skewness forecasts from alternative

methods, given the findings in encompassing regression. Elliott and Timmermann

(2016) argue that combinations of different forecasting model typically produce

improved forecasts. Future research can also explore the predictability of return

kurtosis. As will be shown in the next chapter, incorporating information from

kurtosis forecasts significantly improves portfolio performance. The main obstacle

is the lack of proxy for the true physical kurtosis. One possible solution is the

new estimators recently introduced by Neuberger and Payne (2019) to estimate

realised skewness and kurtosis employing only historical daily data.

3.6 Conclusion

I carry out a comprehensive comparison of the forecasting performance and

economic significance of several skewness models from the literature. I also

develop a new skewness estimator that corrects option-implied skewness for the

skewness risk premium. In my analysis I consider ten international indices,

three forecasting horizons, two in-sample regression tests and two out-of-sample

comparisons under two loss functions. I also compare the competing models in an

international diversification framework to infer the skewness model that leads to
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the best out-of-sample portfolio performance under four measures. I support my

empirical analysis with a battery of robustness checks.

My empirical results support the use of option-implied information when

forecasting skewness. Two forward-looking option-implied skewness models and a

realised skewness model that also employs information from options outperform the

rest of the models that only rely on historical returns, namely, two GARCH models

and a skewness estimator computed from conditional quantiles (QMIDAS). The

corrected option-implied skewness estimator I propose has the highest information

content on future skewness while it consistently leads to the lowest forecast errors

in my out-of-sample tests. A portfolio strategy based on this new estimator also

outperforms strategies based on the rest of the skewness models and the 1/N

portfolio, in terms of out-of-sample mean returns, variance and Sharpe ratio.



Chapter 4

International Portfolio

Allocation: The Role of

Conditional Higher Moments

4.1 Introduction

The mean-variance theory of Markowitz (1952) has laid the foundations for modern

portfolio literature. The core assumption of the theory is that asset returns are

normally distributed, thus the utility of an investor is only a function of expected

return and variance. However, the strong evidence on the nonnormality of

financial asset returns casts doubts on the efficiency of the classical mean-variance

investment strategy (see, e.g., Cont, 2001, for a survey on the stylised facts of

financial returns and reference therein). A direct implication of nonnormal return

distribution is the potential impact of higher moments on portfolio allocation.

Early theoretical models show that a risk-averse investor has positive preferences

for skewness and negative preferences for kurtosis (see Kimball, 1993; Scott and

Horvath, 1980). Recent empirical studies also document significant time-variation

in the higher moments of asset returns, that are marginally predictable (see, e.g.,



4.1 Introduction 108

Brooks et al., 2005; Conrad et al., 2013; Hansen, 1994; Neumann and Skiadopoulos,

2013). As a result, a natural question that arises is whether an investor can exploit

higher moments in the distribution of returns to improve her portfolio performance.

I address this question by incorporating conditional skewness and kurtosis in

an asset allocation strategy across 42 international equity indices. The moments of

the conditional return distribution are jointly estimated from a set of conditional

quantiles to reduce their sensitivities to outliers. The weights of each country

in the optimal portfolio is then specified as a linear parameterisation of return

distributional characteristics. Moreover, I apply several decompositions to isolate

the components of portfolio gains driven by additional information from conditional

skewness and kurtosis. An out-of-sample (OOS) allocation strategy and two

alternative transaction costs scenarios are further examined to investigate the

benefits of return higher moments to a real-time investor. Finally, I perform a

series of robustness checks on the model specifications.

The contribution of this study is twofold. First, I incorporate both conditional

skewness and kurtosis in the portfolio allocation, while the existing literature

focuses primarily on the role of return skewness. For example, Chunhachinda

et al. (1997) Patton (2004) and Harvey et al. (2010) show that incorporating

skewness leads to sizeable changes in the optimal asset allocation and results in

economically significant gains for the investor. More recently, DeMiguel et al.

(2013) incorporate implied skewness from option prices and document similar

results. There is no clear reason a priori, however, to exclude return kurtosis from

the portfolio allocation. Dittmar (2002) argues that apart from the utility-based

preference, kurtosis provides meaningful information about the return distribution

that is distinguished from the variance and skewness. More specifically, the

fourth moment captures the probability of extreme outcomes to both tails of the

distribution, which is related to the tail risk of asset returns. Moreover, Jondeau

and Rockinger (2006) argue that in the case of large departures from normality,
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a portfolio optimisation strategy up to return kurtosis is necessary to provide a

good approximation of the expected utility. Thus, my analysis provides a broader

picture on the effects of nonnormality of asset returns on investment decisions.

Second, I consider the total skewness and kurtosis, while the limited number

of studies on higher moment portfolio have focused on the comoments between

the asset returns and the market portfolio. For example, Jondeau and Rockinger

(2012) and Gao and Nardari (2018) develop a distribution timing strategy based

on forecasts of comoments up to the fourth order. Using this strategy, they

observe significant economic gains in the distributional portfolio over the classical

mean-variation portfolio. Introducing new estimators of coskewness and cokurtosis,

Martellini and Ziemann (2010) document similar improvements in economic value

and stability of portfolios of large dimensions. Recent studies shed light on the

roles of own skewness and kurtosis of asset returns in explaining the cross-sectional

of stock returns (see, e.g., Boyer et al., 2010; Conrad et al., 2013; Stilger et al.,

2017). These results are drawn from the theoretical studies showing that the

investor is willing to trade diversification for stocks with positive skewness (see,

e.g., Barberis et al., 2008; Hong and Stein, 2003; Mitton and Vorkink, 2007) and

those with lower exposures to the tail-related events (Dittmar, 2002). Bali et al.

(2019), in particular, recently show that only the idiosyncratic components of higher

moments are related to expected returns. Indeed, I also include the coskewness and

kurtosis in the conditioning information and find that the systematic components

of higher moments do not have significant impacts on the optimal weights of an

international portfolio.

The most directly related study to mine is the recent work of Ghysels, Plazzi

and Valkanov (2016, hereafter GPV). My study differs from theirs in two im-

portant ways. First, GPV only investigate the role of conditional skewness for

international diversification, while I extend their work to further incorporate condi-

tional kurtosis. Second, although I also estimate conditional higher moments from
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quantile estimates, I rely on an alternative approximation method. GPV draw on

the third-order Cornish-Fisher expansion to scale their quantile-based skewness

to the central third moment. Such truncation implicitly assumes time-invariant

and zero excess-kurtosis in the return distribution. However, this assumption can

be restrictive given the recent empirical evidence of Gu and Ibragimov (2018)

that international indices exhibit heavy tailed distributions. Instead, I adapt

the more recent method proposed by Aretz and Arısoy (2019) to approximate

return moments using the law of total probability. This approach allows for

simultaneously estimating all moments of the conditional return distribution, yet

it retains the robust feature of quantile-based higher moments. While the latter is

practically important in the case of potentially noisy data from emerging markets,

the former reduces the estimation errors from making separate forecasts for each

distributional moment.

My empirical analysis reveals significant time-variation and heterogeneity in

conditional skewness and kurtosis at the monthly horizon in all equity indices.

Emerging stock markets (EMs) have less negative skewness than those of developed

stock markets (DMs). The value-weighted average conditional skewness of EMs is

equal to -0.154, almost three times lower in magnitude than those of DMs, which

equals to -0.446. A similar pattern is obtained in the case of conditional kurtosis,

although the discrepancy is less pronounced. Interestingly, after controlling for the

dynamics of skewness, the orthogonalised kurtosis is notably higher in EMs than

in DMs, averaging at 1.171 for EMs and 0.426 for DMs. Thus, although EMs have

less negative skewness, their conditional distributions are more exposed to extreme

returns. Motivated by this observation, I incorporate both conditional skewness

and orthogonalised kurtosis into the international dynamic portfolio using the

parametric portfolio policy of Brandt et al. (2009). By doing so, I sidestep from

the need for a high-dimensional multivariate distribution modelling, while I able
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to investigate the marginal impacts of conditional higher moments on the optimal

portfolio.

The whole-sample portfolio results suggest that the investor should allocate

more weights to the countries with positive (or less negative) conditional skewness

and less weights to the countries with higher kurtosis. This portfolio policy

remains robust when the investor recursively estimates her optimal portfolio

weights based on the OOS forecasts of return moments or when different scenarios

of transaction costs are imposed to the portfolio optimisation. In economic terms,

the portfolio based on both conditional skewness and kurtosis increases the annual

return by 3.4% and the certainty-equivalent rate by 3.3% compared to the mean-

variance portfolio. Overall, this strategy is consistent with the general preference

towards return moments suggested by the theoretical works of Scott and Horvath

(1980), Kimball (1993) and Dittmar (2002). More importantly, I find that a

large fraction of the economic gains is generated from the join dynamics between

conditional skewness and kurtosis. When the conditional kurtosis in introduced to

the information set, the investor earns an additional 1.8% annualised return, which

leads to a certainty-equivalent gain of 2.1% compared to the skewness portfolio.

This improvement is in line with results of Jondeau and Rockinger (2006) and

Jondeau and Rockinger (2012), who highlight the importance of incorporating

information from both skewness and kurtosis in the portfolio allocation.

My study is also related to the international diversification literature. Since

the international indices are characterised by significant non-normality and heavy

tails, the prospects of international diversification might go beyond the first

two moments of the return distribution (Ang and Bekaert, 2002; Bekaert et al.,

1998). Empirical evidence on the benefits of higher moments nevertheless remains

inconclusive. For example, Christoffersen et al. (2012) argue that EMs provide

significant diversification benefits due to their low tail dependence with DMs.

Moreover, Pukthuanthong and Roll (2014) document weakly correlated jumps in
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the equity markets, which promote the international diversification associated with

cross-sectional heterogeneity in the return higher moments. In contrast, Guidolin

and Timmermann (2008) explore that international diversification benefits reduce

substantially after accounting for time-variations in higher-order comoments of

the country stock index and global market portfolio. Several recent studies further

document significant risk transmission and long-run cointegration in the extreme

tails of the return distribution (Chen et al., 2018; Shen, 2018). Since tail risk

can be directly related to higher moments via Cornish-Fisher approximation, this

evidence limits the benefits of higher moments in an international portfolio.

The current study sheds further light on this debate, using the Taylor ex-

pansion truncated at the fourth order to generalise the expected utility function

of an international investor (see, e.g., Dittmar, 2002; Gao and Nardari, 2018;

Guidolin and Timmermann, 2008, for similar generalisation). This generalisation

allows me to investigate the international diversification benefits in the context

of heterogeneity in distributional characteristics of stock returns in each country.

Similar to Ghysels et al. (2016), I find that a large proportion (38.3% of the

total weight) of the skewness-specific portfolio is invested in EMs, thanks to their

favourable conditional asymmetry. However, since EMs also have higher orthogo-

nalised kurtosis, the exposure of EMs reduces significantly to only 22.8% in the

skewness-kurtosis-specific portfolio. Notably, the EM-skewness effect disappears

in the most recent period, leading to a substantial reduction of EMs in the optimal

weights. More specifically, the investor increases the holding of DMs by about 30%

by shorting EMs by the end of 2017. This reaction can partly be explained by the

recent rise in protectionist policies induced by the 2007-2009 global financial crisis

(GFC). Globalisation has slowed down or even been reversed, with negatively

impacts on capital inflows and the prospects of emerging markets (Bekaert et al.,

2016).
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The reminder of this chapter is structured as follows. Section 4.2 presents

the methodology. Section 4.3 describes the data and discusses the estimates of

conditional higher moments as well as the main portfolio results. Section 4.4

reports robustness checks, whereas Section 4.5 identifies directions for future

research. Finally, Section 4.5 concludes the chapter.

4.2 Methodology

4.2.1 Expected Utility and Higher Moments of Asset Re-

turns

Let rt be the daily geometric return. Then the h-period geometric return is defined

as rt,h = Πh−1
i=0 (1 + rt+i) − 1. Suppose that at time t, there are Nt countries in the

investable universe based on their stock indices. The investor’s portfolio allocation

problem is to choose the portfolio weight to invest in country i, wi,t−1, based on

the information set available at time t − 1 in order to maximise the expected

utility function Et−1[U(rp
t,h)], where rp

t,h is the h-period portfolio return:


max

(wi,t−1)Nt
i=1

Et−1
[
U
(
rp

t,h

)]
= max

(wi,t−1)Nt
i=1

Et−1
[
U
(∑Nt

i=1(wi,t−1ri,t)
)]

s.t.
∑Nt

i=1 wi,t−1 = 1
(4.1)

The expected utility function can be approximated by a fourth-order Taylor

expansion series around the expected mean return, µt,h:1

E[U(rt,h)] ≈ U(µt,h) + 1
2!U

2(µt,h)E[(rt,h − µt,h)2] + 1
3!U

(3)(µt,h)E[(rt,h − µt,h)3]

+ 1
4!U

(4)(µt,h)E[(rt,h − µt,h)4] + O(r4
t,h)

(4.2)
1To simplify the notation, I drop the t − 1 subscript while keeping in mind that the portfolio

allocation problem is conditioning on the information set available at time t − 1
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where U (i)(µt,h) is the ith derivative of the utility function and O(r4
t,h) is the Taylor

remainder. Eq. (4.2) implies that the investor’s expected utility depends on

the first four moments of the portfolio return distribution. Although the Taylor

series expansion can be extended to an infinite order, truncation at the fourth

level directly relates the investor’s expected utility to her preference towards

higher-order moments. Under the general assumption of positive marginal utility,

Scott and Horvath (1980) suggest that a risk-averse investor has a positive

preference for the odd moments (mean, skewness), i.e, U (1) > 0 and U (3) > 0, and

a negative preference for even moments (variance, kurtosis), i.e, U (2) < 0 and

U (4) < 0. Therefore, adding information embedded in the higher moments generally

provides a better approximation for the expected utility function (Ederington,

1995; Guidolin and Timmermann, 2008). Jondeau and Rockinger (2006) also

argue that a portfolio optimisation strategy up to return kurtosis is necessary in

the case of large departures from normality.

Empirically, the maximisation of expected utility in Eq. (4.2) requires measures

of the conditional moments at the h-day horizon. Early empirical research relies

on the information from the option market to estimate return higher moments

under risk-neutral density.2 The appealing feature of this approach is that option-

implied moments reflect forward-looking information and require one day of option

price data. Indeed, the third chapter in this thesis shows that forecasting models

with information from the option market provide the best skewness forecasts

among several alternative models. For this specific application, however, options

data is not available for the majority of countries in the sample. I therefore rely

on a set of conditional quantiles of return distribution to estimate its moments.

This approach is motivated by the fact that higher moments of asset returns are
2Methodology to extract risk-neutral return moments from option prices is proposed in

Britten-Jones and Neuberger (2000) and Bakshi et al. (2003). See, e.g., Dennis and Mayhew
(2002), Bali and Murray (2013), Stilger et al. (2017) for the use of option-implied higher moments
for asset pricing models and Rehman and Vilkov (2012) and DeMiguel et al. (2013) for the use
of option-implied skewness for portfolio allocation.
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very sensitive to outliers (Kim and White, 2004). The issue is arguably more

pronounced in emerging markets due to more frequent jumps, resulting partly

from the non-smooth integration of globalisation (Bekaert et al., 1998, 2016).

Thus, using conditional quantile can greatly reduce the impacts of outliers in the

estimates of return higher moments.3

4.2.2 Higher Moments Estimates

Let F (rt,h) = P (rt,h < r) be the unconditional cumulative distribution function

of rt,h and its conditional counterpart be Ft−1(rt,h). Both functions are strictly

increasing. The conditional quantile at probability level, α, is defined as Qα(rt,h) =

F −1
t−1(α, rt,h). The robust estimators of skewness and kurtosis by quantiles have

been proposed by Pearson (1895), Crow and Siddiqui (1967) and Groeneveld and

Glen Meeden (1984). In my application, I rely on the new method in Aretz and

Arısoy (2019) to approximate return higher moments from the estimated quantiles

of the return distribution using the law of total probability.

The approximation is conducted on a set of J conditional quantiles sorted in an

increasing order α ∈ {α1 < α2 < .. < αJ−1 < αJ}. In the main analysis, I employ

nine quantile levels, that are α ∈ {0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99}.

Assume that the return distribution between two consecutive conditional quantiles

follows a uniform distribution, the expected value of the first four (raw) moments

of returns in each interval are:

Et−1
(
rt,h|qαj−1 < rt,h < qαj

)
=

qαj−1 + qαj

2

Et−1
(
r2

t,h|qαj−1 < rt,h < qαj

)
=

q2
αj−1

+ qαj−1 × qαj
+ q2

αj

3

Et−1
(
r3

t,h|qαj−1 < rt,h < qαj

)
=

q3
αj−1

+ q2
αj−1

× qαj
+ qαj−1 × q2

αj
+ q3

αj

4

Et−1
(
r4

t,h|qαj−1 < rt,h < qαj

)
=

q4
αj−1

+ q3
αj−1

× qαj
+ q2

αj−1
× q2

αj
+ qαj−1 × q3

αj
+ q4

αj

5
3A comprehensive discussion on the robust estimations of return skewness and kurtosis based

on quantiles can be found in Kim and White (2004).
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Ignoring the probability mass below α1 and above αJ , the conditional (central)

moments of return distribution can be approximated as follows:4

Et−1
(
rm

t,h

)
=

J∑
j=2

αj − αj−1

αJ − α1
Et−1

(
rm

t,h|qαj−1 < rt,h < qαj

)
(4.3)

where m = 1, 2, 3, 4. Finally, the conditional volatility, skewness and kurtosis

can be estimated using the conventional moment-based skewness and kurtosis

formulas:

V olt−1(rt,h) =
[
Et−1

(
r2

t,h

)
− Et−1 (rt,h)2

]1/2
(4.4)

Skt−1(rt,h) =
Et−1

(
r3

t,h

)
− 3Et−1 (rt,h) (Et−1

(
r2

t,h

)
− Et−1 (rt,h)2) − Et−1 (rt,h)3[

Et−1
(
r2

t,h

)
− Et−1 (rt,h)2

]3/2

(4.5)

Kut−1(rt,h)

=
Et−1

(
r4

t,h

)
− 4Et−1

(
r3

t,h

)
Et−1 (rt,h) + 6Et−1

(
r2

t,h2

)
Et−1 (rt,h)2 − 3Et−1 (rt,h)4[

Et−1
(
r2

t,h

)
− Et−1 (rt,h)2

]
[2

(4.6)

A crucial requirement for the above approximation is accurate estimates of

return quantiles. I follow GPV to estimate the conditional quantiles at the h-

day horizon using the MIDAS quantile regression. As documented in Chapter

2, MIDAS-based forecasts outperform alternative models in modelling return

quantiles at the multi-day horizon by accounting for serial dependence in the daily

return process. The conditional MIDAS-based quantile can be expressed as:

Qα(rt,h) = β0
α,h + β1

α,hZt−1(κα,h) (4.7)

Zt−1(κα,h) =
D∑

d=0
ϕd(κα,h)|rt−1−d| (4.8)

4The main findings are similar when I include more extreme quantiles in the robustness check
in Section 4.4.4.
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In the current application, I focus the portfolio analysis on monthly holding-period

returns, i.e., h = 22. Whereas rebalancing at shorter horizons (i.e., daily or weekly)

is costly in EMs, using a longer holding-period might increase the possibility of

estimation error in my skewness and kurtosis proxies. Neuberger and Payne (2019)

show that as the horizon lengthens, the return skewness (kurtosis) is mainly driven

by the covariance between the innovations in variance and the lagged returns

(lagged squared returns). Such components can only be captured by a long series

of historical returns or information from option prices.5 The use of monthly return

may therefore attempt to strike a balance between the estimation errors in the

higher moment proxies and the impacts of trading costs on portfolio allocation.

The latent conditioning variable Zt−1(κα,h), known at time t − 1, is a linear

projection of higher-frequency information. I follow GPV to choose daily lagged

absolute returns |rt−1−d| of D = 250 days as the higher frequency information. The

projection weight is parsimoniously determined by the low-dimensional polynomial

function ϕ(.) of Eq. (4.8). Similar to Chapter 2, I choose the “Beta” polynomial,

which is by far the most popular function used in the MIDAS literature. Again,

I constrain the first polynomial parameter to unity and estimate the second

polynomial parameter. This specification ensures monotonically declining weights

to the high-frequency variables as it moves further into the past.

4.3 Empirical Analysis

4.3.1 Data and Descriptive Statistics

In my analysis, I adopt daily total return data for 42 countries, including 24 DM

indices collected from the FTSE and 18 EM indices collected from the S&P /IFCI

database. For each index, I use the U.S. dollar-denominated values to avoid any
5Neuberger and Payne (2019) show that one needs to use at least 50 years of data to produce

reliable skewness and kurtosis estimates at monthly returns using historical return data
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potential effects of exchange rates. All indices are investable at low trading costs

and closely track the returns of a foreign investor on each country in the stock

market. The data spans the period from January 1, 1996 to December 31, 2017.6

Table 4.1 summarises statistics of the unconditional distributions of all indices.

To facilitate the comparison, I divide the sample into two groups, DMs and EMs,

respectively. For each group, I sort the indices by market capitalisation as of the

end of December 2017. In the first two columns, I report the annualised mean

and volatility. The next two columns report the sample skewness (Skt,22) and its

robust quantile-based measure (SkQ
t,22) using Eq. (4.5). Similarly, the last two

columns show the sample kurtosis (Kut,22) and its robust quantile-based version

(Kut,22) using Eq. (4.6). The value-weighed (VW) average of all statistics across

countries within each group is displayed in the last row of each panel.

The mean returns of DMs are lower than those of EMs (9.2% and 11.5%,

respectively), whereas the average volatility of the latter is significantly higher

than that of the former (18.1% and 32.6%, respectively). The VW skewness

(Skt,22) for DM is -0.618 with negative estimates in all but four DM. In contrast,

the VW skewness for EM is almost zero, with 6 out of 18 countries having positive

asymmetry. Interestingly, although return distributions in DM are more negatively

skewed, their VW kurtosis (Kut,22) is lower than that of EM (4.601 vs. 5.186,

respectively). The robust estimates, SkQ
t,22 and KuQ

t,22, clearly demonstrate the

impact of outliers on higher moment estimates. A notable example can be found in

the case of South Korea. The sample skewness (kurtosis) of South Korea decreases

by approximately 70% from 0.987 (9.002) to 0.312 (3.952) in the robust version.

Similar observations can be found in the EM group, for example, Philippines has

Skt,22 switching the sign from a positive estimate of 0.189 to a negative value of

-0.302 in SkQ
t,22. The sample distributions of EM are still nevertheless characterised

by less negative skewness and higher kurtosis.
6The only exceptions being Portugal and Russia, which start from May 4, 1998 and February

4, 1997, respectively.
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Table 4.1 Statistics of Unconditional Return Distributions

This table shows statistics of unconditional return distributions at the monthly horizon for
all indices. The table displays the annualised mean, annualised standard deviation, skewness
and kurtosis. The robust quantile-based versions are approximated from return quantiles as
in Eq. (4.5) and (4.6). Developed and emerging markets are reported separately in Panels A
and B, respectively. The last row in each panel presents the value-weighted average of each
statistic using the market capitalisation of December 31, 2017.

Mean Std Skt,22 SkQ
t,22 Kut,22 KuQ

t,22

Panel A: Developed Markets
United States 0.099 0.157 -0.834 -0.520 4.515 3.110
Japan 0.045 0.184 0.051 0.047 3.302 2.765
United Kingdom 0.065 0.170 -0.552 -0.522 5.005 3.604
France 0.090 0.211 -0.559 -0.364 4.060 3.132
Germany 0.095 0.236 -0.487 -0.481 4.471 3.411
Canada 0.102 0.210 -0.570 -0.350 5.681 3.300
Switzerland 0.088 0.172 -0.693 -0.643 4.520 3.686
Australia 0.108 0.214 -0.612 -0.454 4.457 3.321
South Korea 0.190 0.387 0.987 0.312 9.002 3.952
Hong Kong 0.090 0.256 0.018 0.100 5.908 3.659
The Netherlands 0.079 0.222 -0.856 -0.684 5.512 3.848
Spain 0.096 0.249 -0.304 -0.267 4.171 3.229
Sweden 0.116 0.257 -0.220 -0.128 4.541 3.490
Italy 0.068 0.250 -0.286 -0.240 3.778 3.029
Denmark 0.136 0.204 -0.838 -0.509 5.808 3.881
Singapore 0.073 0.287 0.142 0.083 7.124 5.081
Belgium 0.095 0.214 -1.235 -0.609 8.350 3.950
Finland 0.117 0.318 -0.009 0.000 4.483 3.846
Norway 0.105 0.273 -0.798 -0.771 5.755 4.537
Israel 0.109 0.215 -0.524 -0.401 3.935 3.382
Austria 0.092 0.269 -0.998 -0.468 6.989 3.558
Ireland 0.047 0.239 -1.119 -0.857 5.682 4.061
New Zealand 0.077 0.218 -0.462 -0.441 3.939 3.281
Portugal 0.027 0.229 -0.478 -0.283 4.103 2.816
VW.Average 0.092 0.181 -0.618 -0.418 4.601 3.214
Panel B: Emerging Markets
China 0.108 0.331 0.312 0.301 5.421 4.281
Taiwan 0.061 0.279 -0.038 -0.008 4.022 3.202
India 0.145 0.301 -0.105 -0.139 4.844 2.432
Brazil 0.167 0.382 -0.115 -0.053 3.851 2.999
South Africa 0.133 0.278 -0.568 -0.412 4.265 3.040
Russia 0.176 0.459 -0.216 -0.179 7.062 4.483
Mexico 0.130 0.267 -0.769 -0.155 5.678 2.908
Thailand 0.103 0.364 0.005 -0.124 5.607 4.536
Malaysia 0.050 0.296 0.521 0.365 9.758 6.683
Indonesia 0.121 0.445 0.070 -0.112 6.094 4.514
Philippines 0.060 0.287 0.189 -0.302 6.601 3.936
Poland 0.097 0.333 -0.490 -0.086 4.773 2.998
Chile 0.097 0.235 -0.399 -0.173 4.888 3.396
Turkey 0.175 0.491 0.695 0.173 6.542 3.589
Peru 0.171 0.276 -0.372 0.122 5.913 3.079
Pakistan 0.151 0.375 -0.221 0.119 7.963 4.724
Hungary 0.144 0.347 -0.578 -0.335 5.067 3.489
Czech Republic 0.125 0.284 -0.383 -0.120 4.260 2.878
VW.Average 0.115 0.326 0.009 0.031 5.186 3.678
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Table 4.2 MIDAS Conditional Quantile Estimates

This table reports the MIDAS-based estimates for the 1st, 5th, 25th, 50th, 75th, 95th and
99th conditional quantiles of the monthly returns of the U.S., China and the average across
developed and emerging markets. The numbers in parentheses display p-values using
bootstrapped standard errors. For κα, the null hypothesis is κα = 1. The rows Coverage
present the empirical coverage, as a percentage. The numbers in parentheses report the
p-values of the Kupiec (1995) test under the null hypothesis that the empirical coverage is
not statistically different from the considered quantile level.

α 0.01 0.05 0.025 0.5 0.75 0.95 0.99

United States
β0 -0.031 -0.011 0.004 0.011 0.018 0.020 0.017

(0.00) (0.00) (0.08) (0.00) (0.00) (0.00) (0.00)
β1 -11.025 -7.415 -2.814 0.367 2.592 6.282 9.581

(0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)
κα 60.849 7.619 4.997 171.437 43.488 33.182 20.597

(0.00) (0.00) (0.06) (0.89) (0.00) (0.00) (0.00)
Coverage 1.008 4.984 25.009 50.092 75.101 95.108 98.974

(0.95) (0.96) (0.99) (0.89) (0.86) (0.71) (0.85)
China

β0 -0.021 0.011 0.031 0.039 0.038 0.056 0.122
(0.04) (0.04) (0.00) (0.00) (0.00) (0.00) (0.00)

β1 -13.591 -11.445 -6.011 -2.380 2.288 7.972 10.849
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

κα 8.602 4.255 1.662 1.242 28.839 17.081 4.235
(0.00) (0.00) (0.01) (0.04) (0.00) (0.00) (0.06)

Coverage 1.008 4.965 24.991 50.073 74.973 95.071 98.992
(0.95) (0.91) (0.99) (0.91) (0.96) (0.81) (0.95)

Developed Markets
β0 -0.063 -0.034 0.001 0.010 0.019 0.036 0.047

(0.04) (0.05) (0.26) (0.16) (0.00) (0.02) (0.03)
β1 -9.773 -6.449 -2.961 0.236 2.997 6.622 9.365

(0.00) (0.00) (0.00) (0.02) (0.00) (0.00) (0.00)
κα 34.644 25.518 24.190 26.573 11.219 8.101 11.009

(0.05) (0.03) (0.03) (0.37) (0.06) (0.01) (0.03)
Coverage 1.000 4.947 25.006 50.039 75.060 95.071 99.014

(0.93) (0.86) (0.97) (0.92) (0.90) (0.81) (0.86)
Emerging Markets

β0 -0.059 -0.042 -0.014 0.006 0.015 0.021 0.032
(0.05) (0.10) (0.04) (0.16) (0.14) (0.06) (0.14)

β1 -12.696 -7.680 -2.408 0.587 4.221 10.328 14.577
(0.00) (0.00) (0.02) (0.05) (0.00) (0.00) (0.00)

κα 16.905 13.219 14.245 19.845 7.122 4.055 3.354
(0.03) (0.07) (0.15) (0.28) (0.08) (0.01) (0.06)

Coverage 1.002 4.966 25.014 50.082 75.109 95.108 99.022
(0.93) (0.91) (0.97) (0.90) (0.83) (0.74) (0.86)
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4.3.2 Conditional Higher Moments

4.3.2.1 Conditional Quantiles

I start with an evaluation on the accuracy of probability coverage in quantile

estimates. Table 4.2 reports the results from the MIDAS quantile regressions

described in Eq. (4.7) - (4.8) for the average across DMs and EMs, as well as the

U.S. and China, which are the two largest economies in each group. Due to the

limit of space, I only report results for seven quantile levels, at α = {0.01, 0.05,

0.25, 0.5, 0.75, 0.95, 0.99}. In the “Coverage” row, I present the proportion of

realised returns that exceeded each estimated quantile. If a conditional quantile

is correctly measured, I should expect this empirical coverage to be close to the

value of the quantile level. The numbers in parentheses report the p-values of the

Kupiec (1995) test under the null hypothesis that the empirical coverage is not

statistically different from the considered quantile level.

The slope coefficients, β1, are statistically significant in all quantile levels

across the markets, implying strong time-variation in conditional quantiles. Sim-

ilar to GPV, the absolute values of β1 for the left-tail quantiles, i.e,. α ∈

(0.01, 0.05, 0.25), are relatively different from those of the right-tail quantiles,

i.e., α ∈ (0.75, 0.95, 0.99), implying notable asymmetry in the conditional return

distribution. The empirical coverage observed in the Coverage rows are very close

to the corresponding quantile levels across markets. More importantly, the results

of Kupiec (1995) test show that none of the conditional quantiles in all markets

are rejected at the 5% significance level.

Figure 4.1 displays the conditional quantiles of monthly returns from the

results in Table 4.2. The top plots present conditional quantiles of the U.S. and

China, while the bottom plots present the value-weighted average of DMs and
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EMs.7 In each plot, the shaded areas correspond to the recession periods defined

by the National Bureau of Economic Research.

The 2007-2009 GFC is notably highlighted by spiking volatility and a widening

range of conditional quantiles across markets. For China and EMs, the inter-

range between quantiles also increased in the early part of the sample, which

corresponds to the 1997-1998 Asian financial crisis and the increased capital flows

due to financial liberalisation in these countries in the early 2000s. The magnitude

of conditional quantiles in the left tails is typically higher than that in the right

tails, particularly for the U.S. and DMs. This pattern signals the existence of

asymmetry in the conditional return distribution. Since all plots have similar

scales, China and EMs are featured with higher possibilities of extreme returns in

both tails of the conditional distributions than those of the U.S. and DMs. This is

in line with Ibragimov et al. (2013) and Gu and Ibragimov (2018), who document

heavier tails in the emerging countries, with significantly lower tail indexes than

those of developed markets.

Overall, the MIDAS-based quantiles provide good coverage of the conditional

return density and are highly informative about changes in market conditions.

In the next section, I plug these conditional quantiles into Eq. (4.5) - (4.6) to

construct conditional skewness and kurtosis.

4.3.2.2 Approximate to Conditional Higher Moments

Table 4.3 presents the summary statistics of conditional higher moments for each

country in my sample. The first four columns report the mean, standard deviation,

minimum and maximum of conditional skewness while the respective statistics

for conditional kurtosis are reported in the next four columns. The final column
7Since I perform separate quantile regressions for each quantile level, the possibility of a

“quantile crossing” issue cannot be guarded against. In the current application, this issue is
recorded at 0.98% of the full-sample estimation for any pairs of estimated quantiles in the same
stock index. Whenever I observe the quantile crossing, I apply the recently developed method
of monotonic rearrangement of Chernozhukov et al. (2010) to address the problem.
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presents the pairwise correlations between conditional skewness and kurtosis in

each country.

Almost all markets exhibit negative conditional third moments with a few

exceptions such as Finland, China and Pakistan. In line with GPV, I observe

distinct features in the conditional asymmetry between DMs and EMs, where

the former has more negative skewness on average than the latter (-0.446 vs.

-0.154). For instance, the U.S. has the most negative asymmetry, at -0.561, and

its conditional skewness never turns positive throughout the sample. In contrast,

China has the most positive asymmetry, averaging at 0.196.

The results for conditional kurtosis offer two noteworthy points. First, the

robust estimator largely reduces the impact of outliers on conditional kurtosis.

The discrepancy in conditional kurtosis across countries is less pronounced than

that of the third conditional moment. Their time series, however, still fluctuate

considerably in most of the markets, which can be inferred from the standard

deviation, minimum and maximum values. Second, the majority of countries

have negative correlations between skewness and kurtosis as expected, averaging

at -0.785 and -0.634 for DMs and EMs, respectively. However, the correlation

statistics vary remarkably between countries, ranging from -0.985 in Chile to

+0.850 in India. Several markets have significant positive correlations, mostly in

the emerging stock markets. This observation indicates significant heterogeneity

between the joint dynamics of higher moments between the international markets

under consideration.

To further investigate the dynamics in conditional higher moments between the

markets, I calculate the cross-sectional correlation across all pairs of conditional

skewness and kurtosis. The average correlations between 861 pairs are relatively

low and equal to 0.172 for conditional skewness and 0.110 for conditional kurtosis.

A large proportion of skewness correlations, at 245 (28.5%) pairs, are negative.

The corresponding number for kurtosis is even higher, with 346 (40.2%) pairs,
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and most of the correlations are statistically significant. The large fraction of

negative correlations suggests that conditional higher moments do not exhibit a

significant common pattern in their cross-country dynamics, especially in the case

of conditional kurtosis.

Figure 4.2 displays the time series of monthly conditional higher moments for

the U.S., China and the average across DMs and EMs. Panel A shows conditional

skewness while Panel B presents conditional kurtosis. On the upper right corner

of each plot, I report the sample correlation between the two time series.

The conditional skewness of the U.S. is always negative over the entire sample.

The most negative value occurred in September 1998 when the Russian financial

crisis hit global markets. In contrast, the conditional asymmetry of China is almost

always positive and has negative correlation (-0.25) with the U.S. series. In China,

the most negative estimates are recorded during the 1997-1998 Asian financial

crisis and the 2007-2009 GFC. The correlation turn to positive in the average

series of DMs and EMs, equals to 0.404. Nevertheless, the average conditional

skewness of EMs is consistently above that of DMs, hinting at higher downside

risks in the latter.

The conditional kurtosis of the U.S. is weakly correlated with that of China.

Moreover, the time series of conditional kurtosis of U.S. is more volatile and

exhibits spikes in the periods with most negative skewness. In contrast, the

conditional kurtosis of China is smoother and does not display sharp increases

during the 2007-2009 GFC. In fact, the conditional kurtosis of China is much

higher in 2015 after the bursting of the stock market bubble and in the most recent

period due to the slowdown of the Chinese economy. The correlation between the

average kurtosis of DMs and EMs is slightly lower than that of skewness, equals

to 0.327 in-sample. Finally, these plots show that the quantile-based conditional

higher moments are highly informative about the changes in return distribution in

different market conditions. Some of the global crashes can be visually illustrated
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in the right-panel plots. For example, the Asian financial crisis in 1997, the

Russian crisis in 1998 and the 2007-2009 GFC result in significant drops (spikes)

in the conditional skewness (kurtosis) in all the markets.

4.3.2.3 Decomposing Conditional Kurtosis

I further apply several decompositions to examine the features of conditional

kurtosis. First, I decompose the conditional kurtosis into its systematic and

idiosyncratic components. To this end, I collect the MSCI World portfolio total

returns from Datastream and estimates its conditional kurtosis as described above.

Next, I run a standard CAPM-type regression:

Kut−1(ri,t) = asys + bsysKut−1(rw,t) + ϵsys
i,t (4.9)

where the dependent variable is the country-specific conditional kurtosis and the

right-hand side variable is the conditional kurtosis of the world portfolio.

The result of this decomposition is presented in Panel A of Table 4.4, where

I report the average slope coefficients, their cross-sectional standard deviation,

the average R2 and their standard deviation. The average of the slope estimates

across all markets is relatively low, equal to 0.194. The corresponding average for

DMs and EMs is 0.266 and 0.100, respectively. The global conditional kurtosis

can only explain on average 17% of the time-variation in an individual country’s

conditional kurtosis. Again, the average fit in DMs regressions is about 0.265,

higher than that of only 0.044 in EMs. This finding is similar to the decomposition

of conditional skewness documented in GPV and indicates that a large part of

the conditional kurtosis is country-specific. Moreover, the idiosyncratic kurtosis

component is relatively more pronounced in emerging stock markets.

In the second decomposition, I separate the pure kurtosis from the component

driven by conditional skewness in each country. To do so, I follow Chang et al.
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Table 4.4 Kurtosis Decomposition

This table presents two decompositions of the conditional kurtosis. In Panel A, the conditional
kurtosis is decomposed into its systematic and idiosyncratic components as in equation Eq.
(4.9). In Panel B, the conditional kurtosis is decomposed into its skewness-related variation and
pure kurtosis variation.

A: Systematic and Idiosyncratic B: Orthogonalised Kurtosis

All DMs EMs All DMs EMs

Slope Coeffient 0.194 0.266 0.100 -5.932 -6.990 -4.522
Std 0.227 0.254 0.145 4.454 3.103 5.580
Adj R-Squared 0.170 0.265 0.044 0.640 0.766 0.471
Std 0.200 0.218 0.047 0.343 0.288 0.345

(2013) to orthogonalise conditional kurtosis by regressing its dynamics on the

contemporaneous skewness estimates as follows:

Kut−1(ri,t) = ask + bskSkt−1(ri,t) + ϵsk
i,t (4.10)

I report the summary statistics of this decomposition in Panel B of Table 4.4. The

average of the slope coefficients, as expected, is largely negative in all markets.

The average R2 is high, approximately 76.6% and 47.1% for DMs and EMs,

respectively. However, the standard deviations of slope coefficients and R2 are

also large for both DMs and EMs. This observation indicates that a nontrival part

of the fluctuations in conditional kurtosis is driven by distinct dynamics beyond

those related to conditional skewness, especially for emerging countries. Therefore,

I use the residuals from this decomposition to characterise the pure conditional

kurtosis of each country in the portfolio analysis that follows. This approach

allows my analysis to accurately examine the marginal benefits of conditional

kurtosis beyond that offered by skewness.

Table 4.5 provides the summary statistics of pure kurtosis for all countries in

the sample. As previously, I report the mean, standard deviation, minimum and

maximum statistics. Several observations are worth highlighting. First, controlling

for the impacts of skewness greatly reduces conditional kurtosis, particularly in

DMs. An indicative example is the case of the U.S., where the conditional kurtosis

is reduced significantly from 3.030 to only 0.083 in the orthogonalised kurtosis.
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Note that the U.S. has the most negative skewness, indicating that a large part of

the higher moment risk in this country comes from the return asymmetry. The

orthogonalisation of kurtosis in EMs displays a less pronounced pattern. Taking

Malaysia as an example, I observe that the orthogonalised kurtosis slightly reduces

to 2.273 from 3.141 in the conditional kurtosis. Since their conditional skewness

is also higher than average, at -0.222, this observation means that this country

is exposed to both return asymmetry and kurtosis risks. Finally, the average of

orthogonalised kurtosis of EMs is significantly higher than that in DMs (1.171

vs 0.426). This finding indicates that the former exhibits higher exposure to the

extreme returns than the latter.

Second, the orthogonalised kurtosis exhibits significant time-variation and

heterogeneity across countries. The mean statistics are significantly different from

zero in almost all markets and have a large standard deviation. The average of

cross-sectional correlations is 0.128 and about 32.2% (277) of the 861 kurtosis

pairs between indices is negative. These observations suggest that incorporating

information from the orthogonalised kurtosis may provide potential benefits for

the international portfolio beyond that provided by conditional skewness.

Finally, I plot the time series of average orthogonalised kurtosis across DMs

and EMs in Figure 4.3. The two series are positively correlated at 0.416 as seen in

the top-right corner. The 2007-2009 GFC is marked with significant comovement

in orthogonalised kurtosis between DMs and EMs, indicating increases in the

tail dependence across countries. After accounting for the impact of conditional

skewness, the pure kurtosis for EMs is relatively more volatile and stays at a

higher level than compared to that of DMs for the large part of the sample period.

Therefore, I conclude from this section that EMs have less negatively skewed

returns on average, but their conditional distributions are characterised by heavier

tails than those of DMs.
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Table 4.5 Summary Statistics of Orthogonalised Kurtosis

This table presents the summary statistics for the pure kurtosis of all the countries in
the sample. The orthogonalised kurtosis is the residuals from the orthogonalisation
in Eq. (4.10). For each country, this table displays the mean, standard deviation,
minimum and maximum values. a, b and c denote statistical significance at 1%, 5% and
10% levels for the statistics using the stationary bootstrap with 10,000 replications.

Country Mean Std Min Max

Panel A: Developed Markets
United States 0.083b 0.522 -0.963 2.071
Japan 2.075a 1.226 -1.576 6.042
United Kingdom 0.348a 0.829 -2.339 4.505
France 0.041a 0.231 -0.419 0.928
Germany 0.108a 0.391 -0.783 1.387
Canada 0.166a 0.597 -1.193 3.338
Switzerland 0.072b 0.520 -1.041 1.568
Australia 0.390a 0.924 -1.523 5.142
South Korea 2.465a 1.046 0.885 5.937
Hong Kong 0.869a 1.260 -3.111 4.515
The Netherlands 0.309a 0.886 -1.941 2.637
Spain 1.969a 1.154 -1.272 4.246
Sweden 0.201a 0.669 -1.716 1.827
Italy 0.621a 1.071 -3.733 3.288
Denmark 0.691a 1.170 -2.862 4.063
Singapore 1.458a 1.479 -1.436 5.673
Belgium 0.477a 1.004 -2.297 2.951
Finland 2.774a 0.350 2.089 3.738
Norway 0.223a 0.737 -1.546 3.449
Israel 0.012 0.271 -0.786 0.499
Austria 0.767a 1.165 -2.032 4.576
Ireland 0.107a 0.492 -0.820 1.705
New Zealand 0.902a 1.275 -1.414 5.344
Portugal 0.251a 0.779 -1.441 2.480
VW Average 0.426 0.399 -0.633 1.886
Panel B: Emerging Markets
China 0.567a 1.202 -2.888 3.696
Taiwan 2.221a 0.965 0.277 4.731
India 0.234a 0.768 -1.927 2.058
Brazil 0.480a 0.949 -4.390 2.277
South Africa 0.495a 0.915 -2.803 2.487
Russia 2.160a 1.392 -0.728 7.624
Mexico 0.582a 1.164 -2.333 4.979
Thailand 3.140a 0.482 2.421 4.822
Malaysia 2.273a 1.218 -0.025 5.852
Indonesia 1.959a 1.271 -1.025 5.834
Philippines 1.964a 1.364 -1.175 5.321
Poland 0.439a 0.907 -2.455 2.311
Chile 0.536a 0.934 -3.749 2.110
Turkey 2.847a 0.279 2.391 3.834
Peru 2.079a 1.049 -1.441 5.044
Pakistan 3.445a 0.452 2.418 5.514
Hungary 1.553a 1.346 -2.939 6.476
Czech Republic 2.482a 0.598 0.991 4.160
VW Average 1.171 0.503 -0.162 2.621
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4.3.3 International Portfolio Allocation

4.3.3.1 Parametric Portfolio Policy

The return higher moments can enter the optimisation strategy in Eq. (4.1)

and Eq. (4.2) in terms of individual moments or comoments between indices

return. A traditional approach is to model the joint distribution of all assets in the

portfolio. However, there are two main issues with this approach. First, since the

joint distribution is mostly unknown, the investor needs to characterise the joint

distribution. One method is to use a multivariate GARCH, such as the dynamic

conditional correlation model of Engle (2002) to model the covariance of a pair

of asset returns and derive closed-form solutions for the moments of portfolio

returns. Examples of this method include Jondeau and Rockinger (2012), Boudt

et al. (2015) and Gao and Nardari (2018). Alternatively, a dynamic copula model

can be used to measure the interdependence between asset returns. The resulting

joint distribution can be fully parametric or semi-parametric depending on the

specification of the marginal distributions. Applications of this method can be

found in Patton (2004) and Cerrato et al. (2017). In either case, the parametric

specifications on conditional return distribution or the copula dynamics raise the

risks of model misspecification errors.

Another issue is the so-called “curse of dimensionality”. Joint distribution

modelling involves the computation of a covariance, coskewness and cokurtosis

matrix for all assets. The dimensionality of these matrices increases substantially

with the number of assets in the portfolio. For example, for a portfolio of n = 42

assets as in current application, the number of elements that I have to compute

is n(n + 1)/2 = 903 for the covariance matrix , n(n + 1)(n + 2)/6 = 13, 244

for the coskewness matrix and n(n + 1)(n + 2)(n + 3)/24 = 148, 995 for the

cokurtosis matrix. Therefore, it is practically impossible to directly compute the
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joint distribution for such a large number of assets in the portfolio and to trace

the marginal contribution of each return distribution characteristic.8

In this study, I avoid the need for modelling the joint distribution of asset

returns using the parametric portfolio policy of Brandt et al. (2009). The general

idea is to directly optimise the portfolio weights with regard to the investor’s

expected utility using individual asset characteristics. The optimal weight of

country i in Eq. (4.1), wi,t−1, can be specified as follows:

(4.11)wi,t−1 = wi,t−1 + λ⊤
X

1
Nt

X̃t−1,i + λ⊤
Hm

1
Nt

H̃mt−1(ri,t,h)

where wi,t−1 is the weight of index i in a value-weighted portfolio. H̃mt−1(ri,t,h)

is the information on conditional higher moments, i.e., conditional skewness and

kurtosis. X̃t−1,i is a vector of country-specific characteristics, which generally

capture information related to the conditional mean and variance of equity index

returns. Each characteristic is standardised cross-sectionally to have zero mean and

unit standard deviation. By doing so, the portfolio policy coefficients in (λ⊤
X ; λ⊤

Hm)

indicate deviations from the value-weighted portfolio driven by the cross-sectional

differences between countries. A positive optimal loading λj ∈ (λ⊤
X ; λ⊤

Hm) of asset

characteristic j means that the market with a higher value of this characteristic

than the cross-sectional average is preferable to the investor, and thereby leads to

higher weight in the optimal portfolio.

The formulation of Eq. (4.11) indicates that the portfolio weights can be

decomposed into three components. The first component, wi,t−1, is the weights

in a value-weighted portfolio, in which the investor simply allocates her wealth

across countries according to their market capitalisation. The second component,

λ⊤
X

1
Nt

X̃t−1,i, measures the deviation from the naive weighting strategy using
8Several remedies for the curse of dimensionality are proposed in the literature. Some notable

studies include the shrinkage the covariance matrix (see, e.g., Kourtis et al., 2012; Ledoit and
Wolf, 2004a,b), constrained portfolio weights (Jagannathan and Ma, 2003) or imposing zero
correlation between asset returns (Elton et al., 2006). However, these methods have been mainly
applied to the covariance matrix, while incorporating higher moments to the optimisation
strategy would require substantial computational resources.
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conditioning information related to the conditional mean and volatility of the

return distribution. The third component, λ⊤
Hm

1
Nt

H̃mt−1, explicitly captures the

marginal benefits of accounting for conditional higher moments. The sum of the

first two component serves as the benchmark in this study.

In addition to the conditional moments of return distribution, I also exploit

several standard financial and macroeconomic predictors commonly used to forecast

the expected mean and volatility of stock returns. For the financial indicators, I

employ the dividend yield of the corresponding index, DivYi,t−1, and a time-series

momentum, Momi,t−1, computed as the 12-month past returns. The use of the

dividend yield as a predictor of stock returns has long history in the asset pricing

literature.9 Meanwhile, momentum is one of the most robust anomalies in the

asset pricing literature, first documented by Jegadeesh and Titman (1993).10

For macroeconomic variables, I use the growth rate of industrial production,

IPGi,t−1, and the inflation rate based on the consumer price index, INFi,t−1.

These two macroeconomic variables have been widely used in the literature to

predict expected stock returns and volatility. 11

The policy parameters are estimated by maximising the sample expected utility

of Eq. (4.1). I follow GPV to specify the objective utility function for a power

investor:

max
(λX ,λHm)

1
T

T −1∑
t=1

(1 + rt,p)1−γ

1 − γ
(4.12)

where γ is the relative risk aversion coefficient. In the main result, I set γ = 5

and perform a robustness check in subsection 4.4.3 using alternative levels of risk

aversion coefficients.
9Some notable studies are Campbell and Shiller (1988), Fama and French (1989), Stambaugh

(1999), Valkanov (2003), Campbell and Yogo (2006), Ang et al. (2006), Welch and Goyal (2008)
and Campbell and Diebold (2009).

10Several researchers document the existence of momentum in the international indices, such
as Rouwenhorst (1998), Asness et al. (2013) and Barroso and Santa-Clara (2015).

11See, e.g., Flannery and Protopapadakis (2002) Engle and Rangel (2008), and Engle et al.
(2013).
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4.3.3.2 Portfolio Decompositions

I apply several decompositions to further investigate the marginal benefits of

conditional higher moments. Motivated by GPV, I first decompose the portfolio

returns by country groups as follows:

rt,P = rDM
t,P + rEM

t,P (4.13)

where

rDM
t,P =

T −1∑
t=1

IDM
i wt−1,irt,i and rEM

t,P =
T −1∑
t=1

IEM
i wt−1,irt,i

where IDM
i (IEM

i ) is the indicator function which takes value one if country i is

developed (emerging) and zero otherwise. This decomposition helps to track the

component of portfolio returns that is attributable to developed and emerging

stock markets. To examine the marginal benefits of conditional higher moments,

I focus my attention on the second decomposition that isolates the component

of portfolio returns driven by information from these moments of the return

distribution:

rt,P = rbench
t,P + rHm

t,P (4.14)

where

rbench
t,P =

T −1∑
t=1

wbench
t−1,i rt,i and rHm

t,P =
T −1∑
t=1

wSk
t−1,irt,i +

T −1∑
t=1

wKU
t−1,irt,i

where wSk
t,i and wKu

t,i are the skewness- and kurtosis-induced weights. Thus, the

rHm
t,P denotes the component of portfolio returns obtained by actively managing

conditional skewness and kurtosis in the information set. I term rHm
t,P as the

return on the skewness-kurtosis-specific portfolio. When only conditional skewness
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is considered, i.e., wKU
t,1 = 0, I term this component as the skewness-specific

portfolio. The marginal impact of conditional kurtosis beyond that of skewness

can be directly referred from the comparison between these two actively managed

portfolios.

4.3.3.3 Portfolio Allocation Results

Table 4.6 displays the main results for five specifications of international portfolios

with different investing strategies. Panel A reports the optimal loadings on

asset characteristics. Panel B displays several statistics of the portfolio returns,

which are the annualised average return and volatility, the SkewToKurt ratio,

the adjusted-Sharpe ratio, ASharpe, and the annualised certainty-equivalent

returns, CE(rP ). The SkewToKurt is proposed by Watanabe (2006) a portfolio

performance evaluation to explicitly account for nonnormality in portfolio returns,

where a higher value of the ratio is preferable. The ASharpe ratio is defined by

Pezier and White (2008), which penalise the Share ratio of portfolio returns for

negative skewness and excess kurtosis as follows:

ASharpe = SR ×
[
1 +

(
Skew

6

)
× SR −

(
Kurt − 3

24

)
× SR2

]

where SR is the conventional Sharpe ratio. The certainty-equivalent return is

defined as CE(rP ) = [u(rP )(1 − γ)]1/(1−γ) − 1, which represents the risk-free rate

that an investor is willing to accept rather than holding the optimised portfolio.

To examine the structure of portfolio allocation, I also report the overall average

weight on EMs, wEM , the average weight due to conditional skewness, wSk
EM , the

average weight due to conditional kurtosis, wKu
EM , and the average weight due to

both conditional skewness and kurtosis, wHm
EM = wSk

EM + wKu
EM . Finally, I present

the results for portfolio decompositions documented above in Panel C.
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In the first column of Table 4.6, I present the properties of value-weighted (VW)

portfolio, in which the investor does not incorporate any conditioning information.

The portfolio has positive average returns of 8.3% with an annualised volatility

of 16.3%. Although the market capitalisation of EMs has been trending upward,

the investor only allocates 7.5% of her wealth, on average, to emerging countries.

The adjusted Sharpe ratio equals to 0.463 and the SkewToKurt ratio suggests

negative skewness in portfolio returns.

In the next two columns, the investor starts incorporating information related

to the first two moments of the conditional return distribution. In the column

titled “MV ”, the investor has a quadratic utility function. In the “bench” portfolio,

she has the power utility function as in Eq. (4.12) with a relative risk aversion

of 5. There are a few observations to make about the above two portfolios. The

conditional volatility has a negative loading in both specifications, although not

statistically significant at the 10% level. This loading implies that the investor

should tilt her portfolio toward countries with lower cross-sectional conditional

volatility. Among the financial and macroeconomic variables, only Mom has an

insignificant loading whereas DivY , IPG and INF are highly significant and

have the expected signs. The optimised portfolios have moderate gains compared

to that of VW. The average returns increase remarkably to 23.6% in the MV

and 25.5% in the bench portfolio compared to only 8.3% in the VW portfolio.

However, both portfolios also exhibit significant increases in volatility, resulting

in only slight improvements to the certainty-equivalent returns (0.103 in MW and

0.109 in bench vs 0.075 in VW, respectively). Finally, the optimal weight structure

changes significantly . The investor allocates 30.5% (24.3%) of her wealth to EMs

in the bench (MV ) portfolio compared to only 7.5% in VW portfolio.

In the next column labelled “Sk”, the investor includes the quantile-based

conditional skewness to the information set. Several studies, including Kraus and

Litzenberger (1976) and Harvey and Siddique (2000), document significant risk
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premia for assets with higher coskewness with the market portfolio. Therefore, I

follow GPV to also consider the coskewness of a country’s stock index with the

MSCI World portfolio. To define the coskewness, I follow Harvey and Siddique

(2000) to regress the the lagged 250-day returns of each market on the contempo-

raneous returns and squared returns of the MSCI World portfolio. I then use the

coefficient of the squared returns as the coskewness estimate.

Overall, I confirm the main findings of GPV. The conditional skewness enters

the portfolio policy with a positive loading, although it is not statically significant

(p-value of 12.8%). Coskewness also has a positive sign but is insignificant.

Interestingly, the interaction between conditional skewness and volatility induces

notable changes in the portfolio policy. The magnitude of the loading of conditional

volatility increases and becomes highly significant at the 5% level once information

on skewness is included. The introduction of conditional skewness also leads to

reasonable economic gains as the certainty-equivalent increases by 1.2% from the

bench portfolio (0.121 vs. 0.109). Finally, the investor allocates higher weights

to EMs in the optimal portfolio. The proportion of EMs in the skewness-specific

portfolio, wSk
EM , is 38.3% and further confirms that the tilt of optimal portfolio

toward EMs results from their favourable asymmetry as documented in Table 4.3.

In the final column, labelled “SkKurt”, the investor further adds conditional

higher moments to her information set. To proxy for the pure kurtosis, she uses

the orthogonalised kurtosis reported in Table 4.5. Thus, this portfolio directly

extends the investing strategy of GPV to the fourth conditional moment. Given

the reasoning in Dittmar (2002) and Gao and Nardari (2018), I also include the

cokurtosis between each country and the global portfolio in the set of predictors.

In line with Bali et al. (2019), I define the cokurtosis as the slope coefficient

on the cubed returns of regressing the lagged 250-day country returns on the

contemporaneous returns, squared returns and cubed returns of the MSCI World

portfolio.
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The conditional kurtosis has a negative optimal loading and is statistically

significant at the 10% level. The -1.637 loading means that if a country has

OKurtt−1(rt,i) that is one standard deviation higher than the cross-sectional

average, the investor should allocate 1.637% less weight than that in the bench

portfolio. This finding is consistent negative preference towards kurtosis docu-

mented in the theoretical studies of Scott and Horvath (1980) and Dittmar (2002).

The cokurtosis variable also has a negative loading, but is largely insignificant.

More importantly, the joint dynamics between the return moments again have a

significant impact on the optimal portfolio policy. When the fourth conditional

moment enters the information set, it induces notable changes in the magnitude

and significance of the loadings of conditional skewness and conditional volatility.

For example, the portfolio coefficient of conditional skewness increases from 2.275

to 3.028 and is now highly significant at the 5% level.

The portfolio properties in Panel B mark a significant improvements in SkKurt

compared to that of the Sk portfolio. The average return increases from 27.1% to

28.9% and the adjusted Sharpe ratio rises from 1.014 to 1.068. In particular, the

increase in the certainty-equivalent is significant, at 2.1% (from 0.121 to 0.142).

In the portfolio weights, the investor slightly tilts her portfolio away from EMs.

In the skewness-kurtosis-specific portfolio, the investor invests only 28.2% to

EMs, which is a reduction of approximately 10% relative to the skewness-specific

portfolio documented above.

The portfolio decompositions in Panel C provide some additional insights on

the impact of conditional information. The first decomposition in Eq. (4.13)

indicates remarkable changes in the structure of portfolio returns when the investor

starts utilising conditioning variables. In the VW portfolio, only 0.6% of total

portfolio returns can be attributable to EMs, compared to a large 7.7% of DMs.

The returns originated from EMs then increase substantially to 20.4% out of
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28.9% total returns in the SkKurt portfolio. In the case of DMs, their contribution

only increases when the investor adds information from the conditional kurtosis.

Next, I focus on the marginal information content of kurtosis beyond that

of skewness using the decomposition in Eq. (4.14). The last column in Panel

C indicates that the investor earns approximately 1% higher average returns by

exploiting OKurtt−1(rt,i) (from 3.4% to 4.3% in rHm
p ). Notably, controlling for

the exposure of extreme returns reduces the volatility of the skewness-kurtosis-

specific portfolio from 12.7% to 9.6%. Consequently, the corresponding increase

in the certainty-equivalent is sizeable, equals to 2.9% (from -0.8% to 2.1%).

Altogether, this decomposition clearly indicates the superior performance of the

SkKurt portfolio coming from additional information embedded in the conditional

kurtosis.

Finally, I display the time series of actively-managed weight of EMs, wHm
t−1,EM

for the skewness-kurtosis-specific portfolio in Figure 4.4. More specifically, I

separately present the weight due to conditional skewness (wSk
t−1,EM) in the top

plot and the weight due conditional kurtosis (wKu
t−1,EM) in the middle plot, using

the decomposition of wHm
t−1,EM = wSk

t−1,EM + wKu
t−1,EM . Note that since all the

characteristics are standardised cross-sectionally, a positive weight on EMs is

obtained by selling DMs by the same amount, i.e., wHm
t−1,EM + wHm

t−1,DM = 0.

Conditional skewness has more pronounced effects on the skewness-kurtosis-

specific portfolio compared to kurtosis due to considerably higher optimal loadings

on the former (3.028 vs. -1.637). The skewness-induced weights of EMs are mainly

positive, except for the 2007-2009 GFC period. In contrast, the kurtosis-induced

weights on EMs are always negative throughout the sample period due to their

relatively higher kurtosis documented in Table 4.5. When I combine these effects

in the overall weight, there are several periods when the investor tilts her portfolio

away from EMs in addition to the GFC as documented in GPV. A notable example

is the most recent period in 2017 when the EM-skewness effect disappears and is
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Table 4.6 International Dynamic Portfolio Allocation
This table presents the portfolio results with monthly rebalancing for an international investor. VW denotes
the value-weighted portfolio. In the MV and bench portfolios, the investor constructs her optimal portfolio
based on conditioning information related to the first two moments of return distribution. MV indicates
an investor with quadratic utility, while bench refers to an investor with power utility and a relative risk
aversion of γ = 5. In the portfolio presented in the last two columns, the investor adds conditional higher
moments of returns to her information set. The Skt−1(ri,t) is the conditional skewness constructed from
Eq. (4.5). The OKurtt−1(rt,i) is the proxy for pure kurtosis, which is the residuals of orthogonal regression
in Eq. (4.10). CoSkew and CoKurt are the coskewness and cokurtosis coefficients of country return with
the MSCI World portfolio returns. DivY and Mom are the dividend yields and momentum computed as
the last 12-month returns, respectively. IP G and INF are the industrial production growth and inflation
rate, respectively. Panel A reports the optimal portfolio coefficients, while the numbers in parentheses are
their p-values. Panel B reports the portfolio return properties, including the annualised average return for
the optimal portfolio, its annualised volatility, SkewT oKurt ratio, adjusted Sharpe ratio and the annualised
certainty-equivalent return. The last four rows report the overall average weight of EMs, wEM , and the
weight of EMs in the skewness-kurtosis-specific portfolio due to skewness, wSk

EM , kurtosis, wKu
EM , and the

sum of both higher moments, wHm
EM . Panel C reports the decompositions to portfolio returns into country

groups and separately for the skewness-kurtosis-specific portfolio.

VW MW bench Sk SkKurt

Panel A: Optimal Loadings
-1.637

OKurtt−1(rt,i) (0.089)
-0.210

CoKurtt−1 (0.865)
2.275 3.028

Skt−1(rt,i) (0.128) (0.047)
1.100 0.830

CoSkewt−1 (0.343) (0.474)
-1.405 -1.416 -2.678 -2.118

V olt−1(rt,i) (0.177) (0.175) (0.034) (0.093)
2.664 3.088 2.299 2.936

DivYt−1 (0.044) (0.026) (0.099) (0.045)
0.962 1.164 1.136 1.275

Momt−1 (0.313) (0.235) (0.261) (0.223)
2.708 2.792 2.652 2.749

IPGt−1 (0.054) (0.047) (0.068) (0.068)
2.419 2.726 3.040 2.902

INFt−1 (0.037) (0.021) (0.019) (0.037)
Panel B: Portfolio Properties
rP 0.083 0.236 0.255 0.271 0.289
σ(rP ) 0.163 0.223 0.241 0.251 0.265
SkewToKurt(rP ) -0.175 0.075 0.095 0.125 0.149
ASharpe(rP ) 0.463 1.009 1.019 1.014 1.068
CE(rP ) 0.098 0.103 0.109 0.121 0.142
wEM 0.075 0.243 0.305 0.352 0.348
wSk

EM 0.383 0.510
wKu

EM -0.282
wHm

EM 0.383 0.228
Panel C: Return Decompositions
rDM

P 0.077 0.076 0.070 0.077 0.085
rEM

P 0.006 0.160 0.186 0.194 0.204
rHm

P 0.034 0.043
σ(rHm

P ) 0.127 0.096
SkewToKurt(rHm

P ) 0.009 0.110
CE(rHm

P ) -0.008 0.021
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dominated by the kurtosis effect. By the end of the sample, the investor increases

her holding of DMs by approximately 30% by short-selling equity in EMs (see the

bottom plot of Figure 4.4). This reverse action can partly be explained by the

recently rise in protectionist policies, which have slowed down globalisation and

impose negative impacts on capital inflows and the prospects of emerging markets

(Bekaert et al., 2016).

Overall, the SkKurt portfolio successfully exploits the cross-sectional dynamics

of conditional return moments up to the fourth level. More importantly, a large

part of the economic gains in the optimal portfolio is attributable to the joint

dynamics of conditional moments in return distribution. Indeed, this finding is

in line with the conclusions of Jondeau and Rockinger (2012) who highlight the

importance of jointly accounting for skewness and kurtosis in their distribution

timing strategy.

4.4 Robustness Checks

I conduct several checks to assess the robustness of my main result. First, I

perform an OOS analysis to examine the benefits of conditional higher moments

to a real-time investor. Second, I examine how the transaction costs may affect

the economic value of optimal portfolio with conditional higher moments. Third,

I consider the sensitivity of the portfolio allocation with different levels of relative

risk aversion. Finally, I investigate whether the main results hold when I employ

more extreme quantile levels in the conditional return distribution.

4.4.1 Out-of-Sample Analysis

In real time, the investor faces estimation errors and time-variation in portfolio

policy coefficients. In the current application, this concern can be important
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since the conditional moments are constructed from a set of separate quantile

regressions. To examine this issue, I perform an OOS investing strategy as follow.

I start with the first in-sample period ending in December 2016, i.e. 10 years

of data. The last observation in the MIDAS quantile regression is the conditional

quantile (i.e., Qα(rt,h) in Eq. (4.7)) of the December 2006 using index return data

until the end of November 2017 (i.e., rt−1,d in Eq. (4.8)). I estimate the in-sample

conditional volatility, skewness, coskewness, orthogonalised kurtosis and cokurtosis

measures based on conditional quantiles for all countries as described above. Then,

I collect all financial and macroeconomic factors observable as of November 2016

(i.e., Xt−1 in Eq. (4.11)) for all countries. These series are combined with with

conditional moments of return distribution to estimate the dynamic portfolio

allocation for the first estimation window. Note that the portfolio policy uses

conditioning information as of November 2016 but the optimisation requires

realised returns (i.e., ri,t in Eq. (4.1)) until December 2016. Next, I use the

in-sample MIDAS quantile coefficients together with the last 250 daily returns

ending December 2006 to produce OOS quantile estimates for January 2007.

Similarly, I construct the OOS estimates for conditional volatility, skewness and

orthogonalised kurtosis. Finally, I use the estimated portfolio loadings (i.e., λ⊤
X

and λ⊤
Hm), OOS conditional moments, financial/macroeconomic variables and

market capitalisation as of December 2006 to compute optimal weights for January

2007. The corresponding OOS realised portfolio return is then stored for ex-post

evaluation. For the next iteration, I expand the estimation window by one month to

the end of January 2007 and obtain the OOS realised portfolio return for February

2007. Iteratively, this procedure produces 132 monthly portfolio returns from

January 2007 to December 2017 for the investor in “real-time”. To estimate the

marginal impacts of conditional higher moments, I build three optimal portfolios,

namely the bench, Sk and SkKurt, which are defined above in the main analysis.
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Table 4.7 presents the OOS results for the international dynamic portfolio. In

Panel A, I report the average of portfolio coefficients across in-sample estimations

for bench, Sk and SkKurt portfolios. The OOS analysis shows that the portfolio

coefficients are largely similar to the whole-sample estimates in Table 4.6. The

optimal loading for conditional skewness is on average positive, whereas the

orthogonalised kurtosis continues to enter the optimal weighting function with

negative coefficients. Among other predictors, DivY continues to be provide

the strongest predictor, followed by the industrial production growth. This

finding confirms that, in practice, the investor should tilt her portfolio toward the

markets with higher conditional skewness and away from the markets with higher

conditional kurtosis.

The return properties in Panel B shows that the SkKurt portfolio continues to

earn the highest average return, at 6.7%, compared to that of 5.4% in bench and

5.9% in Sk. This portfolio also generates the lowest volatility at 21.4%, and thereby

has the highest ASharpe ratio at 0.209. The SkewToKurt ratio is always negative,

implying negative skewness in all portfolios. Interestingly, when the investor only

considers conditional skewness, the SkewToKurt ratio is more negative than that of

the bench. In contrast, this ratio becomes less negative when she incorporates both

conditional skewness and kurtosis. This finding further highlights the importance

of accounting for the joint dynamic between conditional higher moments. The

negative value of the certainty-equivalent in all portfolios is reasonable since the

OOS period fully covers the 2007-2009 GFC. Nevertheless, this number is much

less negative in the SkKurt portfolio compared to that of the bench and Sk

portfolios. Overall, I conclude that accounting for both conditional skewness and

kurtosis yields sizeable economic gains in real-time investing strategy.
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Table 4.7 International Portfolio Allocation - Out-of-sample Analysis

This table presents results of the OOS international portfolio allocation. The
OOS conditional moments of returns are constructed from one-month-ahead
quantile estimates by expanding the estimation sample. The first in-sample
period ends at December 2006. I use the estimated portfolio coefficients using
the in-sample conditioning information to form OOS optimal weights for the
following month and track the ex-post realised portfolio return. This procedure
generates 132 OOS portfolio returns from January 2007 to December 2017. The
bench column refers to the benchmark portfolio of an investor with relative risk
aversion of γ = 5. In the column labelled Sk and SkKurt, the investor adds
conditional skewness and both conditional higher moments to her information
set. The Skt−1(ri,t) is the conditional skewness based on quantile estimates as
in equation Eq. (4.5). The Skt−1(ri,t) is the conditional skewness constructed
from Eq. (4.5). The OKurtt−1(rt,i) is the proxy for pure kurtosis, which is
the residuals of orthogonal regression in Eq. (4.10). CoSkew and CoKurt are
the coskewness and cokurtosis coefficients of country return with the MSCI
World portfolio returns. DivY and Mom are the dividend yields and momentum
computed as the last 12-month returns, respectively. IPG and INF are the
industrial production growth and inflation rate, respectively. Panel A reports the
average of the portfolio coefficients in 4.11 across the estimation samples. Panel
B reports the portfolio return properties, including the annualised average return
for the optimal portfolio, its annualised volatility, SkewToKurt ratio, adjusted
Sharpe ratio and the annualised certainty-equivalent.

bench Sk SkKurt

Panel A: Average portfolio policy estimates
OKurtt−1(rt,i) -1.059
CoKurtt−1 0.140
Skt−1(rt,i) 1.522 1.967
CoSkewt−1 -0.690 -0.963
V olt−1(rt,i) -1.566 -2.511 -2.345
DivYt−1 5.809 5.538 5.318
Momt−1 1.620 1.702 1.615
IPGt−1 3.161 3.086 2.580
INFt−1 2.305 2.266 2.061

Panel B: Portfolio Properties
rP 0.054 0.059 0.067
σ(rP ) 0.235 0.217 0.214
SkewToKurt(rP ) -0.078 -0.085 -0.065
ASharpe(rP ) 0.113 0.165 0.209
CE(rP ) -0.089 -0.064 -0.052

4.4.2 Transaction Costs

Another possible concern is the relatively higher transaction costs in EMs due to

the lack of liquidity. Although the ETFs indices in my main analysis are relatively

liquid, this issue can still lead to return distortions for the investor in practice.
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As in Brandt et al. (2009), the trading cost of going long or short in a country

can be expressed as a proportion of the turnover:

Ct−1,i = ct−1,i|wt−1,i − wt−2,i| (4.15)

where Ct−1,i is the total cost of trading on country i, which depends on the relative

trading cost ct−1,i and the absolute change in optimal portfolio weights formed on

time t − 2 and t − 1. The net return of optimal portfolio is defined as:

rt,P =
Nt∑
i=1

(wt−1,irt,i − Ct−1,i) (4.16)

I follow GPV to model ct−1,i in two alternative approaches. First, I assume

constant trading costs on all countries at 0.25%, i.e., ct−1,i = 0.0025. Thus, the

total transaction cost depends solely on the overall turnover in the optimal portfolio.

Second, I impose the trading cost on each country based on its relative market

capitalisation to reflect relatively higher trading costs on smaller markets. To this

end, the proportional transaction cost is expressed as, ct−1,i = 0.004 − 0.003 ×

met−1,i, where met−1,i is the standardised market size of country i cross-sectionally.

Table 4.8 reports the optimal portfolio policy with the two alternative trans-

action cost modellings. The portfolio policy coefficients in Panel A provide two

notable observations. First, all predictors have significant lower loadings than the

main results, except only for the dividend yield. Nevertheless, the coefficients on

return moments remain significant and have the expected signs. Among other

variables, the two macroeconomic variables, INF and IPG, have the largest reduc-

tion in the loadings and become statistically insignificant. Second, the summary

of portfolio return properties in Panel B exhibits clear impacts of imposing trans-

action costs on the optimal portfolio. Not surprisingly, the proportion of portfolio

weights on EMs reduces remarkably after accounting for transaction costs. For

example, the total weight of EMs on the SkKurt portfolio reduces from 34.8% to
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Table 4.8 International Portfolio Allocation - With Transaction Costs

This table reports results for the international portfolio allocation accounting for transaction
costs. The transaction costs are modelled in two alternative approaches. In the first specification,
the transaction cost is expressed as constant at 0.25%. In the second specification, the transaction
cost is relatively related to the market capitalisation with smaller markets having higher trading
cost, ct−1,i = 0.004 − 0.003 × met−1. The bench column refers to the benchmark portfolio of
an investor with relative risk aversion of γ = 5. In the columns labelled Sk and SkKurt, the
investor adds conditional skewness and both conditional higher moments to her information
set. Panel A reports the optimal portfolio coefficients, while the numbers in parentheses are
their p-values. Panel B reports the portfolio return properties, including the annualised average
return for the optimal portfolio, its annualised volatility, SkewToKurt ratio, adjusted Sharpe
ratio and the annualised certainty-equivalent return. The last four rows report the overall
average weight of EMs, wEM , and the weight of EMs in the skewness-kurtosis-specific portfolio
due to skewness, wSk

EM , kurtosis, wKu
EM , and the sum of both higher moments, wHm

EM .

Constant Transaction Cost Relative Transaction Cost

bench Sk SkKurt bench Sk SkKurt

Panel A: Optimal Loadings
-0.982 -0.888

OKurtt−1(rt,i) (0.086) (0.089)
0.574 0.448

CoKurtt−1 (0.246) (0.078)
1.107 1.993 0.673 1.335

Skt−1(rt,i) (0.112) (0.073) (0.089) (0.020)
-0.369 -0.676 -0.302 -0.369

CoSkewt−1 (0.368) (0.144) (0.114) (0.078)
-0.772 -1.271 -1.247 -0.631 -0.880 -0.825

V olt−1(rt,i) (0.167) (0.058) (0.083) (0.073) (0.051) (0.088)
3.363 3.320 3.330 2.851 2.903 2.993

DivYt−1 (0.001) (0.002) (0.000) (0.001) (0.000) (0.000)
1.193 1.286 1.198 0.907 1.053 1.106

Momt−1 (0.017) (0.022) (0.023) (0.010) (0.011) (0.002)
0.231 0.276 0.165 0.074 0.097 0.110

IPGt−1 (0.625) (0.548) (0.751) (0.507) (0.455) (0.418)
0.658 0.647 0.326 0.289 0.315 0.318

INFt−1 (0.284) (0.272) (0.603) (0.252) (0.284) (0.286)
Panel B: Portfolio Properties
rP 0.150 0.158 0.163 0.125 0.130 0.138
σ(rP ) 0.185 0.186 0.191 0.171 0.172 0.181
SkewToKurt(rP ) 0.077 0.130 0.130 0.027 0.081 0.076
ASharpe(rP ) 0.780 0.845 0.846 0.679 0.720 0.727
CE(rP ) 0.067 0.077 0.082 0.053 0.058 0.062
wEM 0.077 0.163 0.124 0.032 0.111 0.104
wSk

EM 0.186 0.336 0.113 0.225
wKu

EM -0.169 -0.153
wHm

EM 0.186 0.167 0.113 0.072
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only 12.4% and 10.4% in the two cost scenarios, respectively. The average returns

in all three portfolios decrease significantly compared to those reported in Table

4.6. Nevertheless, the SkKurt portfolio continues to yield the best performance,

although the superiority is less pronounced. The increases in certainty-equivalent

are 1.5% and 0.9% compared to the bench portfolio in constant and relative

transaction cost scenarios, respectively.

4.4.3 Different Degree of Relative Risk Aversion

My main results assume a representative investor with a relative risk aversion

γ = 5. Since investing in EMs is arguably riskier than investing in DMs, the level of

risk aversion might affect the results of my analysis. I investigate this possibility by

considering the relative risk aversion coefficients of γ = 3 and γ = 10, respectively,

and reestimate the optimal portfolio allocation. The corresponding portfolios

are reported in Table 4.9. The results reveal that the benefit of accounting for

conditional higher moments is more pronounced for less risk-averse investors.

The portfolio coefficients on conditional skewness and kurtosis are of greater

magnitudes and highly significant for γ = 3, whereas conditional kurtosis is only

significant at the 13% confidence level when γ = 10. In both cases, however, the

SkKurt portfolio always yields the best performance. The certainty-equivalent

increases by 1.7% (1.6%) compared to the bench portfolio when γ = 3 (γ = 10).

This is in line with the results of GPV, indicating that those with low risk-aversion

are better able to exploit information for conditional higher moments of return

distribution.

4.4.4 Additional Conditional Quantiles

The conditional moments in my main results are approximated from conditional

quantiles using the law of total probability. Therefore, it might be of interest to

investigate whether employing more conditional quantiles, especially those in the
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Table 4.9 International Portfolio Allocation - With Alternative Risk
Aversions

This table reports results for the international portfolio allocation with alternative levels of
relative risk aversion. The bench column refers to the benchmark portfolio of an investor with
relative risk aversion of γ = 5. In the column labelled Sk and SkKurt, the investor adds
conditional skewness and both conditional higher moments to her information set. Panel A
reports the optimal portfolio coefficients, while the numbers in parentheses are their p-values.
Panel B reports the portfolio return properties, including the annualised average return for
the optimal portfolio, its annualised volatility, SkewToKurt ratio, adjusted Sharpe ratio
and the annualised certainty-equivalent return. The last four rows report the overall average
weight of EMs, wEM , and the weight of EMs in the skewness-kurtosis-specific portfolio due
to skewness, wSk

EM , kurtosis, wKu
EM , and the sum of both higher moments, wHm

EM .

γ = 3 γ = 10
bench Sk SkKurt bench Sk SkKurt

Panel A: Optimal Loadings
-1.743 -0.814

OKurtt−1(rt,i) (0.085) (0.124)
1.386 0.585

CoKurtt−1 (0.438) (0.367)
2.503 4.304 1.792 2.869

Skt−1(rt,i) (0.135) (0.072) (0.084) (0.081)
-0.718 -0.392 -0.569 -0.114

CoSkewt−1 (0.679) (0.834) (0.356) (0.865)
-1.550 -2.716 -2.240 -1.484 -2.300 -2.139

V olt−1(rt,i) (0.162) (0.077) (0.051) (0.019) (0.063) (0.062)
7.256 7.654 7.326 4.634 3.766 4.169

DivYt−1 (0.001) (0.000) (0.003) (0.000) (0.000) (0.000)
2.383 2.357 2.433 1.473 1.225 1.477

Momt−1 (0.152) (0.157) (0.147) (0.013) (0.042) (0.013)
4.932 4.817 4.603 2.776 3.055 2.830

IPGt−1 (0.044) (0.046) (0.068) (0.001) (0.000) (0.002)
3.509 2.180 2.617 2.282 2.571 1.946

INFt−1 (0.079) (0.069) (0.053) (0.001) (0.002) (0.012)
Panel B: Portfolio Properties

rP 0.393 0.403 0.441 0.269 0.281 0.297
σ(rP ) 0.378 0.384 0.402 0.251 0.253 0.260
SkewToKurt(rP ) 0.172 0.181 0.182 0.148 0.159 0.166
ASharpe(rP ) 1.050 1.067 1.139 1.097 1.150 1.194
CE(rP ) 0.136 0.141 0.153 0.061 0.071 0.077
wEM 0.533 0.486 0.695 0.242 0.408 0.385
wSk

EM 0.422 0.725 0.302 0.483
wKu

EM -0.300 -0.220
wHm

EM 0.422 0.425 0.302 0.263
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Table 4.10 International Portfolio Allocation - With Additional Quan-
tiles

This table reports results for the international portfolio allocation with additional
quantile levels. The bench column refers to the benchmark portfolio of an investor
with a relative risk aversion of γ = 5. In the columns labelled Sk and SkKurt,
the investor adds conditional skewness and both conditional higher moments to
her information set. Panel A reports the optimal portfolio coefficients, while the
numbers in parentheses are their p-values. Panel B reports the portfolio return
properties, including the annualised average return for the optimal portfolio, its
annualised volatility, SkewToKurt ratio, adjusted Sharpe ratio and the annualised
certainty-equivalent return. The last four rows report the overall average weight of
EMs, wEM , and the weight of EMs in the skewness-kurtosis-specific portfolio due to
skewness, wSk

EM , kurtosis, wKu
EM , and the sum of both higher moments, wHm

EM .

bench Sk SkKurt
Panel A: Optimal Loadings

-2.152
OKurtt−1(rt,i) (0.082)

1.880
CoKurtt−1 (0.121)

1.483 4.361
Skt−1(rt,i) (0.125) (0.023)

-0.706 -0.572
CoSkewt−1 (0.531) (0.622)

-1.619 -2.218 -1.821
V olt−1(rt,i) (0.131) (0.072) (0.092)

4.832 4.636 3.846
DivYt−1 (0.000) (0.002) (0.009)

1.596 1.584 1.518
Momt−1 (0.107) (0.136) (0.149)

3.065 2.907 1.399
IPGt−1 (0.033) (0.046) (0.093)

2.091 1.835 1.025
INFt−1 (0.073) (0.132) (0.432)
Panel B: Portfolio Properties
rP 0.217 0.226 0.259
σ(rP ) 0.215 0.215 0.245
SkewToKurt(rP ) 0.162 0.176 0.190
ASharpe(rP ) 1.026 1.078 1.101
CE(rP ) 0.114 0.124 0.130
wEM 0.144 0.215 0.291
wSk

EM 0.185 0.545
wKu

EM -0.258
wHm

EM 0.185 0.286
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extreme tails, could provide better approximations, and thereby affects portfolio

allocation. To answer this question, I also estimate conditional quantiles at more

extreme levels, i.e. α = (0.1%, 0.5%, 2.5%, 97.5%, 99.5%, 99.9%) and recalculate

the conditional moments accordingly. The portfolio results displayed in Table 4.10

show slightly stronger impacts of conditional higher moments on optimal loadings.

The portfolio returns, however, are largely similar to the main results. Therefore,

adding more extreme quantiles marginally highlight the role of conditional higher

moments in international portfolio allocation. This benefit, however, comes at a

cost of higher probability of estimation errors and uncertainty to the investor in

real-time strategy.

4.5 Suggestions for Future Research

My analysis focuses on the impacts of conditional higher moments on the inter-

national diversification, given strong evidence of nonnormality in the aggregate

returns. However, Albuquerque (2012) show that the shape of return distributions

in individual stocks are different to those of the index returns. More specifically,

the former is typically characterised with positive skewness and less pronounced

kurtosis than the latter. Furthermore, Gao and Nardari (2018) recently advocate

the inclusion of commodity to risky portfolio using an OOS strategy with forward-

looking return higher moments. Thus, a direct extension of the current work is to

examine the benefits of return higher moments on a wider range of asset asset

universe, including individual stocks and alternative asset classes.

One limitation in this chapter is the rebalancing period, which I only consider

monthly horizon. As shown by Neuberger and Payne (2019), return skewness

(kurtosis) of longer horizon is mainly driven by the covariance between innovation

in variance and lagged returns (lagged squared returns). Such components are

better captured by information from option markets, which are not available in
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the majority of countries under consideration in the current study. Therefore,

future research may narrow the sample to a subset of the indices in which option

data is publicly available, at the cost of the generalisation in portfolio results. The

conditional skewness and kurtosis are then can be estimated under risk neutral

density as in Bakshi et al. (2003).

4.6 Conclusion

I investigate the benefit of incorporating conditional higher moments of the return

distribution to international portfolio allocation. I use the MIDAS quantile regres-

sion to estimate various conditional quantiles and approximate the conditional

higher moments using the law of total probability. By doing so, the conditional

higher moments are robust to the outliers and can be directly used in the optimi-

sation of expected utility function. Specifically, I regress the conditional kurtosis

on contemporaneous skewness to measure the pure kurtosis orthogonalised by

impacts from skewness.

My empirical results reveal significant time variations and heterogeneity in

conditional skewness and kurtosis across countries. Using the parametric portfolio

policy approach, I observe sizeable economic gains for the international investor

in the optimal portfolio incorporating conditional higher moments. More impor-

tantly, I find that a large proportion of the economic gains is attributable to

the joint dynamics of conditional skewness and kurtosis. The economic value of

conditional higher moments remains robust in OOS analysis as well as accounting

for transaction costs or alternative estimation specifications.



Chapter 5

Conclusion

5.1 Summary

This thesis consists of three studies on modelling higher moments and tail risk of

financial returns. In the first study, I propose applying the MIDAS framework to

improve tail forecasts at any horizon. In particular, I focus on VaR and ES forecasts,

given their crucial roles in the risk management process of financial institutions

and regulators. The MIDAS framework offers a direct estimation of VaR and ES at

the desired forecast horizons, yet exploiting the data-rich environment of returns

sampled at different frequencies and avoiding making restrictive distributional

assumptions. A rigorous analysis including 43 international stock indices, 8

established benchmark models, 5 statistical backtests and 2 loss functions is

conducted to examine the predictive power of the newly proposed models.

The out-of-sample analysis reveals that MIDAS-based models provide the best

VaR and ES forecasts, both in their absolute performance as tail risk measures and

their relative performance in terms of minimizing two loss functions. Moreover,

the proposed methods are included in the set of superior models in most cases

across quantile levels and forecast horizons. The GARCH-based models perform

well in the absolute performance backtests, which are based on binary sequences
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of violations. However, the corresponding VaR and ES forecasts generally un-

derestimate the risks, and as such, this leads to higher forecasting errors. The

CAViaR-based models, which apply prior temporal aggregation of return series

to match the forecast horizon, are inferior to all other methods, specially at the

multi-day forecast horizons. Finally, the model ranking is robust to different

market regimes, alternative assets and estimation specifications.

In the second study, I aim at identifying the best method to model and

forecast return skewness. In particular, I perform a comprehensive horserace

between five prominent skewness models with distinct features on forecasting

methods in 10 international indices from 7 regions at three forecast horizons. To

proxy for the “true” skewness in equity returns, I employ the recently introduced

estimator, which utilises information from both historical daily returns and option

prices. Under this ex-post measure, the competing forecasts are compared in

both information content analysis and out-of-sample forecast evaluation. More

importantly, I introduce a new skewness forecast based on option-implied skewness

and adjusting for the skewness risk premium between physical and risk-neutral

return distribution. The economic value of skewness forecasts is then examined in

an application on the international portfolio allocation.

The empirical analysis reveals that the best overall forecasting performance

is offered by the new implied skewness estimator which accounts for the average

difference between realised skewness and implied skewness. The new estimator

also generates superior portfolio performance compared to alternative skewness

forecasts. More specifically, only the portfolio based on the corrected implied

skewness produces higher average returns and Sharpe ratio than the benchmark

portfolio in all cases considered. My findings are robust to a set of different model

specifications and estimation methods.

The third study investigates the potential benefits of incorporating conditional

higher moments of return distribution to the international portfolio allocation.
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Early theoretical models suggest that a risk-averse investor has positive preference

to skewness and negative preference to kurtosis. To examine this prediction, I

consider the portfolio allocation problem for an investor who utilises the forecasts

of return higher moments to determine her optimal portfolio weight in an investable

universe involving equity returns from 42 international indices. Specially, all the

conditional moments of the return distribution, namely volatility, skewness and

kurtosis, are simultaneously estimated from a set of conditional quantiles using

the law of total probability. In addition to conditional return moments, I also

consider several financial and macroeconomic variables in the information set of

the investor.

I find that the conditional higher moments exhibit significant time-variation

and heterogeneity between countries in the sample. The portfolio results suggest

strong evidence on the benefits of incorporating higher moment forecasts to the

international portfolio allocation. Interestingly, I find that a large part of the eco-

nomic gains is attributable to the joint dynamics between return higher moments.

The portfolio strategy that exploits both skewness and kurtosis significantly out-

performs other strategies based on predictors up to only the third moment, both

in-sample and out-of-sample. The main finding is robust to the inclusion of two

different scenarios on transaction costs and alternative levels of risk aversion.

5.2 Non-academic Implications

The superiority of new methods in my first study offer two main implications

for the risk management process in financial institutions. First, I argue that

financial institutions should use a risk model that directly forecasts VaR and

ES and avoids heavy assumptions on return distributions. The Basel III and

Solvency II agreements rely their capital requirements on VaR and ES forecasts at

10-day horizon. Yet, the large extant of literature focuses on 1-day ahead forecasts
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and scale up to multi-period estimates by assuming i.i.d normal distribution in

asset returns. Such a restrictive assumption is often associated with inaccurate

risk measurements and makes financial institutions sensitive to the probability

of under-(over-) capitalization. Second, the risk model should account for the

impacts of serial dependence in higher frequency process to the tail dynamics of

lower frequency return distribution. The simple aggregation of return series to

the forecast horizon results to significant loss of information in higher frequency

data. My empirical analysis shows that the flexibility of the lag polynomials in

MIDAS framework provides a good solution for this issue.

The results in the second study imply that the information embedded in option

prices is useful in forecasting financial return characteristics. Previous studies

point out the role of option-implied estimate in forecasting return volatility. My

study complements these findings to the skewness forecasts and further highlights

the importance of accounting for the discrepancy between physical and risk-

neutral return distribution. Thus, the dynamics of these risk premiums should

be taken into account when the investor develops a strategy involving option

contracts. Moreover, my new skewness estimator also provides an efficient tool for

practitioners to enhance their financial decision-making. Some notable examples

is the use of skewness forecast in investment and hedging decisions.

The third study sheds light on the current debate of international diversification

literature. Previous studies provide mixed results about the role of emerging

countries in the international portfolio allocation as a separate asset class with

distinct features. I argue that the diversification benefits of these countries reduces

significantly once we take into account their conditional kurtosis. Although the

emerging stock markets have less negative skewness on average, their return

distribution is relatively more exposed to the extreme observations. Thus, the

investors should pay more attention on the tail risks of assets from the emerging

markets in their portfolios. This issue is relatively more critical given the recent
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rising of protectionist policies in the global economy, which undoubtedly increase

the uncertainty of capital flows and future prospects of emerging markets.

5.3 Future Research Directions

There are several possible extensions and areas for future researches from the three

studies in this thesis. The first study highlights the importance of accounting for

the serial dependence of higher frequency return process in modelling the lower

frequency return distribution. I limit my attention on the tail dynamics in terms

of VaR and ES estimates, but future research can also explore this phenomenon in

terms of return density or equity risk premium forecasts. Some possible methods

are the LASSO quantile regression method of Belloni and Chernozhukov (2011)

or the three-pass quantile regression filter recently proposed by Kelly and Pruitt

(2015). Another possible extension is to further exploit information from financial

and economic variables. Several studies, including Engle and Rangel (2008),

Colacito et al. (2011), Engle et al. (2013), document the explanatory power of

economic variables to return volatility and correlations. Thus, incorporating such

variables to the information set may further improve the tail forecast. Finally, it

would be also of interest to investigate the benefits of improved tail forecasts in

a multivariate setting and asset allocation (see, e.g. Dias, 2016, for the value of

controlling tail risks in portfolio selection).

The second study advocates the use of option-implied information in fore-

casting skewness. One possible concern is the limited number of international

markets under consideration. The main reason for this limitation is the lack of

reliable option data that is necessary to compute the realised skewness estimator.

Neuberger and Payne (2019) recently introduce new estimators for return higher

moments employing only historical daily returns. Thus, a possible extension could

involve more indices from emerging markets and alternative asset classes. Another
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interesting question is the skewness forecasting for individual stocks. Albuquerque

(2012) shows that whereas aggregated stock returns display negative skewness,

firm-level stock returns are typically positively skewed due to the cross-sectional

heterogeneity in the announcement of company events. Finally, since each skew-

ness forecasting model in my study contains part of information on the realised

skewness, a combination of skewness forecasts may provide better performance

(Elliott and Timmermann, 2016).

The third study mainly focuses on international portfolio allocation, given

strong evidence of heterogeneity in time-varying higher moments between countries.

However, investing in the international markets might be costly and of interest

to a limited number of investors. Future research might seek for implications of

skewness and kurtosis forecasts in alternative asset universe, such as individual

stocks or different asset classes. Another extension may also consider longer

rebalancing horizons, although this may require information from option markets

to obtain reliable proxies for return higher moments. A possible solution is to

consider a subset of the current sample in which the option price data is publicly

available. However, I note that this extension comes at the cost of reducing

the generalisation of the results. Finally, since the conditional higher moments

exhibit significant time variations, it would be of interest to examine the potential

spillovers in higher moments across countries. For example, one can apply the

popular method of Diebold and Yilmaz (2012) and Diebold and Yilmaz (2014)

using the network analysis to construct the higher moment connectedness index.

By doing so, we can have a more complete picture on how the global economy is

connected in term of the tail dependence, which in turn provides some insights on

the global systemic risks.
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Table A.1 List of VaR and ES Forecasting Models

This table summarizes the competing forecasting models for VaR and ES under consideration.

Abbreviation Description

Benchmark Models

GARCH-Fhs VaR and ES are extracted from the GARCH model of Bollerslev (1987),
assuming a SGE distribution (Theodossiou, 2015) for daily returns. Empirical
distribution is approximated using filter historical simulation with 10,000
trials.

GARCH-Evt VaR and ES are extracted from the GARCH model of Bollerslev (1987),
assuming a SGE distribution (Theodossiou, 2015) for daily returns. Empirical
distribution is approximated by combining filter historical simulation and
EVT with 10,000 trials.

GJR-Fhs VaR and ES are extracted from the GJR-GARCH model of Glosten et al.
(1993), assuming a SGE distribution (Theodossiou, 2015) for daily returns.
Empirical distribution is approximated using filter historical simulation with
10,000 trials.

GJR-Evt VaR and ES are extracted from the GJR-GARCH model of Glosten et al.
(1993), assuming a SGE distribution (Theodossiou, 2015) for daily returns.
Empirical distribution is approximated by combining filter historical simula-
tion and EVT with 10,000 trials.

Sav-AL VaR and ES are jointly estimated using maximum likelihood of AL density
in (2.7). VaR follows symmetric absolute value specification in (2.15), while
ES dynamic follows specification in (2.8).

Sav-Evt Conditional quantile at threshold level of 7.5% is estimated using CAViaR
model with symmetric absolute value specification in (2.15). VaR and ES
are jointly computed using the results of McNeil and Frey (2000).

As-AL VaR and ES are jointly estimated using maximum likelihood of AL density
in (2.7). VaR follows asymmetric slope specification in (2.16), while ES
dynamic follows specification in (2.8).

As-Evt Conditional quantile at threshold level of 7.5% is estimated using CAViaR
model with asymmetric slope specification in (2.16). VaR and ES are jointly
computed using the results of McNeil and Frey (2000).

New Models

Midas-AL VaR and ES are jointly estimated using maximum likelihood of AL density
in (2.7). VaR follows MIDAS-based symmetric absolute value specification
in (2.1), while ES dynamic follows specification in (2.8).

Midas-Evt Conditional quantile at threshold level of 7.5% is estimated using MIDAS
quantile regression with symmetric absolute value specification in (2.1). VaR
and ES are jointly computed using the results of McNeil and Frey (2000).

MidasAs-AL VaR and ES are jointly estimated using maximum likelihood of AL density
in (2.7). VaR follows MIDAS-based asymmetric slope specification in (2.2),
while ES dynamic follows specification in (2.8).

MidasAs-
Evt

Conditional quantile at threshold level of 7.5% is estimated using MIDAS
quantile regression with asymmetric slope specification in (2.2). VaR and
ES are jointly computed using the results of McNeil and Frey (2000).
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Table A.3 Model Confidence Set - Different Market Regimes

This table reports the results of the 5% Model Confidence Set (MCS) for different market
regimes at the 1% and 5% quantile levels for 1-, 5- and 10-day forecast horizons, respectively.
The entry in each column presents the number of times out of 43 indices, that the model in row
is excluded from the 5% MCS. LQ denotes the quantile loss function of (2.19) and LF ZG is the
FZG loss function of Fissler et al. (2015) given in (2.20). The range statistic in (2.21) is used to
the equivalence test of the MCS. Lower values corresponds to superior performance.

1-day horizon 5-day horizon 10-day horizon

1% 5% 1% 5% 1% 5%

LQ LQS LQ LQS LQ LQS LQ LQS LQ LQS LQ LQS

Panel A: 02/08/2000 - 31/07/2008 (Pre-crisis Subsample)
GARCH-Fhs 6 6 6 6 6 7 2 2 20 18 4 5
GARCH-Evt 7 6 3 3 3 4 1 1 20 18 4 5
GJR-Fhs 1 1 0 0 11 10 3 3 32 30 9 11
GJR-Evt 2 2 0 0 10 10 3 3 33 31 10 11
Sav-AL 14 14 10 10 17 17 4 4 32 32 11 12
Sav-Evt 15 15 9 9 13 14 3 4 22 21 7 8
As-AL 5 5 3 3 14 14 5 5 33 32 10 12
As-Evt 3 4 2 2 13 13 4 4 31 30 8 12
Midas-AL 13 13 9 9 11 12 6 7 18 18 8 9
Midas-Evt 13 13 7 6 14 15 1 1 24 23 6 7
MidasAs-AL 7 7 5 5 5 6 3 3 13 13 5 6
MidasAs-Evt 4 4 1 1 7 7 1 1 24 25 4 4

Panel B: 01/08/2008 - 31/12/2009 (Crisis Subsample)
GARCH-Fhs 3 3 2 2 5 5 1 1 10 11 2 2
GARCH-Evt 4 4 3 4 5 5 1 1 9 9 2 2
GJR-Fhs 2 2 1 1 4 4 2 1 12 13 2 2
GJR-Evt 2 3 1 1 4 4 2 2 12 13 2 2
Sav-AL 5 5 2 2 20 19 6 6 15 16 4 4
Sav-Evt 5 5 4 4 19 18 8 8 11 12 4 4
As-AL 2 3 2 2 11 11 6 6 15 17 4 5
As-Evt 4 5 1 1 8 7 6 6 10 12 2 2
Midas-AL 3 3 3 3 11 12 1 1 11 11 4 4
Midas-Evt 4 4 3 4 13 13 4 4 11 12 2 2
MidasAs-AL 2 2 1 1 3 3 2 2 3 3 2 2
MidasAs-Evt 4 5 3 3 7 7 1 1 8 9 2 2

Panel C: 01/01/2010 - 31/12/2017 (Crisis Subsample)
GARCH-Fhs 2 3 11 11 7 7 2 2 5 8 3 1
GARCH-Evt 2 2 12 13 7 7 2 2 5 6 3 1
GJR-Fhs 0 0 2 3 5 5 3 3 15 15 3 1
GJR-Evt 3 3 4 4 5 5 3 3 15 15 3 1
Sav-AL 7 7 19 19 18 17 5 6 34 33 6 6
Sav-Evt 4 4 17 17 11 11 4 4 21 28 6 4
As-AL 4 4 2 3 17 16 7 7 33 33 8 6
As-Evt 2 2 5 5 11 11 3 3 24 31 4 4
Midas-AL 6 6 18 18 10 10 5 6 15 15 7 5
Midas-Evt 6 6 16 16 11 11 1 1 15 14 0 0
MidasAs-AL 3 3 2 3 1 2 2 2 2 2 2 0
MidasAs-Evt 1 2 5 5 9 9 1 1 11 17 1 0
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Table A.12 Model Confidence Set - Alternative Bootstrapping Methods

This table reports the results of the 5% Model Confidence Set (MCS) at the 1% and 5% quantile
levels for 1-, 5- and 10-day forecast horizons, respectively. The entry in each column presents
the number of times out of 43 indices, that the model in row is excluded from the 5% MCS.
LQ denotes the quantile loss function of (2.19) and LF ZG is the FZG loss function of Fissler
et al. (2015) given in (2.20). The range statistic in (2.21) is used to the equivalence test of the
MCS. The test statistic is constructed using alternative bootstrapping methods. Lower values
corresponds to superior performance.

1-day horizon 5-day horizon 10-day horizon

1% 5% 1% 5% 1% 5%

LQ LQS LQ LQS LQ LQS LQ LQS LQ LQS LQ LQS

Panel A: Use of stationary bootstrapping
GARCH-Fhs 7 6 3 3 0 0 0 0 2 3 1 1
GARCH-Evt 5 5 4 4 0 0 0 0 2 3 1 1
GJR-Fhs 2 2 1 1 1 1 0 0 3 4 1 1
GJR-Evt 3 3 1 1 1 1 0 0 3 4 1 1
Sav-AL 10 10 16 19 6 6 5 5 10 13 5 8
Sav-Evt 8 8 13 14 5 5 3 3 3 11 3 5
As-AL 3 3 1 1 3 3 4 4 10 10 4 5
As-Evt 3 3 0 0 1 1 2 2 4 13 1 6
Midas-AL 6 7 15 15 0 0 1 1 3 4 0 0
Midas-Evt 8 8 14 15 1 1 0 0 1 5 0 0
MidasAs-AL 1 1 0 0 0 1 0 0 0 0 0 0
MidasAs-Evt 3 3 0 0 0 0 0 0 2 6 0 0

Panel B: Block bootstrapping of length 2
GARCH-Fhs 6 6 3 3 0 1 0 0 2 2 1 1
GARCH-Evt 5 5 4 4 0 1 0 0 2 2 1 1
GJR-Fhs 1 1 1 1 1 1 0 0 3 3 1 1
GJR-Evt 3 3 1 1 1 1 0 0 3 3 1 1
Sav-AL 9 10 18 18 5 3 5 4 11 12 6 4
Sav-Evt 8 8 13 13 3 3 2 3 3 7 3 7
As-AL 3 3 1 1 2 3 3 3 11 10 4 5
As-Evt 3 3 0 0 1 2 2 2 5 12 1 6
Midas-AL 5 6 16 16 0 1 1 1 3 3 0 0
Midas-Evt 8 8 14 15 1 1 0 0 1 4 0 0
MidasAs-AL 1 1 0 0 0 0 0 0 0 0 0 0
MidasAs-Evt 3 3 0 0 0 1 0 0 2 4 0 0

Panel C: Block bootstrapping of length 6
GARCH-Fhs 6 6 3 3 1 0 0 0 2 2 1 1
GARCH-Evt 5 5 4 4 1 0 0 0 2 2 1 1
GJR-Fhs 1 1 1 1 2 1 0 0 2 2 1 1
GJR-Evt 3 3 1 1 2 1 0 0 2 2 1 1
Sav-AL 7 7 14 14 3 3 4 3 11 11 4 5
Sav-Evt 8 7 13 14 3 3 1 1 4 9 1 4
As-AL 3 3 1 1 2 1 1 1 10 11 3 3
As-Evt 3 3 0 0 1 1 0 0 3 11 1 4
Midas-AL 6 6 12 13 1 0 0 0 2 2 0 0
Midas-Evt 7 6 12 12 2 1 0 0 1 3 0 0
MidasAs-AL 1 1 0 0 0 0 0 0 0 0 0 0
MidasAs-Evt 3 3 0 0 1 0 0 0 1 3 0 0
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Table B.1 Information Content of Skewness Forecasts (30 days) - Al-
ternative Implied-Skewness

This table reports the results from Mincer-Zarnowitz regressions. I regress the realized skewness of each index in
Table 3.1 on the forecasts generated from each model in Table 3.3. The forecasting horizon is 30 calendar days.
Implied and realized skewness are estimated as described in section 3.4.1. The GARCH and QMIDAS models
are estimated using the whole sample. In the regressions, I control for the the empirical correlation (ρt) between
daily index returns and the index variance risk premium over the prior 12 months in order to account for any bias
in the realized skewness estimates. α and β respectively denote the intercept and the coefficient of the forecast
in the regression. In addition, βρ is the coefficient of ρt, R

2 is the adjusted R2 coefficient while the numbers
in parentheses denote t-statistics, estimated using Newey-West (1987) heteroskedasticity and autocorrelation
consistent standard errors. Significant coefficients at the 5% level are highlighted in bold. The bottom panel of
the table contains the average values of α, β and βρ across indices.

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

AEX
α -0.955 -0.967 -0.947 -0.708 -0.846 -0.948

(-12.27) (-1.43) (-1.43) (-3.70) (-5.46) (-6.55)
β 0.151 0.133 0.149 0.449 0.211 0.183

(2.37) (0.24) (0.27) (2.26) (2.03) (1.38)
βρ -1.706 -1.943 -1.949 -1.869 -1.796 -1.585

(-3.77) (-3.75) (-3.76) (-3.64) (-3.78) (-2.90)
R

2 8.50% 6.50% 6.51% 8.28% 8.34% 7.85%
DAX

α -0.840 -1.029 -1.028 -1.260 -0.888 -0.917
(-11.38) (-10.81) (-10.52) (-5.82) (-9.70) (-10.74)

β 0.219 0.056 0.056 -0.251 0.124 0.176
(3.65) (0.66) (0.64) (-0.83) (2.21) (2.11)

βρ -1.018 -1.410 -1.409 -1.531 -1.155 -1.091
(-2.88) (-3.22) (-3.20) (-3.01) (-3.02) (-2.79)

R
2 9.86% 5.34% 5.33% 5.50% 7.35% 7.13%

DJIA
α -0.624 -0.751 -0.490 0.021 -0.209 -0.430

(-7.89) (-4.12) (-5.82) (0.04) (-1.57) (-4.27)
β 0.401 0.227 0.580 1.632 0.737 0.733

(5.57) (1.85) (7.25) (1.78) (6.85) (6.35)
βρ -0.882 -1.611 0.685 -1.328 -0.940 -0.396

(-2.31) (-3.17) (1.39) (-2.82) (-2.11) (-0.95)
R

2 19.77% 5.62% 20.72% 5.39% 14.93% 20.45%
STOXX 50

α -0.858 -1.165 -1.329 -0.792 -0.636 -0.750
(-11.11) (-2.60) (-4.44) (-1.96) (-5.28) (-6.27)

β 0.216 -0.055 -0.210 0.396 0.264 0.364
(3.83) (-0.15) (-0.79) (0.76) (4.13) (3.27)

βρ 0.531 0.663 0.725 0.792 0.778 0.764
(1.40) (1.55) (1.71) (1.77) (2.08) (2.02)

R
2 5.35% 1.02% 1.22% 1.31% 6.61% 5.67%

FTSE 100
α -1.215 -0.767 -0.777 -0.902 -1.042 -1.016

(-12.16) (-2.01) (-2.13) (-4.12) (-7.61) (-6.01)
β 0.074 0.365 0.382 0.615 0.135 0.267

(1.12) (1.47) (1.51) (1.95) (2.07) (1.97)
βρ -1.705 -2.133 -2.157 -1.728 -1.523 -1.269

(-2.77) (-3.42) (-3.45) (-2.69) (-2.53) (-1.99)
R

2 6.48% 7.21% 7.23% 7.57% 8.26% 7.83%
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Table B.1 (continued)

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

HANGSENG
α -0.480 0.677 1.774 -0.801 -0.223 -0.240

(-4.05) (1.55) (2.30) (-4.50) (-1.13) (-1.81)
β 0.259 2.188 3.355 -0.824 0.344 0.619

(2.40) (3.25) (3.24) (-1.20) (2.71) (4.29)
βρ 0.270 0.044 0.122 0.261 -0.076 -0.693

(0.32) (0.06) (0.16) (0.28) (-0.09) (-0.84)
R

2 6.78% 17.86% 16.62% 0.84% 7.61% 16.15%
KOSPI

α -0.650 3.395 4.514 -1.094 -0.626 -0.688
(-6.63) (2.66) (3.06) (-9.00) (-3.95) (-5.32)

β 0.357 4.349 5.033 -0.127 0.485 0.385
(4.86) (3.47) (3.75) (-0.46) (3.09) (3.25)

βρ 0.017 1.340 1.284 0.959 0.778 0.767
(0.02) (1.60) (1.58) (0.86) (0.85) (0.82)

R
2 13.41% 13.34% 14.30% 1.10% 9.43% 10.69%

NASDAQ 100
α -0.550 -1.069 -1.196 -0.532 -0.208 -0.409

(-7.54) (-5.96) (-7.16) (-2.02) (-2.22) (-4.61)
β 0.441 -0.124 -0.320 0.866 0.564 0.715

(6.70) (-0.60) (-1.53) (1.65) (7.66) (6.69)
βρ -0.466 -0.895 -0.665 -0.702 -0.388 -0.014

(-1.16) (-1.49) (-1.11) (-1.27) (-0.90) (-0.03)
R

2 20.45% 2.08% 3.20% 4.03% 19.85% 21.60%
RUSSELL 2000

α -0.857 -1.135 -1.155 -1.027 -0.187 -0.494
(-9.62) (-14.81) (-15.35) (-14.91) (-1.42) (-4.34)

β 0.180 -0.120 -0.147 0.034 0.615 0.629
(2.64) (-1.52) (-1.95) (0.32) (6.50) (5.18)

βρ -0.498 -0.361 -0.291 -0.579 -0.398 0.025
(-1.12) (-0.69) (-0.57) (-1.15) (-0.97) (0.06)

R
2 3.80% 1.88% 2.68% 0.68% 13.34% 9.60%

S&P 500
α -0.869 -1.042 -1.170 -0.020 -0.413 -0.576

(-8.96) (-4.74) (-5.55) (-0.05) (-2.73) (-5.07)
β 0.267 0.099 0.010 1.642 0.461 0.616

(3.83) (0.67) (0.07) (2.71) (5.26) (6.04)
βρ -1.813 -2.736 -2.526 -2.279 -1.551 -1.270

(-3.53) (-3.71) (-3.41) (-3.89) (-2.86) (-2.57)
R

2 12.79% 6.96% 6.79% 8.54% 15.15% 16.46%
Aggregated Results
Average α -0.790 -0.385 -0.180 -0.712 -0.528 -0.647
Average β 0.256 0.712 0.889 0.443 0.394 0.469
Average βρ -0.727 -0.904 -0.618 -0.801 -0.627 -0.476
Average R

2 10.72% 6.78% 8.46% 4.32% 11.09% 12.34%
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Table B.2 Information Content of Skewness Forecasts (60 days) - Al-
ternative Implied Skewness

This table reports the results from Mincer-Zarnowitz regressions. I regress the realized skewness of each index in
Table 3.1 on the forecasts generated from each model in Table 3.3. The forecasting horizon is 60 calendar days.
Implied and realized skewness are estimated as described in section 3.4.1. The GARCH and QMIDAS models
are estimated using the whole sample. In the regressions, I control for the the empirical correlation (ρt) between
daily index returns and the index variance risk premium over the prior 12 months in order to account for any bias
in the realized skewness estimates. α and β respectively denote the intercept and the coefficient of the forecast
in the regression. In addition, βρ is the coefficient of ρt, R

2 is the adjusted R2 coefficient while the numbers
in parentheses denote t-statistics, estimated using Newey-West (1987) heteroskedasticity and autocorrelation
consistent standard errors. Significant coefficients at the 5% level are highlighted in bold. The bottom panel of
the table contains the average values of α, β and βρ across indices.

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

AEX
α -1.302 -0.963 -0.980 -1.156 -1.032 -1.033

(-10.61) (-1.87) (-1.93) (-6.59) (-5.87) (-8.34)
β -0.096 0.126 0.117 0.027 0.110 0.139

(-1.20) (0.44) (0.42) (0.21) (0.99) (1.46)
βρ -2.589 -2.480 -2.476 -2.433 -2.286 -2.135

(-3.77) (-3.47) (-3.46) (-3.15) (-3.61) (-3.28)
R

2 14.30% 13.59% 13.58% 13.51% 13.97% 14.56%
DAX

α -1.080 -1.005 -1.002 -1.426 -1.126 -1.127
(-11.27) (-9.04) (-8.86) (-10.34) (-11.11) (-11.56)

β 0.095 0.132 0.135 -0.239 0.051 0.063
(1.65) (1.92) (1.91) (-1.76) (0.89) (0.84)

βρ -0.867 -1.271 -1.273 -1.455 -0.910 -0.869
(-1.84) (-2.16) (-2.15) (-2.16) (-1.88) (-1.74)

R
2 3.71% 5.21% 5.21% 5.47% 3.08% 3.14%

DJIA
α -0.794 -1.057 -0.748 -1.110 -0.561 -0.679

(-6.97) (-4.11) (-8.49) (-5.86) (-3.05) (-5.68)
β 0.364 0.085 0.452 0.168 0.589 0.535

(4.12) (0.73) (6.07) (0.69) (4.13) (5.30)
βρ -0.790 -1.558 0.859 -1.588 -0.690 -0.375

(-1.79) (-2.72) (1.54) (-2.60) (-1.29) (-0.87)
R

2 16.70% 4.90% 25.91% 4.97% 12.29% 18.42%
STOXX 50

α -1.084 -0.745 -0.866 -1.379 -1.034 -1.105
(-9.67) (-1.90) (-2.30) (-3.45) (-6.13) (-8.94)

β 0.128 0.287 0.243 -0.141 0.134 0.128
(1.74) (1.29) (1.03) (-0.34) (1.39) (1.18)

βρ -0.076 -0.303 -0.257 -0.025 0.010 0.046
(-0.10) (-0.37) (-0.31) (-0.03) (0.01) (0.06)

R
2 1.53% 0.89% 0.49% -0.07% 1.19% 0.88%

FTSE 100
α -1.370 -0.923 -1.030 -1.594 -1.206 -1.162

(-8.41) (-2.10) (-2.48) (-8.72) (-5.97) (-6.52)
β 0.032 0.221 0.190 -0.209 0.123 0.202

(0.37) (1.10) (0.91) (-1.22) (1.17) (1.64)
βρ -1.515 -1.821 -1.790 -0.950 -1.175 -1.103

(-1.79) (-2.22) (-2.18) (-0.98) (-1.47) (-1.45)
R

2 3.94% 4.75% 4.50% 5.14% 5.48% 6.68%
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Table B.2 (continued)

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

HANGSENG
α -0.574 0.634 1.763 -0.120 -0.514 -0.377

(-4.32) (0.99) (1.46) (-0.35) (-2.59) (-2.99)
β 0.178 1.584 2.466 2.293 0.162 0.473

(1.28) (2.03) (2.01) (1.64) (1.58) (3.49)
βρ 0.107 -0.148 -0.132 -0.137 0.077 -0.443

(0.15) (-0.32) (-0.28) (-0.27) (0.11) (-0.81)
R

2 2.91% 17.00% 17.20% 8.95% 1.90% 10.47%
KOSPI 200

α -0.927 3.215 3.853 -0.879 -0.782 -0.656
(-8.25) (2.69) (2.68) (-5.19) (-6.32) (-6.33)

β 0.083 3.044 3.295 0.305 0.291 0.405
(0.98) (3.45) (3.31) (0.92) (2.08) (4.19)

βρ -1.510 -2.176 -2.138 -1.517 -1.469 -0.410
(-1.23) (-2.02) (-2.00) (-1.15) (-1.21) (-0.36)

R
2 2.43% 11.21% 11.22% 3.20% 3.68% 10.12%

NASDAQ 100
α -0.522 -1.378 -1.388 -0.777 -0.137 -0.376

(-5.09) (-5.82) (-6.39) (-4.08) (-1.33) (-3.88)
β 0.547 -0.220 -0.275 0.656 0.777 0.792

(7.41) (-1.19) (-1.38) (2.03) (9.89) (8.66)
βρ -0.245 -0.687 -0.587 -0.401 0.240 0.666

(-0.54) (-0.98) (-0.84) (-0.50) (0.62) (1.68)
R

2 31.66% 3.38% 3.96% 6.10% 36.72% 40.46%
RUSSELL 2000

α -1.021 -1.602 -1.597 -1.471 -0.530 -0.768
(-6.75) (-17.72) (-18.22) (-16.95) (-2.24) (-4.32)

β 0.200 -0.269 -0.270 -0.219 0.527 0.450
(2.03) (-3.98) (-4.07) (-3.54) (3.39) (3.26)

βρ -0.159 0.410 0.437 -0.019 0.205 0.266
(-0.33) (0.88) (0.94) (-0.04) (0.44) (0.62)

R
2 4.15% 11.36% 12.03% 7.41% 10.93% 8.81%

S&P 500
α -0.910 -1.578 -1.595 -1.474 -0.267 -0.604

(-7.20) (-5.06) (-5.52) (-11.66) (-1.51) (-4.45)
β 0.357 -0.086 -0.105 -0.103 0.725 0.645

(4.79) (-0.61) (-0.72) (-0.81) (6.80) (6.69)
βρ -1.436 -2.199 -2.144 -2.309 -0.750 -0.644

(-2.56) (-3.07) (-2.97) (-3.56) (-1.36) (-1.18)
R

2 21.30% 10.30% 10.39% 10.38% 27.26% 27.41%
Aggregated Results
Average α -0.958 -0.540 -0.359 -1.138 -0.719 -0.789
Average β 0.189 0.490 0.625 0.254 0.349 0.383
Average βρ -0.908 -1.223 -0.950 -1.083 -0.675 -0.500
Average R

2 10.26% 8.26% 10.45% 6.51% 11.65% 14.09%
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Table B.3 Information Content of Skewness Forecasts (90 days) - Al-
ternative Implied-Skewness

This table reports the results from Mincer-Zarnowitz regressions. I regress the realized skewness of each index in
Table 3.1 on the forecasts generated from each model in Table 3.3. The forecasting horizon is 90 calendar days.
Implied and realized skewness are estimated as described in section 3.4.1. The GARCH and QMIDAS models
are estimated using the whole sample. In the regressions, I control for the the empirical correlation (ρt) between
daily index returns and the index variance risk premium over the prior 12 months in order to account for any bias
in the realized skewness estimates. α and β respectively denote the intercept and the coefficient of the forecast
in the regression. In addition, βρ is the coefficient of ρt, R

2 is the adjusted R2 coefficient while the numbers
in parentheses denote t-statistics, estimated using Newey-West (1987) heteroskedasticity and autocorrelation
consistent standard errors. Significant coefficients at the 5% level are highlighted in bold. The bottom panel of
the table contains the average values of α, β and βρ across indices.

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

AEX
α -1.209 -1.174 -1.187 -1.345 -1.028 -1.016

(-9.83) (-2.98) (-3.03) (-8.53) (-6.86) (-10.84)
β 0.114 0.080 0.073 0.009 0.209 0.260

(1.23) (0.48) (0.45) (0.09) (2.12) (3.56)
βρ -1.388 -1.792 -1.786 -1.699 -1.535 -1.319

(-2.07) (-2.71) (-2.71) (-2.52) (-2.67) (-2.45)
R

2 10.76% 9.83% 9.81% 9.69% 12.27% 15.96%
DAX

α -0.996 -1.071 -1.051 -1.768 -1.142 -1.035
(-6.38) (-8.04) (-7.47) (-7.35) (-10.89) (-10.54)

β 0.258 0.134 0.142 -0.487 0.132 0.229
(2.20) (2.14) (2.16) (-1.86) (1.79) (3.05)

βρ -0.051 -0.564 -0.572 -0.758 -0.194 -0.191
(-0.12) (-0.98) (-0.99) (-1.17) (-0.39) (-0.41)

R
2 6.70% 3.96% 4.09% 4.11% 2.08% 6.69%

DJIA
α -0.918 -1.663 -0.952 -1.527 -0.594 -0.731

(-6.55) (-5.49) (-12.88) (-9.63) (-2.52) (-5.58)
β 0.327 -0.113 0.318 -0.209 0.621 0.506

(3.54) (-1.07) (5.73) (-1.28) (3.45) (5.10)
βρ -0.120 -0.128 0.847 0.018 0.213 -0.076

(-0.35) (-0.29) (2.38) (0.04) (0.56) (-0.26)
R

2 11.53% 1.77% 25.42% 3.09% 10.62% 17.50%
STOXX 50

α -1.005 -1.116 -1.129 -1.226 -1.008 -1.031
(-8.65) (-3.06) (-2.93) (-3.56) (-5.86) (-8.45)

β 0.276 0.118 0.124 0.174 0.221 0.275
(3.27) (0.72) (0.65) (0.43) (2.18) (2.50)

βρ 0.262 0.037 0.043 0.215 0.252 0.432
(0.41) (0.05) (0.05) (0.28) (0.34) (0.60)

R
2 7.75% 0.47% 0.40% 0.20% 4.21% 7.20%

FTSE 100
α -1.325 -1.524 -1.537 -1.792 -1.289 -1.262

(-7.21) (-3.51) (-3.55) (-9.12) (-6.45) (-8.08)
β 0.168 0.021 0.017 -0.263 0.176 0.226

(1.85) (0.13) (0.10) (-1.22) (1.75) (2.49)
βρ -0.250 -0.480 -0.472 0.177 -0.083 -0.012

(-0.31) (-0.60) (-0.59) (0.18) (-0.10) (-0.02)
R

2 2.84% 0.22% 0.22% 2.06% 3.54% 6.47%
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Table B.3 (continued)

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

HANGSENG
α -0.790 0.929 2.006 -1.709 -0.770 -0.604

(-5.89) (1.45) (1.92) (-3.43) (-3.99) (-5.02)
β -0.009 1.655 2.275 -1.702 0.011 0.204

(-0.06) (2.71) (2.69) (-1.86) (0.12) (5.36)
βρ 2.370 1.574 1.589 2.065 2.362 1.553

(1.58) (1.77) (1.77) (1.54) (1.55) (1.26)
R

2 7.54% 29.26% 28.91% 17.33% 7.55% 18.40%
KOSPI 200

α -0.961 3.215 3.977 -0.710 -1.018 -0.810
(-4.99) (3.21) (3.33) (-4.72) (-5.91) (-4.78)

β 0.104 2.583 2.790 0.590 0.061 0.290
(0.57) (4.17) (4.12) (4.34) (0.38) (2.45)

βρ -0.528 -1.481 -1.411 -1.311 -0.691 0.403
(-0.48) (-1.56) (-1.48) (-1.29) (-0.63) (0.41)

R
2 1.04% 15.69% 15.89% 11.00% 0.34% 5.41%

NASDAQ 100
α -0.528 -1.751 -1.762 -0.352 -0.248 -0.534

(-3.86) (-7.13) (-7.60) (-0.81) (-1.51) (-3.94)
β 0.678 -0.199 -0.243 1.464 0.859 0.703

(9.26) (-1.30) (-1.46) (2.73) (9.09) (9.37)
βρ 0.656 0.748 0.805 1.126 0.741 0.877

(1.42) (1.03) (1.13) (1.65) (1.85) (2.19)
R

2 47.50% 2.77% 3.46% 10.04% 44.39% 49.21%
RUSSELL 2000

α -0.916 -1.920 -1.915 -1.836 -0.486 -0.837
(-5.56) (-16.94) (-16.79) (-19.83) (-1.89) (-4.10)

β 0.404 -0.281 -0.281 -0.318 0.676 0.483
(4.05) (-3.78) (-3.69) (-4.37) (4.28) (3.63)

βρ 0.671 1.262 1.253 1.327 0.743 0.916
(1.20) (2.19) (2.17) (2.19) (1.52) (1.78)

R
2 17.19% 17.20% 17.02% 17.84% 20.82% 16.81%

S&P 500
α -0.902 -2.254 -2.257 -1.910 -0.337 -0.689

(-6.02) (-6.53) (-6.63) (-10.50) (-1.75) (-5.09)
β 0.459 -0.231 -0.258 -0.294 0.806 0.632

(5.76) (-1.91) (-1.94) (-2.00) (7.09) (7.91)
βρ -0.785 -1.237 -1.195 -1.505 -0.456 -0.268

(-1.14) (-1.33) (-1.28) (-1.72) (-0.70) (-0.41)
R

2 25.45% 8.41% 8.55% 8.40% 30.86% 32.76%
Aggregated Results
Average α -0.955 -0.833 -0.581 -1.418 -0.792 -0.855
Average β 0.278 0.377 0.496 -0.104 0.377 0.381
Average βρ 0.084 -0.206 -0.090 -0.034 0.135 0.232
Average R

2 13.83% 8.96% 11.38% 8.38% 13.67% 17.64%
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Table B.4 Encompassing Regressions - Alternative Implied-Skewness

This table reports the results from regressing the realized skewness on forecasts generated from
the LRS, GARCH-2, QMIDAS and CIS models, within the same regression, for each index
in Table 3.1. Implied and realized skewness are estimated as described in section 3.4.1. The
GARCH-2 and QMIDAS models are estimated using the whole sample. In the regressions,
I control for the the empirical correlation (ρt) between daily index returns and the index
variance risk premium over the prior 12 months in order to account for any bias in the realized
skewness estimates. α and βi respectively denote the intercept and the coefficient of the forecast
of model i in the regression. In addition, βρ is the coefficient of ρt, R

2 is the adjusted R2

coefficient while the numbers in parentheses denote t-statistics, estimated using Newey-West
(1987) heteroskedasticity and autocorrelation consistent standard errors. Significant coefficients
at the 5% level are highlighted in bold. Panel A, B and C respectively present results for a
forecasting horizon of 30, 60 and 90 calendar days. (1) - (10) are the ten international indices of
order listed in Table 3.1.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: 30 days
α -0.272 -0.666 1.095 -0.836 0.087 1.288 3.330 0.083 -0.507 0.881

(-0.44) (-2.10) (2.67) (-1.36) (0.25) (1.72) (2.58) (0.19) (-3.96) (2.37)
βρ -1.393 -1.231 0.396 0.601 -1.172 -0.447 0.554 0.178 0.418 -0.559

(-2.61) (-2.68) (1.08) (1.51) (-1.85) (-0.55) (0.83) (0.41) (0.88) (-0.90)
βLRS 0.164 0.204 0.216 0.156 0.066 0.038 0.193 0.268 0.062 0.177

(2.32) (3.65) (2.72) (2.67) (1.10) (0.34) (2.74) (3.80) (0.83) (2.50)
βGARCH−2-0.013 0.128 0.327 -0.037 0.370 2.238 3.636 0.062 -0.203 -0.097

(-0.02) (1.32) (4.91) (-0.16) (1.40) (2.35) (3.03) (0.29) (-2.37) (-0.72)
βQMIDAS0.579 -0.113 1.969 -0.183 0.569 0.252 -0.084 0.763 0.283 2.128

(2.93) (-0.33) (3.26) (-0.31) (1.66) (0.39) (-0.37) (1.30) (2.53) (4.19)
βCIS 0.149 0.172 0.352 0.282 0.374 0.377 0.205 0.470 0.540 0.483

(1.15) (2.26) (3.39) (2.41) (2.93) (2.83) (1.98) (4.46) (4.22) (4.66)
R

2 11.91% 12.29% 31.89% 7.48% 11.54% 21.22% 22.32% 27.69% 12.30% 20.54%
Panel B: 60 days

α -0.958 -0.971 -0.544 -0.775 -0.455 2.438 2.722 -0.258 -1.249 -0.636
(-1.26) (-3.47) (-3.47) (-1.59) (-0.94) (2.03) (1.79) (-1.50) (-7.15) (-1.93)

βρ -2.408 -1.247 0.814 -0.393 -0.930 -0.311 -0.798 1.163 0.790 -0.463
(-3.35) (-2.23) (1.44) (-0.58) (-1.14) (-0.57) (-0.67) (2.67) (1.88) (-0.77)

βLRS -0.134 0.112 0.175 0.135 0.001 -0.071 0.018 0.200 -0.075 0.150
(-1.67) (1.74) (2.28) (1.73) (0.02) (-0.40) (0.32) (2.28) (-0.82) (2.22)

βGARCH−20.106 0.103 0.339 0.637 0.373 3.579 2.278 -0.162 -0.279 -0.059
(0.23) (1.17) (4.78) (2.18) (2.00) (2.51) (2.07) (-1.39) (-2.32) (-0.30)

βQMIDAS-0.013 -0.124 -0.008 -0.834 -0.180 -2.383 0.195 0.563 0.053 0.039
(-0.07) (-0.72) (-0.05) (-1.60) (-1.34) (-1.90) (0.62) (2.87) (0.51) (0.24)

βCIS 0.194 0.062 0.118 0.089 0.279 0.322 0.322 0.566 0.362 0.520
(1.85) (0.87) (1.56) (0.82) (2.03) (2.37) (3.09) (5.68) (3.11) (5.94)

R
2 15.98% 7.12% 29.30% 3.98% 9.94% 21.12% 15.98% 44.72% 15.93% 28.72%

Panel C: 90 days
α -0.518 -0.902 -0.973 -0.211 -0.577 0.740 4.080 0.015 -1.231 -0.685

(-1.49) (-2.51) (-5.74) (-0.35) (-1.46) (0.65) (1.91) (0.08) (-6.25) (-2.17)
βρ -1.622 -0.610 1.032 0.072 0.154 1.146 -0.913 1.089 1.234 -0.145

(-2.98) (-1.44) (2.77) (0.14) (0.21) (1.60) (-0.95) (3.48) (2.93) (-0.25)
βLRS 0.003 0.174 0.071 0.218 0.096 -0.220 -0.063 0.352 0.129 0.171

(0.03) (1.94) (0.95) (2.85) (0.94) (-1.70) (-0.50) (4.43) (1.32) (2.19)
βGARCH−20.188 0.105 0.266 0.282 0.293 1.501 2.835 -0.059 -0.103 -0.004

(1.21) (1.36) (5.38) (1.61) (2.17) (1.86) (2.20) (-0.68) (-1.07) (-0.02)
βQMIDAS0.014 -0.280 -0.189 0.079 -0.272 -0.574 -0.072 0.756 -0.095 -0.044

(0.17) (-1.05) (-1.87) (0.19) (-1.82) (-0.90) (-0.29) (3.08) (-0.90) (-0.25)
βCIS 0.286 0.189 0.087 0.185 0.219 0.167 0.145 0.385 0.248 0.494

(3.42) (2.94) (1.04) (1.96) (2.43) (3.05) (1.32) (5.40) (2.22) (7.22)
R

2 16.78% 15.05% 29.02% 11.71% 9.71% 33.69% 16.68% 56.70% 24.84% 34.40%
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Table B.7 Information Content of Skewness Forecasts (30 days) - Al-
ternative GARCH-2 Specification

This table reports the results from Mincer-Zarnowitz regressions. I regress the realized skewness of each index
in Table 3.1 on the forecasts generated from each model in Table 3.3. The forecasting horizon is 30 calendar
days. The GARCH-2 model is estimated as described in section 3.4.2. The GARCH and QMIDAS models are
estimated using the whole sample. In the regressions, I control for the the empirical correlation (ρt) between
daily index returns and the index variance risk premium over the prior 12 months in order to account for any bias
in the realized skewness estimates. α and β respectively denote the intercept and the coefficient of the forecast
in the regression. In addition, βρ is the coefficient of ρt, R

2 is the adjusted R2 coefficient while the numbers
in parentheses denote t-statistics, estimated using Newey-West (1987) heteroskedasticity and autocorrelation
consistent standard errors. Significant coefficients at the 5% level are highlighted in bold. The bottom panel of
the table contains the average values of α, β and βρ across indices.

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

AEX
α -0.932 -0.875 -0.810 -0.715 -0.836 -0.908

(-11.42) (-1.31) (-1.25) (-3.55) (-6.68) (-7.57)
β 0.165 0.201 0.240 0.432 0.224 0.218

(2.39) (0.36) (0.47) (2.03) (2.61) (2.01)
βρ -1.776 -2.072 -2.083 -1.979 -1.863 -1.599

(-4.00) (-4.13) (-4.17) (-3.96) (-4.08) (-3.12)
R

2 10.00% 7.65% 7.70% 9.17% 9.99% 10.05%
DAX

α -0.811 -0.998 -0.983 -1.198 -0.941 -0.951
(-11.68) (-11.10) (-8.48) (-6.46) (-10.55) (-11.29)

β 0.221 0.055 0.051 -0.210 0.072 0.107
(3.77) (0.70) (0.65) (-0.80) (1.23) (1.25)

βρ -1.196 -1.611 -1.594 -1.692 -1.407 -1.350
(-3.22) (-3.42) (-3.44) (-3.21) (-3.36) (-3.17)

R
2 9.86% 6.71% 6.67% 6.78% 7.05% 7.09%

DJIA
α -0.621 -0.716 -0.757 -0.224 -0.299 -0.467

(-8.32) (-4.22) (-4.54) (-0.38) (-2.97) (-5.26)
β 0.375 0.213 0.169 1.176 0.666 0.676

(5.30) (1.80) (1.57) (1.30) (7.33) (5.98)
βρ -0.760 -1.429 -1.378 -1.134 -0.825 -0.359

(-2.22) (-3.09) (-3.03) (-2.62) (-2.15) (-1.00)
R

2 17.06% 4.64% 4.18% 3.82% 13.53% 18.67%
STOXX 50

α -0.845 -1.296 -1.489 -0.690 -0.672 -0.768
(-11.24) (-2.89) (-5.30) (-1.73) (-5.86) (-6.62)

β 0.224 -0.173 -0.277 0.519 0.246 0.341
(4.02) (-0.46) (-1.47) (1.01) (3.82) (3.09)

βρ 0.414 0.525 0.569 0.655 0.650 0.630
(1.17) (1.31) (1.46) (1.54) (1.80) (1.71)

R
2 5.29% 0.61% 1.07% 1.01% 5.31% 4.62%

FTSE 100
α -1.193 -0.842 -0.835 -0.958 -1.030 -0.984

(-11.87) (-2.21) (-2.05) (-4.25) (-7.72) (-5.95)
β 0.081 0.305 0.269 0.510 0.139 0.288

(1.23) (1.23) (1.16) (1.56) (2.13) (2.15)
βρ -1.632 -2.025 -1.993 -1.688 -1.444 -1.170

(-2.60) (-3.07) (-3.05) (-2.53) (-2.34) (-1.79)
R

2 6.61% 6.84% 6.74% 7.09% 8.39% 8.23%
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Table B.7 (continued)

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

HANGSENG
α -0.479 0.665 0.471 -0.811 -0.237 -0.239

(-4.16) (1.55) (1.36) (-4.55) (-1.18) (-1.70)
β 0.258 2.167 2.197 -0.892 0.335 0.630

(2.45) (3.27) (3.46) (-1.29) (2.56) (3.85)
βρ 0.196 -0.053 -0.062 0.132 -0.141 -0.818

(0.24) (-0.07) (-0.08) (0.15) (-0.17) (-0.99)
R

2 6.55% 18.01% 18.13% 0.90% 6.89% 15.35%
KOSPI 200

α -0.524 0.873 0.577 -1.061 -0.520 -0.626
(-6.61) (0.63) (0.44) (-8.85) (-3.71) (-5.49)

β 0.406 1.725 1.346 -0.377 0.515 0.349
(5.16) (1.27) (1.11) (-1.44) (3.04) (2.75)

βρ 0.039 0.715 0.732 0.623 0.619 0.760
(0.06) (0.85) (0.84) (0.65) (0.83) (0.99)

R
2 16.87% 3.28% 2.30% 2.67% 10.99% 8.48%

NASDAQ 100
α -0.556 -1.059 -1.162 -0.523 -0.306 -0.438

(-7.74) (-5.78) (-7.85) (-1.96) (-3.24) (-5.09)
β 0.430 -0.124 -0.281 0.862 0.497 0.673

(6.42) (-0.59) (-1.63) (1.62) (6.73) (6.46)
βρ -0.486 -0.984 -0.773 -0.803 -0.465 -0.086

(-1.21) (-1.63) (-1.31) (-1.45) (-1.07) (-0.19)
R

2 19.87% 2.46% 3.50% 4.29% 17.56% 19.67%
RUSSELL 2000

α -0.837 -1.108 -1.012 -1.016 -0.269 -0.515
(-10.02) (-16.19) (-14.41) (-15.58) (-2.31) (-4.80)

β 0.186 -0.108 0.020 0.024 0.571 0.587
(2.81) (-1.44) (0.34) (0.22) (6.59) (5.22)

βρ -0.502 -0.399 -0.515 -0.587 -0.435 0.011
(-1.20) (-0.81) (-1.03) (-1.23) (-1.09) (0.03)

R
2 4.14% 1.81% 0.85% 0.78% 12.43% 9.03%

SP500
α -0.872 -1.081 -1.195 -0.044 -0.440 -0.589

(-9.26) (-4.96) (-6.00) (-0.10) (-2.94) (-5.21)
β 0.266 0.073 -0.006 1.609 0.459 0.608

(3.75) (0.50) (-0.05) (2.65) (5.11) (5.86)
βρ -1.723 -2.573 -2.383 -2.178 -1.517 -1.206

(-3.38) (-3.59) (-3.39) (-3.84) (-2.91) (-2.50)
R

2 12.58% 6.69% 6.60% 8.26% 14.70% 15.82%
Aggregated Results
Average α -0.767 -0.644 -0.719 -0.724 -0.555 -0.649
Average β 0.261 0.433 0.373 0.366 0.372 0.448
Average βρ -0.743 -0.991 -0.948 -0.865 -0.683 -0.519
Average R

2 10.88% 5.87% 5.77% 4.48% 10.68% 11.70%
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Table B.8 Information Content of Skewness Forecasts (60 days) - Al-
ternative GARCH-2 Specification

This table reports the results from Mincer-Zarnowitz regressions. I regress the realized skewness of each index
in Table 3.1 on the forecasts generated from each model in Table 3.3. The forecasting horizon is 60 calendar
days. The GARCH-2 model is estimated as described in section 3.4.2. The GARCH and QMIDAS models are
estimated using the whole sample. In the regressions, I control for the the empirical correlation (ρt) between
daily index returns and the index variance risk premium over the prior 12 months in order to account for any bias
in the realized skewness estimates. α and β respectively denote the intercept and the coefficient of the forecast
in the regression. In addition, βρ is the coefficient of ρt, R

2 is the adjusted R2 coefficient while the numbers
in parentheses denote t-statistics, estimated using Newey-West (1987) heteroskedasticity and autocorrelation
consistent standard errors. Significant coefficients at the 5% level are highlighted in bold. The bottom panel of
the table contains the average values of α, β and βρ across indices.

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

AEX
α -1.156 -0.817 -0.784 -1.058 -0.856 -0.886

(-9.54) (-1.55) (-1.50) (-5.89) (-5.61) (-8.69)
β 0.002 0.192 0.185 0.085 0.229 0.253

(0.02) (0.64) (0.71) (0.59) (2.14) (3.06)
βρ -2.669 -2.826 -2.837 -2.852 -2.422 -2.135

(-3.92) (-3.92) (-3.95) (-3.73) (-3.94) (-3.38)
R

2 19.70% 19.92% 19.96% 19.94% 22.01% 23.64%
DAX

α -1.057 -1.065 -0.999 -1.324 -1.132 -1.119
(-11.20) (-11.57) (-8.08) (-9.73) (-13.41) (-14.27)

β 0.107 0.080 0.092 -0.151 0.039 0.061
(1.79) (1.26) (1.42) (-1.28) (0.83) (1.03)

βρ -0.765 -1.155 -1.169 -1.302 -0.867 -0.829
(-1.61) (-1.98) (-2.00) (-2.00) (-1.74) (-1.64)

R
2 3.57% 3.39% 3.55% 3.51% 2.71% 2.91%

DJIA
α -0.789 -0.906 -0.910 -0.953 -0.826 -0.806

(-7.85) (-4.09) (-4.12) (-5.72) (-5) (-6.90)
β 0.309 0.113 0.106 0.257 0.293 0.357

(3.66) (1.09) (1.07) (1.13) (2.72) (2.94)
βρ -1.169 -1.962 -1.958 -2.049 -1.414 -1.083

(-2.39) (-3.25) (-3.22) (-3.08) (-2.47) (-2.10)
R

2 13.79% 6.15% 6.14% 6.51% 8.14% 11.80%
STOXX 50

α -1.078 -1.017 -1.103 -1.517 -1.030 -1.097
(-9.97) (-2.73) (-2.80) (-4.22) (-7.26) (-9.95)

β 0.113 0.115 0.055 -0.317 0.124 0.111
(1.62) (0.54) (0.29) (-0.84) (1.55) (1.21)

βρ -0.126 -0.210 -0.163 -0.063 -0.015 -0.040
(-0.18) (-0.28) (-0.22) (-0.09) (-0.02) (-0.05)

R
2 1.23% 0.10% -0.03% 0.16% 1.29% 0.74%

FTSE 100
α -1.319 -1.223 -1.255 -1.529 -1.140 -1.088

(-8.39) (-3.16) (-2.98) (-8.66) (-7.23) (-8.20)
β 0.049 0.075 0.053 -0.170 0.151 0.240

(0.56) (0.42) (0.31) (-0.99) (1.73) (2.52)
βρ -1.654 -1.799 -1.774 -1.183 -1.177 -1.161

(-2.12) (-2.39) (-2.35) (-1.26) (-1.60) (-1.72)
R

2 5.70% 5.57% 5.52% 6.22% 8.23% 10.03%
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Table B.8 (continued)

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

HANGSENG
α -0.533 0.649 0.562 -0.112 -0.515 -0.382

(-3.78) (0.98) (0.92) (-0.32) (-2.44) (-2.43)
β 0.207 1.577 1.636 2.241 0.147 0.462

(1.44) (1.96) (1.97) (1.56) (1.32) (2.69)
βρ -0.156 -0.330 -0.341 -0.299 -0.120 -0.477

(-0.25) (-0.72) (-0.74) (-0.60) (-0.18) (-0.85)
R

2 3.74% 16.71% 17.33% 8.65% 1.41% 8.04%
KOSPI 200

α -0.620 1.405 1.787 -0.948 -0.694 -0.686
(-8.37) (1.07) (1.23) (-7.30) (-9.33) (-7.99)

β 0.322 1.667 1.836 -0.131 0.298 0.290
(2.99) (1.71) (1.80) (-0.50) (2.50) (2.31)

βρ -0.870 -1.608 -1.634 -1.342 -1.020 -0.918
(-0.68) (-1.21) (-1.23) (-1.02) (-0.74) (-0.69)

R
2 8.10% 5.09% 5.71% 1.34% 4.64% 6.24%

NASDAQ 100
α -0.547 -1.330 -1.341 -0.811 -0.290 -0.438

(-5.49) (-5.62) (-6.43) (-4.11) (-2.79) (-4.24)
β 0.520 -0.186 -0.225 0.573 0.657 0.701

(7.42) (-1.01) (-1.25) (1.74) (9.00) (7.69)
βρ -0.316 -0.821 -0.736 -0.557 -0.024 0.313

(-0.68) (-1.16) (-1.04) (-0.73) (-0.06) (0.73)
R

2 28.79% 3.53% 4.02% 5.58% 28.76% 32.66%
RUSSELL 2000

α -0.978 -1.575 -1.228 -1.455 -0.579 -0.762
(-6.51) (-18.23) (-12.35) (-18.50) (-2.64) (-4.41)

β 0.225 -0.270 0.032 -0.227 0.502 0.447
(2.20) (-3.95) (0.49) (-3.66) (3.38) (3.28)

βρ -0.120 0.345 -0.120 -0.055 0.258 0.327
(-0.26) (0.76) (-0.24) (-0.11) (0.55) (0.76)

R
2 5.18% 11.85% 0.66% 8.15% 10.63% 9.24%

SP500
α -0.913 -1.555 -1.580 -1.437 -0.406 -0.654

(-7.83) (-5.07) (-5.64) (-11.97) (-2.56) (-5.34)
β 0.344 -0.084 -0.097 -0.078 0.633 0.584

(4.95) (-0.60) (-0.74) (-0.63) (6.53) (6.69)
βρ -1.570 -2.302 -2.251 -2.430 -1.098 -0.967

(-2.95) (-3.42) (-3.36) (-4.03) (-2.08) (-1.89)
R

2 21.61% 11.47% 11.57% 11.44% 25.89% 26.45%
Aggregated Results
Average α -0.899 -0.743 -0.685 -1.114 -0.747 -0.792
Average β 0.220 0.328 0.367 0.208 0.307 0.351
Average βρ -0.942 -1.267 -1.298 -1.213 -0.790 -0.697
Average R

2 11.14% 8.38% 7.44% 7.15% 11.37% 13.17%
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Table B.9 Information Content of Skewness Forecasts (90 days) - Al-
ternative GARCH-2 Specification

This table reports the results from Mincer-Zarnowitz regressions. I regress the realized skewness of each index
in Table 3.1 on the forecasts generated from each model in Table 3.3. The forecasting horizon is 90 calendar
days. The GARCH-2 model is estimated as described in section 3.4.2. The GARCH and QMIDAS models are
estimated using the whole sample. In the regressions, I control for the the empirical correlation (ρt) between
daily index returns and the index variance risk premium over the prior 12 months in order to account for any bias
in the realized skewness estimates. α and β respectively denote the intercept and the coefficient of the forecast
in the regression. In addition, βρ is the coefficient of ρt, R

2 is the adjusted R2 coefficient while the numbers
in parentheses denote t-statistics, estimated using Newey-West (1987) heteroskedasticity and autocorrelation
consistent standard errors. Significant coefficients at the 5% level are highlighted in bold. The bottom panel of
the table contains the average values of α, β and βρ across indices.

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

AEX
α -0.944 -1.240 -1.240 -1.263 -0.839 -0.836

(-8.06) (-2.50) (-2.70) (-6.51) (-5.94) (-8.90)
β 0.293 0.031 0.028 0.034 0.315 0.379

(3.48) (0.15) (0.16) (0.28) (3.34) (5.89)
βρ -1.060 -1.910 -1.912 -1.975 -1.562 -1.240

(-1.67) (-2.43) (-2.44) (-2.35) (-2.49) (-2.37)
R

2 18.90% 11.83% 11.83% 11.89% 18.21% 25.79%
DAX

α -1.146 -1.114 -0.985 -1.575 -1.129 -1.096
(-6.51) (-9.06) (-5.64) (-5.89) (-13.21) (-13.98)

β 0.131 0.104 0.124 -0.290 0.134 0.178
(0.99) (1.63) (1.86) (-1.04) (2.24) (2.91)

βρ -0.124 -0.520 -0.527 -0.586 -0.207 -0.177
(-0.31) (-1.01) (-1.03) (-1.00) (-0.46) (-0.41)

R
2 1.86% 2.50% 2.89% 1.59% 2.47% 4.74%

DJIA
α -0.885 -1.595 -1.628 -1.452 -0.840 -0.908

(-6.75) (-6.40) (-6.32) (-10.85) (-7.03) (-7.44)
β 0.310 -0.121 -0.128 -0.225 0.365 0.329

(3.47) (-1.37) (-1.44) (-1.69) (4.45) (3.92)
βρ -0.049 -0.081 -0.080 0.103 -0.029 -0.114

(-0.14) (-0.17) (-0.17) (0.22) (-0.07) (-0.31)
R

2 10.22% 1.47% 1.55% 2.72% 5.75% 7.39%
STOXX 50

α -1.024 -1.455 -1.463 -0.961 -1.033 -1.071
(-7.47) (-4.27) (-3.54) (-2.99) (-7.23) (-10.39)

β 0.249 -0.045 -0.042 0.449 0.200 0.227
(2.67) (-0.29) (-0.26) (1.19) (2.40) (2.49)

βρ 0.246 0.239 0.234 0.234 0.285 0.371
(0.41) (0.34) (0.34) (0.34) (0.42) (0.56)

R
2 6.31% 0.12% 0.11% 1.15% 4.48% 5.57%

FTSE 100
α -1.111 -1.988 -2.043 -1.899 -1.134 -1.149

(-7.24) (-4.72) (-4.19) (-9.83) (-7.97) (-8.81)
β 0.270 -0.172 -0.166 -0.500 0.246 0.256

(3.78) (-1.08) (-1.05) (-2.44) (3.37) (3.42)
βρ -0.423 -0.483 -0.487 0.582 0.061 -0.359

(-0.57) (-0.59) (-0.60) (0.60) (0.07) (-0.47)
R

2 8.24% 2.29% 2.21% 6.05% 9.10% 11.11%
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Table B.9 (continued)

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

HANGSENG
α -0.766 1.074 0.872 -1.713 -0.753 -0.682

(-4.94) (1.51) (1.37) (-2.96) (-3.91) (-6.51)
β 0.046 1.816 1.770 -1.686 0.035 0.106

(0.24) (2.60) (2.59) (-1.63) (0.38) (5.00)
βρ 1.777 1.357 1.343 1.631 1.768 1.093

(1.54) (2.08) (2.03) (1.56) (1.52) (1.32)
R

2 4.10% 30.95% 30.11% 13.64% 4.06% 19.66%
KOSPI 200

α -0.813 1.856 2.357 -0.630 -0.664 -0.567
(-6.22) (1.57) (1.78) (-4.34) (-5.21) (-4.11)

β -0.007 1.623 1.806 0.320 0.216 0.297
(-0.03) (2.27) (2.41) (1.97) (2.61) (3.23)

βρ -0.039 -0.526 -0.528 -0.283 0.178 0.604
(-0.03) (-0.51) (-0.52) (-0.24) (0.13) (0.47)

R
2 -0.19% 8.01% 8.66% 4.08% 1.66% 7.00%

NASDAQ 100
α -0.660 -1.648 -1.671 -0.381 -0.694 -0.781

(-5.09) (-6.79) (-7.40) (-0.91) (-4.35) (-5.83)
β 0.576 -0.137 -0.177 1.403 0.531 0.520

(8.27) (-0.97) (-1.19) (2.69) (7.05) (7.42)
βρ 0.668 0.802 0.838 1.158 0.774 0.861

(1.20) (1.07) (1.12) (1.63) (1.40) (1.57)
R

2 34.58% 1.91% 2.38% 8.37% 22.50% 28.96%
RUSSELL 2000

α -0.813 -1.896 -1.397 -1.798 -0.726 -0.817
(-5.02) (-17.17) (-14.17) (-21.20) (-3.82) (-5.03)

β 0.454 -0.301 0.056 -0.334 0.507 0.475
(4.48) (-3.91) (0.94) (-4.51) (4.47) (4.59)

βρ 0.465 0.995 0.599 1.030 0.515 0.727
(0.92) (1.79) (0.90) (1.77) (1.05) (1.57)

R
2 20.28% 17.48% 2.52% 17.58% 18.83% 19.95%

SP500
α -0.906 -2.178 -2.186 -1.834 -0.568 -0.750

(-6.28) (-6.30) (-6.38) (-9.99) (-3.27) (-5.91)
β 0.447 -0.214 -0.222 -0.251 0.655 0.580

(5.66) (-1.77) (-1.80) (-1.69) (6.36) (7.67)
βρ -0.959 -1.540 -1.532 -1.832 -0.911 -0.498

(-1.45) (-1.69) (-1.69) (-2.16) (-1.34) (-0.80)
R

2 25.55% 9.73% 9.74% 9.44% 27.64% 32.34%
Aggregated Results
Average α -0.907 -1.018 -0.938 -1.351 -0.838 -0.866
Average β 0.277 0.258 0.305 -0.108 0.320 0.335
Average βρ 0.050 -0.167 -0.205 0.006 0.087 0.127
Average R

2 12.98% 8.63% 7.20% 7.65% 11.47% 16.25%
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Table B.10 Encompassing Regressions - Alternative GARCH-2 Speci-
fication

This table reports the results from regressing the realized skewness on forecasts generated from the LRS, GARCH-
2, QMIDAS and CIS models, within the same regression, for each index in Table 3.1. The GARCH-2 model
is estimated as described in section 3.4.2. The GARCH-2 and QMIDAS models are estimated using the whole
sample. In the regressions, I control for the the empirical correlation (ρt) between daily index returns and
the index variance risk premium over the prior 12 months in order to account for any bias in the realized
skewness estimates. α and βi respectively denote the intercept and the coefficient of the forecast of model i

in the regression. In addition, βρ is the coefficient of ρt, R
2 is the adjusted R2 coefficient while the numbers

in parentheses denote t-statistics, estimated using Newey-West (1987) heteroskedasticity and autocorrelation
consistent standard errors. Significant coefficients at the 5% level are highlighted in bold. Panel A, B and C
respectively present results for a forecasting horizon of 30, 60 and 90 calendar days. (1) - (10) are the ten
international indices of order listed in Table 3.1.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: 30 days
α -0.186 -0.654 0.566 -0.979 -0.004 0.411 0.671 -0.062 -0.446 0.900

(-0.30) (-2.44) (1.39) (-2.05) (-0.01) (1.09) (0.70) (-0.18) (-3.77) (2.47)
βρ -1.424 -1.370 -0.391 0.549 -1.015 -0.595 -0.095 0.179 -0.110 -0.367

(-2.85) (-2.94) (-1.02) (1.39) (-1.50) (-0.75) (-0.16) (0.41) (-0.25) (-0.61)
βLRS 0.160 0.222 0.264 0.168 0.069 0.021 0.334 0.276 0.090 0.182

(2.07) (3.82) (3.48) (2.84) (1.15) (0.19) (4.59) (3.83) (1.37) (2.48)
βGARCH−20.060 0.107 0.021 -0.136 0.255 1.551 1.170 -0.014 -0.036 -0.131

(0.11) (1.33) (0.21) (-0.96) (0.97) (2.50) (1.29) (-0.09) (-0.65) (-1.09)
βQMIDAS0.540 -0.087 1.337 -0.132 0.537 0.141 -0.332 0.615 0.086 2.247

(2.34) (-0.32) (2.03) (-0.26) (1.38) (0.22) (-1.67) (1.23) (0.96) (4.27)
βCIS 0.181 0.094 0.495 0.234 0.372 0.356 0.178 0.434 0.541 0.475

(1.69) (1.21) (4.80) (2.03) (3.00) (2.38) (1.73) (4.24) (4.46) (4.50)
R

2 13.79% 12.70% 25.47% 6.93% 11.12% 21.44% 20.35% 26.25% 9.76% 20.15%
Panel B: 60 days

α -0.958 -0.971 -0.544 -0.775 -0.455 2.438 2.722 -0.258 -1.249 -0.636
(-1.26) (-3.47) (-3.47) (-1.59) (-0.94) (2.03) (1.79) (-1.50) (-7.15) (-1.93)

βρ -2.408 -1.247 0.814 -0.393 -0.930 -0.311 -0.798 1.163 0.790 -0.463
(-3.35) (-2.23) (1.44) (-0.58) (-1.14) (-0.57) (-0.67) (2.67) (1.88) (-0.77)

βLRS -0.134 0.112 0.175 0.135 0.001 -0.071 0.018 0.200 -0.075 0.150
(-1.67) (1.74) (2.28) (1.73) (0.02) (-0.40) (0.32) (2.28) (-0.82) (2.22)

βGARCH−20.106 0.103 0.339 0.637 0.373 3.579 2.278 -0.162 -0.279 -0.059
(0.23) (1.17) (4.78) (2.18) (2.00) (2.51) (2.07) (-1.39) (-2.32) (-0.30)

βQMIDAS-0.013 -0.124 -0.008 -0.834 -0.180 -2.383 0.195 0.563 0.053 0.039
(-0.07) (-0.72) (-0.05) (-1.60) (-1.34) (-1.90) (0.62) (2.87) (0.51) (0.24)

βCIS 0.194 0.062 0.118 0.089 0.279 0.322 0.322 0.566 0.362 0.520
(1.85) (0.87) (1.56) (0.82) (2.03) (2.37) (3.09) (5.68) (3.11) (5.94)

R
2 15.98% 7.12% 29.30% 3.98% 9.94% 21.12% 15.98% 44.72% 15.93% 28.72%

Panel C: 90 days
α -0.518 -0.902 -0.973 -0.211 -0.577 0.740 4.080 0.015 -1.231 -0.685

(-1.49) (-2.51) (-5.74) (-0.35) (-1.46) (0.65) (1.91) (0.08) (-6.25) (-2.17)
βρ -1.622 -0.610 1.032 0.072 0.154 1.146 -0.913 1.089 1.234 -0.145

(-2.98) (-1.44) (2.77) (0.14) (0.21) (1.60) (-0.95) (3.48) (2.93) (-0.25)
βLRS 0.003 0.174 0.071 0.218 0.096 -0.220 -0.063 0.352 0.129 0.171

(0.03) (1.94) (0.95) (2.85) (0.94) (-1.70) (-0.50) (4.43) (1.32) (2.19)
βGARCH−20.188 0.105 0.266 0.282 0.293 1.501 2.835 -0.059 -0.103 -0.004

(1.21) (1.36) (5.38) (1.61) (2.17) (1.86) (2.20) (-0.68) (-1.07) (-0.02)
βQMIDAS0.014 -0.280 -0.189 0.079 -0.272 -0.574 -0.072 0.756 -0.095 -0.044

(0.17) (-1.05) (-1.87) (0.19) (-1.82) (-0.90) (-0.29) (3.08) (-0.90) (-0.25)
βCIS 0.286 0.189 0.087 0.185 0.219 0.167 0.145 0.385 0.248 0.494

(3.42) (2.94) (1.04) (1.96) (2.43) (3.05) (1.32) (5.40) (2.22) (7.22)
R

2 15.98% 7.12% 29.30% 3.98% 9.94% 21.12% 15.98% 44.72% 15.93% 28.72%
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Table B.13 Information Content of Skewness Forecasts (30 days) - MI-
DAS with 200 lagged days

This table reports the results from Mincer-Zarnowitz regressions. I regress the realized skewness of each index
in Table 3.1 on the forecasts generated from each model in Table 3.3. The forecasting horizon is 30 calendar
days. The conditioning variable in the QMIDAS model is a function of the previous 200 daily returns. The
GARCH and QMIDAS models are estimated using the whole sample. In the regressions, I control for the the
empirical correlation (ρt) between daily index returns and the index variance risk premium over the prior 12
months in order to account for any bias in the realized skewness estimates. α and β respectively denote the
intercept and the coefficient of the forecast in the regression. In addition, βρ is the coefficient of ρt, R

2 is the
adjusted R2 coefficient while the numbers in parentheses denote t-statistics, estimated using Newey-West (1987)
heteroskedasticity and autocorrelation consistent standard errors. Significant coefficients at the 5% level are
highlighted in bold. The bottom panel of the table contains the average values of α, β and βρ across indices.

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

AEX
α -0.932 -0.875 -0.851 -0.849 -0.836 -0.908

(-11.42) (-1.31) (-1.30) (-1.94) (-6.68) (-7.57)
β 0.165 0.201 0.222 0.287 0.224 0.218

(2.39) (0.36) (0.41) (0.62) (2.61) (2.01)
βρ -1.776 -2.072 -2.080 -2.057 -1.863 -1.599

(-4.00) (-4.13) (-4.14) (-4.14) (-4.08) (-3.12)
R

2 10.00% 7.65% 7.67% 7.78% 9.99% 10.05%
DAX

α -0.811 -0.998 -0.997 -1.201 -0.941 -0.951
(-11.68) (-11.10) (-10.81) (-6.56) (-10.55) (-11.29)

β 0.221 0.055 0.055 -0.213 0.072 0.107
(3.77) (0.70) (0.68) (-0.83) (1.23) (1.25)

βρ -1.196 -1.611 -1.610 -1.700 -1.407 -1.350
(-3.22) (-3.42) (-3.41) (-3.22) (-3.36) (-3.17)

R
2 9.86% 6.71% 6.70% 6.80% 7.05% 7.09%

DJIA
α -0.621 -0.716 -0.373 -0.507 -0.299 -0.467

(-8.32) (-4.22) (-4.72) (-1.38) (-2.97) (-5.26)
β 0.375 0.213 0.606 0.755 0.666 0.676

(5.30) (1.80) (8.01) (1.34) (7.33) (5.98)
βρ -0.760 -1.429 1.021 -1.013 -0.825 -0.359

(-2.22) (-3.09) (2.52) (-2.38) (-2.15) (-1.00)
R

2 17.06% 4.64% 22.10% 3.40% 13.53% 18.67%
STOXX 50

α -0.845 -1.296 -1.413 -0.944 -0.672 -0.768
(-11.24) (-2.89) (-4.71) (-4.44) (-5.86) (-6.62)

β 0.224 -0.173 -0.292 0.203 0.246 0.341
(4.02) (-0.46) (-1.10) (0.71) (3.82) (3.09)

βρ 0.414 0.525 0.574 0.601 0.650 0.630
(1.17) (1.31) (1.45) (1.41) (1.80) (1.71)

R
2 5.29% 0.61% 0.90% 0.74% 5.31% 4.62%

FTSE 100
α -1.193 -0.842 -0.858 -0.911 -1.030 -0.984

(-11.87) (-2.21) (-2.35) (-3.61) (-7.72) (-5.95)
β 0.081 0.305 0.314 0.556 0.139 0.288

(1.23) (1.23) (1.23) (1.57) (2.13) (2.15)
βρ -1.632 -2.025 -2.039 -1.662 -1.444 -1.170

(-2.60) (-3.07) (-3.06) (-2.48) (-2.34) (-1.79)
R

2 6.61% 6.84% 6.83% 7.15% 8.39% 8.23%
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Table B.13 (continued)

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

HANGSENG
α -0.479 0.665 1.758 -0.112 -0.237 -0.239

(-4.16) (1.55) (2.32) (-0.33) (-1.18) (-1.70)
β 0.258 2.167 3.332 2.487 0.335 0.630

(2.45) (3.27) (3.27) (1.75) (2.56) (3.85)
βρ 0.196 -0.053 0.020 0.491 -0.141 -0.818

(0.24) (-0.07) (0.03) (0.55) (-0.17) (-0.99)
R

2 6.55% 18.01% 16.79% 4.96% 6.89% 15.35%
KOSPI 200

α -0.524 0.873 1.782 -0.998 -0.520 -0.626
(-6.61) (0.63) (1.12) (-6.00) (-3.71) (-5.49)

β 0.406 1.725 2.417 -0.235 0.515 0.349
(5.16) (1.27) (1.67) (-0.65) (3.04) (2.75)

βρ 0.039 0.715 0.662 0.752 0.619 0.760
(0.06) (0.85) (0.81) (0.77) (0.83) (0.99)

R
2 16.87% 3.28% 4.66% 1.18% 10.99% 8.48%

NASDAQ 100
α -0.556 -1.059 -1.177 -0.601 -0.306 -0.438

(-7.74) (-5.78) (-6.84) (-2.63) (-3.24) (-5.09)
β 0.430 -0.124 -0.308 0.728 0.497 0.673

(6.42) (-0.59) (-1.43) (1.56) (6.73) (6.46)
βρ -0.486 -0.984 -0.761 -0.810 -0.465 -0.086

(-1.21) (-1.63) (-1.25) (-1.45) (-1.07) (-0.19)
R

2 19.87% 2.46% 3.40% 4.10% 17.56% 19.67%
RUSSELL 2000

α -0.837 -1.108 -1.125 -1.012 -0.269 -0.515
(-10.02) (-16.19) (-16.68) (-15.56) (-2.31) (-4.80)

β 0.186 -0.108 -0.132 0.030 0.571 0.587
(2.81) (-1.44) (-1.83) (0.28) (6.59) (5.22)

βρ -0.502 -0.399 -0.341 -0.587 -0.435 0.011
(-1.20) (-0.81) (-0.70) (-1.23) (-1.09) (0.03)

R
2 4.14% 1.81% 2.47% 0.79% 12.43% 9.03%

SP500
α -0.872 -1.081 -1.207 0.674 -0.440 -0.589

(-9.26) (-4.96) (-5.75) (1.10) (-2.94) (-5.21)
β 0.266 0.073 -0.016 2.605 0.459 0.608

(3.75) (0.50) (-0.11) (2.95) (5.11) (5.86)
βρ -1.723 -2.573 -2.360 -2.729 -1.517 -1.206

(-3.38) (-3.59) (-3.28) (-4.59) (-2.91) (-2.50)
R

2 12.58% 6.69% 6.60% 9.41% 14.70% 15.82%
Aggregated Results
Average α -0.767 -0.644 -0.446 -0.646 -0.555 -0.649
Average β 0.261 0.433 0.620 0.721 0.372 0.448
Average βρ -0.743 -0.991 -0.691 -0.871 -0.683 -0.519
Average R

2 10.88% 5.87% 7.81% 4.63% 10.68% 11.70%
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Table B.14 Information Content of Skewness Forecasts (60 days) - MI-
DAS with 200 lagged days

This table reports the results from Mincer-Zarnowitz regressions. I regress the realized skewness of each index
in Table 3.1 on the forecasts generated from each model in Table 3.3. The forecasting horizon is 60 calendar
days. The conditioning variable in the QMIDAS model is a function of the previous 200 daily returns. The
GARCH and QMIDAS models are estimated using the whole sample. In the regressions, I control for the the
empirical correlation (ρt) between daily index returns and the index variance risk premium over the prior 12
months in order to account for any bias in the realized skewness estimates. α and β respectively denote the
intercept and the coefficient of the forecast in the regression. In addition, βρ is the coefficient of ρt, R

2 is the
adjusted R2 coefficient while the numbers in parentheses denote t-statistics, estimated using Newey-West (1987)
heteroskedasticity and autocorrelation consistent standard errors. Significant coefficients at the 5% level are
highlighted in bold. The bottom panel of the table contains the average values of α, β and βρ across indices.

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

AEX
α -1.156 -0.817 -0.825 -1.094 -0.856 -0.886

(-9.54) (-1.55) (-1.60) (-5.01) (-5.61) (-8.69)
β 0.002 0.192 0.188 0.057 0.229 0.253

(0.02) (0.64) (0.64) (0.32) (2.14) (3.06)
βρ -2.669 -2.826 -2.828 -2.765 -2.422 -2.135

(-3.92) (-3.92) (-3.91) (-3.53) (-3.94) (-3.38)
R

2 19.70% 19.92% 19.92% 19.76% 22.01% 23.64%
DAX

α -1.057 -1.065 -1.061 -1.310 -1.132 -1.119
(-11.20) (-11.57) (-11.32) (-9.84) (-13.41) (-14.27)

β 0.107 0.080 0.083 -0.122 0.039 0.061
(1.79) (1.26) (1.28) (-1.17) (0.83) (1.03)

βρ -0.765 -1.155 -1.162 -1.267 -0.867 -0.829
(-1.61) (-1.98) (-1.98) (-1.95) (-1.74) (-1.64)

R
2 3.57% 3.39% 3.42% 3.34% 2.71% 2.91%

DJIA
α -0.789 -0.906 -0.678 -0.962 -0.826 -0.806

(-7.85) (-4.09) (-7.58) (-5.34) (-6.25) (-6.90)
β 0.309 0.113 0.420 0.262 0.293 0.357

(3.66) (1.09) (5.65) (1.03) (2.72) (2.94)
βρ -1.169 -1.962 0.560 -1.909 -1.414 -1.083

(-2.39) (-3.25) (0.97) (-3.28) (-2.47) (-2.10)
R

2 13.79% 6.15% 21.60% 6.08% 8.14% 11.80%
STOXX 50

α -1.078 -1.017 -1.086 -1.765 -1.030 -1.097
(-9.97) (-2.73) (-3.04) (-4.53) (-7.26) (-9.95)

β 0.113 0.115 0.084 -0.618 0.124 0.111
(1.62) (0.54) (0.37) (-1.41) (1.55) (1.21)

βρ -0.126 -0.210 -0.182 -0.282 -0.015 -0.040
(-0.18) (-0.28) (-0.24) (-0.38) (-0.02) (-0.05)

R
2 1.23% 0.10% -0.00% 0.83% 1.29% 0.74%

FTSE 100
α -1.319 -1.223 -1.304 -1.552 -1.140 -1.088

(-8.39) (-3.16) (-3.55) (-6.72) (-7.23) (-8.20)
β 0.049 0.075 0.042 -0.190 0.151 0.240

(0.56) (0.42) (0.22) (-0.79) (1.73) (2.52)
βρ -1.654 -1.799 -1.759 -1.203 -1.177 -1.161

(-2.12) (-2.39) (-2.33) (-1.28) (-1.60) (-1.72)
R

2 5.70% 5.57% 5.50% 5.99% 8.23% 10.03%
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Table B.14 (continued)

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

HANGSENG
α -0.533 0.649 1.774 -0.585 -0.515 -0.382

(-3.78) (0.98) (1.43) (-1.11) (-2.44) (-2.43)
β 0.207 1.577 2.457 0.386 0.147 0.462

(1.44) (1.96) (1.95) (0.22) (1.32) (2.69)
βρ -0.156 -0.330 -0.305 -0.038 -0.120 -0.477

(-0.25) (-0.72) (-0.65) (-0.06) (-0.18) (-0.85)
R

2 3.74% 16.71% 16.92% -0.28% 1.41% 8.04%
KOSPI 200

α -0.620 1.405 2.093 -0.764 -0.694 -0.686
(-8.37) (1.07) (1.34) (-7.72) (-9.33) (-7.99)

β 0.322 1.667 2.035 0.429 0.298 0.290
(2.99) (1.71) (1.87) (1.58) (2.50) (2.31)

βρ -0.870 -1.608 -1.688 -1.689 -1.020 -0.918
(-0.68) (-1.21) (-1.29) (-1.23) (-0.74) (-0.69)

R
2 8.10% 5.09% 6.20% 4.17% 4.64% 6.24%

NASDAQ 100
α -0.547 -1.330 -1.337 -0.891 -0.290 -0.438

(-5.49) (-5.62) (-6.15) (-4.25) (-2.79) (-4.24)
β 0.520 -0.186 -0.232 0.461 0.657 0.701

(7.42) (-1.01) (-1.16) (1.19) (9.00) (7.69)
βρ -0.316 -0.821 -0.744 -0.572 -0.024 0.313

(-0.68) (-1.16) (-1.04) (-0.70) (-0.06) (0.73)
R

2 28.79% 3.53% 3.93% 4.72% 28.76% 32.66%
RUSSELL 2000

α -0.978 -1.575 -1.568 -1.458 -0.579 -0.762
(-6.51) (-18.23) (-18.77) (-18.23) (-2.64) (-4.41)

β 0.225 -0.270 -0.270 -0.226 0.502 0.447
(2.20) (-3.95) (-4.01) (-3.58) (3.38) (3.28)

βρ -0.120 0.345 0.364 -0.026 0.258 0.327
(-0.26) (0.76) (0.80) (-0.05) (0.55) (0.76)

R
2 5.18% 11.85% 12.38% 7.43% 10.63% 9.24%

SP500
α -0.913 -1.555 -1.580 -1.432 -0.406 -0.654

(-7.83) (-5.07) (-5.55) (-12.14) (-2.56) (-5.34)
β 0.344 -0.084 -0.107 -0.074 0.633 0.584

(4.95) (-0.60) (-0.73) (-0.60) (6.53) (6.69)
βρ -1.570 -2.302 -2.237 -2.440 -1.098 -0.967

(-2.95) (-3.42) (-3.28) (-4.05) (-2.08) (-1.89)
R

2 21.61% 11.47% 11.57% 11.42% 25.89% 26.45%
Aggregated Results
Average α -0.899 -0.743 -0.557 -1.181 -0.747 -0.792
Average β 0.220 0.328 0.470 0.037 0.307 0.351
Average βρ -0.942 -1.267 -0.998 -1.219 -0.790 -0.697
Average R

2 11.14% 8.38% 10.14% 6.35% 11.37% 13.17%
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Table B.15 Information Content of Skewness Forecasts (90 days) - MI-
DAS with 200 lagged days

This table reports the results from Mincer-Zarnowitz regressions. I regress the realized skewness of each index
in Table 3.1 on the forecasts generated from each model in Table 3.3. The forecasting horizon is 90 calendar
days. The conditioning variable in the QMIDAS model is a function of the previous 200 daily returns. The
GARCH and QMIDAS models are estimated using the whole sample. In the regressions, I control for the the
empirical correlation (ρt) between daily index returns and the index variance risk premium over the prior 12
months in order to account for any bias in the realized skewness estimates. α and β respectively denote the
intercept and the coefficient of the forecast in the regression. In addition, βρ is the coefficient of ρt, R

2 is the
adjusted R2 coefficient while the numbers in parentheses denote t-statistics, estimated using Newey-West (1987)
heteroskedasticity and autocorrelation consistent standard errors. Significant coefficients at the 5% level are
highlighted in bold. The bottom panel of the table contains the average values of α, β and βρ across indices.

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

AEX
α -0.944 -1.240 -1.250 -1.254 -0.839 -0.836

(-8.06) (-2.50) (-2.54) (-6.05) (-5.94) (-8.90)
β 0.293 0.031 0.026 0.039 0.315 0.379

(3.48) (0.15) (0.13) (0.30) (3.34) (5.89)
βρ -1.060 -1.910 -1.904 -1.988 -1.562 -1.240

(-1.67) (-2.43) (-2.43) (-2.39) (-2.49) (-2.37)
R

2 18.90% 11.83% 11.82% 11.91% 18.21% 25.79%
DAX

α -1.146 -1.114 -1.094 -1.654 -1.129 -1.096
(-6.51) (-9.06) (-8.42) (-5.13) (-13.21) (-13.98)

β 0.131 0.104 0.112 -0.340 0.134 0.178
(0.99) (1.63) (1.70) (-1.11) (2.24) (2.91)

βρ -0.124 -0.520 -0.535 -0.674 -0.207 -0.177
(-0.31) (-1.01) (-1.03) (-1.08) (-0.46) (-0.41)

R
2 1.86% 2.50% 2.69% 1.89% 2.47% 4.74%

DJIA
α -0.885 -1.595 -0.846 -1.588 -0.840 -0.908

(-6.75) (-6.40) (-10.70) (-9.45) (-7.03) (-7.44)
β 0.310 -0.121 0.324 -0.421 0.365 0.329

(3.47) (-1.37) (4.62) (-2.28) (4.45) (3.92)
βρ -0.049 -0.081 0.970 0.278 -0.029 -0.114

(-0.14) (-0.17) (1.97) (0.63) (-0.07) (-0.31)
R

2 10.22% 1.47% 21.94% 5.04% 5.75% 7.39%
STOXX 50

α -1.024 -1.455 -1.469 -1.323 -1.033 -1.071
(-7.47) (-4.27) (-4.06) (-6.10) (-7.23) (-10.39)

β 0.249 -0.045 -0.057 0.040 0.200 0.227
(2.67) (-0.29) (-0.31) (0.16) (2.40) (2.49)

βρ 0.246 0.239 0.247 0.231 0.285 0.371
(0.41) (0.34) (0.35) (0.31) (0.42) (0.56)

R
2 6.31% 0.12% 0.14% 0.08% 4.48% 5.57%

FTSE 100
α -1.111 -1.988 -1.984 -1.913 -1.134 -1.149

(-7.24) (-4.72) (-4.74) (-8.98) (-7.97) (-8.81)
β 0.270 -0.172 -0.185 -0.498 0.246 0.256

(3.78) (-1.08) (-1.09) (-2.21) (3.37) (3.42)
βρ -0.423 -0.483 -0.465 0.623 0.061 -0.359

(-0.57) (-0.59) (-0.57) (0.64) (0.07) (-0.47)
R

2 8.24% 2.29% 2.33% 5.95% 9.10% 11.11%
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Table B.15 (continued)

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

HANGSENG
α -0.766 1.074 2.249 -1.798 -0.753 -0.682

(-4.94) (1.51) (1.91) (-2.84) (-3.91) (-6.51)
β 0.046 1.816 2.490 -2.116 0.035 0.106

(0.24) (2.60) (2.57) (-1.69) (0.38) (5.00)
βρ 1.777 1.357 1.364 1.199 1.768 1.093

(1.54) (2.08) (2.07) (1.44) (1.52) (1.32)
R

2 4.10% 30.95% 30.35% 14.78% 4.06% 19.66%
KOSPI 200

α -0.813 1.856 2.553 -0.210 -0.664 -0.567
(-6.22) (1.57) (1.86) (-0.64) (-5.21) (-4.11)

β -0.007 1.623 1.874 1.171 0.216 0.297
(-0.03) (2.27) (2.46) (2.10) (2.61) (3.23)

βρ -0.039 -0.526 -0.557 -0.590 0.178 0.604
(-0.03) (-0.51) (-0.56) (-0.52) (0.13) (0.47)

R
2 -0.19% 8.01% 9.28% 3.93% 1.66% 7.00%

NASDAQ 100
α -0.660 -1.648 -1.652 -0.402 -0.694 -0.781

(-5.09) (-6.79) (-7.25) (-1.21) (-4.35) (-5.83)
β 0.576 -0.137 -0.166 1.301 0.531 0.520

(8.27) (-0.97) (-1.08) (3.14) (7.05) (7.42)
βρ 0.668 0.802 0.828 1.177 0.774 0.861

(1.20) (1.07) (1.10) (1.70) (1.40) (1.57)
R

2 34.58% 1.91% 2.18% 12.47% 22.50% 28.96%
RUSSELL 2000

α -0.813 -1.896 -1.890 -1.794 -0.726 -0.817
(-5.02) (-17.17) (-16.93) (-21.44) (-3.82) (-5.03)

β 0.454 -0.301 -0.300 -0.328 0.507 0.475
(4.48) (-3.91) (-3.81) (-4.54) (4.47) (4.59)

βρ 0.465 0.995 0.986 1.063 0.515 0.727
(0.92) (1.79) (1.76) (1.82) (1.05) (1.57)

R
2 20.28% 17.48% 17.23% 17.88% 18.83% 19.95%

SP500
α -0.906 -2.178 -2.176 -1.828 -0.568 -0.750

(-6.28) (-6.30) (-6.37) (-9.48) (-3.27) (-5.91)
β 0.447 -0.214 -0.238 -0.245 0.655 0.580

(5.66) (-1.77) (-1.78) (-1.57) (6.36) (7.67)
βρ -0.959 -1.540 -1.505 -1.792 -0.911 -0.498

(-1.45) (-1.69) (-1.65) (-2.09) (-1.34) (-0.80)
R

2 25.55% 9.73% 9.80% 9.34% 27.64% 32.34%
Aggregated Results
Average α -0.907 -1.018 -0.756 -1.376 -0.838 -0.866
Average β 0.277 0.258 0.388 -0.140 0.320 0.335
Average βρ 0.050 -0.167 -0.057 -0.047 0.087 0.127
Average R

2 12.98% 8.63% 10.78% 8.33% 11.47% 16.25%
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Table B.16 Encompassing Regressions - MIDAS with 200 lagged days

This table reports the results from regressing the realized skewness on forecasts generated from
the LRS, GARCH-2, QMIDAS and CIS models, within the same regression, for each index in
Table 3.1. The conditioning variable in the QMIDAS model is a function of the previous 200
daily returns. The GARCH-2 and QMIDAS models are estimated using the whole sample. In
the regressions, I control for the the empirical correlation (ρt) between daily index returns and
the index variance risk premium over the prior 12 months in order to account for any bias in the
realized skewness estimates. α and βi respectively denote the intercept and the coefficient of the
forecast of model i in the regression. In addition, βρ is the coefficient of ρt, R

2 is the adjusted
R2 coefficient while the numbers in parentheses denote t-statistics, estimated using Newey-West
(1987) heteroskedasticity and autocorrelation consistent standard errors. Significant coefficients
at the 5% level are highlighted in bold. Panel A, B and C respectively present results for a
forecasting horizon of 30, 60 and 90 calendar days. (1) - (10) are the ten international indices of
order listed in Table 3.1.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: 30 days
α 0.109 -0.676 0.309 -1.253 0.097 1.252 1.802 -0.013 -0.502 1.601

(0.16) (-2.31) (1.09) (-2.72) (0.29) (1.96) (1.51) (-0.03) (-4.24) (2.82)
βρ -1.605 -1.378 0.790 0.456 -1.054 -0.627 -0.108 0.127 0.316 -0.965

(-3.29) (-2.94) (2.37) (1.14) (-1.55) (-0.80) (-0.18) (0.28) (0.71) (-1.65)
βLRS 0.154 0.220 0.191 0.173 0.069 0.041 0.331 0.280 0.084 0.182

(1.98) (3.78) (2.49) (2.92) (1.16) (0.38) (4.77) (3.87) (1.21) (2.62)
βGARCH−20.312 0.110 0.358 -0.326 0.350 2.290 2.226 0.063 -0.174 -0.199

(0.59) (1.17) (5.19) (-1.27) (1.35) (2.73) (2.01) (0.28) (-2.18) (-1.58)
βQMIDAS0.525 -0.069 0.725 -0.315 0.564 -0.091 -0.449 0.623 0.267 3.336

(1.17) (-0.23) (1.66) (-0.92) (1.48) (-0.11) (-1.54) (1.16) (2.39) (4.28)
βCIS 0.199 0.095 0.349 0.247 0.385 0.371 0.187 0.429 0.484 0.466

(1.85) (1.21) (3.87) (2.16) (3.09) (2.39) (1.86) (4.19) (4.27) (4.37)
R

2 12.42% 12.69% 29.92% 7.10% 11.47% 21.06% 21.60% 26.10% 11.42% 21.34%
Panel B: 60 days

α -0.388 -0.846 -0.491 -1.490 -0.468 1.713 4.837 -0.331 -1.210 -0.673
(-0.57) (-3.40) (-2.99) (-2.72) (-0.99) (1.45) (1.76) (-1.83) (-7.20) (-2.13)

βρ -2.503 -1.047 0.471 -0.336 -0.998 -0.408 -1.059 0.723 0.751 -0.717
(-3.59) (-1.99) (0.83) (-0.54) (-1.26) (-0.74) (-1.02) (1.63) (1.87) (-1.26)

βLRS -0.081 0.126 0.168 0.115 -0.012 0.010 0.245 0.256 -0.040 0.170
(-0.93) (1.83) (2.40) (1.54) (-0.12) (0.05) (2.54) (3.44) (-0.43) (2.77)

βGARCH−20.268 0.108 0.338 0.090 0.340 2.077 3.762 -0.112 -0.306 -0.084
(0.65) (1.23) (4.69) (0.41) (1.87) (1.90) (1.95) (-0.94) (-2.79) (-0.45)

βQMIDAS0.046 -0.025 0.054 -0.713 -0.170 0.694 -0.547 0.362 0.100 0.095
(0.24) (-0.19) (0.24) (-1.71) (-0.91) (0.44) (-1.33) (1.69) (1.06) (0.63)

βCIS 0.313 0.058 0.057 0.074 0.317 0.213 0.237 0.470 0.326 0.455
(3.33) (0.98) (0.74) (0.80) (2.72) (1.18) (2.21) (5.69) (2.99) (5.77)

R
2 24.73% 5.27% 23.96% 2.75% 11.93% 18.01% 16.06% 37.77% 16.29% 28.16%

Panel C: 90 days

α -0.135 -0.725 -1.029 -1.034 -0.836 2.100 3.899 0.389 -1.077 -0.674
(-0.34) (-2.01) (-6.06) (-1.53) (-2.13) (1.87) (2.47) (1.49) (-5.92) (-2.20)

βρ -1.530 -0.452 1.371 0.203 0.317 1.120 0.445 0.984 1.001 -0.354
(-2.95) (-0.97) (3.07) (0.38) (0.46) (1.99) (0.42) (2.52) (2.57) (-0.63)

βLRS 0.122 0.079 0.127 0.193 0.165 -0.134 -0.123 0.375 0.180 0.188
(1.35) (0.85) (1.78) (2.14) (1.75) (-1.01) (-0.93) (5.87) (2.11) (2.46)

βGARCH−20.188 0.140 0.283 -0.003 0.161 2.201 2.780 0.176 -0.101 -0.010
(1.04) (2.12) (4.88) (-0.01) (1.31) (2.76) (2.58) (2.11) (-1.07) (-0.07)

βQMIDAS0.093 -0.012 -0.349 -0.145 -0.300 0.441 -0.933 0.954 -0.072 0.009
(0.87) (-0.05) (-2.68) (-0.45) (-1.82) (0.73) (-1.12) (4.09) (-0.72) (0.06)

βCIS 0.358 0.182 -0.022 0.149 0.187 0.086 0.357 0.264 0.262 0.448
(4.14) (3.80) (-0.38) (1.78) (2.53) (3.18) (3.57) (4.54) (3.89) (7.11)

R
2 28.15% 8.96% 26.74% 8.31% 14.42% 36.97% 19.06% 44.16% 28.52% 34.15%
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Table B.19 Information Content of Skewness Forecasts (30 days) - MI-
DAS with 300 lagged days

This table reports the results from Mincer-Zarnowitz regressions. I regress the realized skewness of each index
in Table 3.1 on the forecasts generated from each model in Table 3.3. The forecasting horizon is 30 calendar
days. The conditioning variable in the QMIDAS model is a function of the previous 300 daily returns. The
GARCH and QMIDAS models are estimated using the whole sample. In the regressions, I control for the the
empirical correlation (ρt) between daily index returns and the index variance risk premium over the prior 12
months in order to account for any bias in the realized skewness estimates. α and β respectively denote the
intercept and the coefficient of the forecast in the regression. In addition, βρ is the coefficient of ρt, R

2 is the
adjusted R2 coefficient while the numbers in parentheses denote t-statistics, estimated using Newey-West (1987)
heteroskedasticity and autocorrelation consistent standard errors. Significant coefficients at the 5% level are
highlighted in bold. The bottom panel of the table contains the average values of α, β and βρ across indices.

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

AEX
α -0.932 -0.875 -0.851 -0.641 -0.836 -0.908

(-11.42) (-1.31) (-1.30) (-3.01) (-6.68) (-7.57)
β 0.165 0.201 0.222 0.496 0.224 0.218

(2.39) (0.36) (0.41) (2.25) (2.61) (2.01)
βρ -1.776 -2.072 -2.080 -1.872 -1.863 -1.599

(-4.00) (-4.13) (-4.14) (-3.73) (-4.08) (-3.12)
R

2 10.00% 7.65% 7.67% 9.62% 9.99% 10.05%
DAX

α -0.811 -0.998 -0.997 -1.198 -0.941 -0.951
(-11.68) (-11.10) (-10.81) (-7.30) (-10.55) (-11.29)

β 0.221 0.055 0.055 -0.205 0.072 0.107
(3.77) (0.70) (0.68) (-0.92) (1.23) (1.25)

βρ -1.196 -1.611 -1.610 -1.707 -1.407 -1.350
(-3.22) (-3.42) (-3.41) (-3.26) (-3.36) (-3.17)

R
2 9.86% 6.71% 6.70% 6.83% 7.05% 7.09%

DJIA
α -0.621 -0.716 -0.373 -0.785 -0.299 -0.467

(-8.32) (-4.22) (-4.72) (-2.68) (-2.97) (-5.26)
β 0.375 0.213 0.606 0.322 0.666 0.676

(5.30) (1.80) (8.01) (0.74) (7.33) (5.98)
βρ -0.760 -1.429 1.021 -1.060 -0.825 -0.359

(-2.22) (-3.09) (2.52) (-2.48) (-2.15) (-1.00)
R

2 17.06% 4.64% 22.10% 3.12% 13.53% 18.67%
STOXX 50

α -0.845 -1.296 -1.413 -0.634 -0.672 -0.768
(-11.24) (-2.89) (-4.71) (-1.93) (-5.86) (-6.62)

β 0.224 -0.173 -0.292 0.609 0.246 0.341
(4.02) (-0.46) (-1.10) (1.38) (3.82) (3.09)

βρ 0.414 0.525 0.574 0.720 0.650 0.630
(1.17) (1.31) (1.45) (1.74) (1.80) (1.71)

R
2 5.29% 0.61% 0.90% 1.50% 5.31% 4.62%

FTSE 100
α -1.193 -0.842 -0.858 -0.956 -1.030 -0.984

(-11.87) (-2.21) (-2.35) (-4.16) (-7.72) (-5.95)
β 0.081 0.305 0.314 0.508 0.139 0.288

(1.23) (1.23) (1.23) (1.54) (2.13) (2.15)
βρ -1.632 -2.025 -2.039 -1.687 -1.444 -1.170

(-2.60) (-3.07) (-3.06) (-2.53) (-2.34) (-1.79)
R

2 6.61% 6.84% 6.83% 7.03% 8.39% 8.23%
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Table B.19 (continued)

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

HANGSENG
α -0.479 0.665 1.758 -0.232 -0.237 -0.239

(-4.16) (1.55) (2.32) (-0.55) (-1.18) (-1.70)
β 0.258 2.167 3.332 1.434 0.335 0.630

(2.45) (3.27) (3.27) (0.92) (2.56) (3.85)
βρ 0.196 -0.053 0.020 0.289 -0.141 -0.818

(0.24) (-0.07) (0.03) (0.33) (-0.17) (-0.99)
R

2 6.55% 18.01% 16.79% 0.66% 6.89% 15.35%
KOSPI 200

α -0.524 0.873 1.782 -1.044 -0.520 -0.626
(-6.61) (0.63) (1.12) (-7.05) (-3.71) (-5.49)

β 0.406 1.725 2.417 -0.316 0.515 0.349
(5.16) (1.27) (1.67) (-1.13) (3.04) (2.75)

βρ 0.039 0.715 0.662 0.742 0.619 0.760
(0.06) (0.85) (0.81) (0.77) (0.83) (0.99)

R
2 16.87% 3.28% 4.66% 1.77% 10.99% 8.48%

NASDAQ 100
α -0.556 -1.059 -1.177 -0.653 -0.306 -0.438

(-7.74) (-5.78) (-6.84) (-3.04) (-3.24) (-5.09)
β 0.430 -0.124 -0.308 0.601 0.497 0.673

(6.42) (-0.59) (-1.43) (1.42) (6.73) (6.46)
βρ -0.486 -0.984 -0.761 -0.930 -0.465 -0.086

(-1.21) (-1.63) (-1.25) (-1.72) (-1.07) (-0.19)
R

2 19.87% 2.46% 3.40% 3.85% 17.56% 19.67%
RUSSELL 2000

α -0.837 -1.108 -1.125 -1.014 -0.269 -0.515
(-10.02) (-16.19) (-16.68) (-15.59) (-2.31) (-4.80)

β 0.186 -0.108 -0.132 0.027 0.571 0.587
(2.81) (-1.44) (-1.83) (0.25) (6.59) (5.22)

βρ -0.502 -0.399 -0.341 -0.587 -0.435 0.011
(-1.20) (-0.81) (-0.70) (-1.23) (-1.09) (0.03)

R
2 4.14% 1.81% 2.47% 0.79% 12.43% 9.03%

SP500
α -0.872 -1.081 -1.207 -0.352 -0.440 -0.589

(-9.26) (-4.96) (-5.75) (-1.28) (-2.94) (-5.21)
β 0.266 0.073 -0.016 1.230 0.459 0.608

(3.75) (0.50) (-0.11) (2.90) (5.11) (5.86)
βρ -1.723 -2.573 -2.360 -2.216 -1.517 -1.206

(-3.38) (-3.59) (-3.28) (-3.93) (-2.91) (-2.50)
R

2 12.58% 6.69% 6.60% 8.73% 14.70% 15.82%
Aggregated Results
Average α -0.767 -0.644 -0.446 -0.751 -0.555 -0.649
Average β 0.261 0.433 0.620 0.471 0.372 0.448
Average βρ -0.743 -0.991 -0.691 -0.831 -0.683 -0.519
Average R

2 10.88% 5.87% 7.81% 4.39% 10.68% 11.70%



226

Table B.20 Information Content of Skewness Forecasts (60 days) - MI-
DAS with 300 lagged days

This table reports the results from Mincer-Zarnowitz regressions. I regress the realized skewness of each index
in Table 3.1 on the forecasts generated from each model in Table 3.3. The forecasting horizon is 60 calendar
days. The conditioning variable in the QMIDAS model is a function of the previous 300 daily returns. The
GARCH and QMIDAS models are estimated using the whole sample. In the regressions, I control for the the
empirical correlation (ρt) between daily index returns and the index variance risk premium over the prior 12
months in order to account for any bias in the realized skewness estimates. α and β respectively denote the
intercept and the coefficient of the forecast in the regression. In addition, βρ is the coefficient of ρt, R

2 is the
adjusted R2 coefficient while the numbers in parentheses denote t-statistics, estimated using Newey-West (1987)
heteroskedasticity and autocorrelation consistent standard errors. Significant coefficients at the 5% level are
highlighted in bold. The bottom panel of the table contains the average values of α, β and βρ across indices.

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

AEX
α -1.156 -0.817 -0.825 -1.030 -0.856 -0.886

(-9.54) (-1.55) (-1.60) (-5.27) (-5.61) (-8.69)
β 0.002 0.192 0.188 0.109 0.229 0.253

(0.02) (0.64) (0.64) (0.68) (2.14) (3.06)
βρ -2.669 -2.826 -2.828 -2.866 -2.422 -2.135

(-3.92) (-3.92) (-3.91) (-3.83) (-3.94) (-3.38)
R

2 19.70% 19.92% 19.92% 20.02% 22.01% 23.64%
DAX

α -1.057 -1.065 -1.061 -1.342 -1.132 -1.119
(-11.20) (-11.57) (-11.32) (-8.24) (-13.41) (-14.27)

β 0.107 0.080 0.083 -0.162 0.039 0.061
(1.79) (1.26) (1.28) (-1.14) (0.83) (1.03)

βρ -0.765 -1.155 -1.162 -1.251 -0.867 -0.829
(-1.61) (-1.98) (-1.98) (-1.94) (-1.74) (-1.64)

R
2 3.57% 3.39% 3.42% 3.29% 2.71% 2.91%

DJIA
α -0.789 -0.906 -0.678 -0.951 -0.826 -0.806

(-7.85) (-4.09) (-7.58) (-6.33) (-6.25) (-6.90)
β 0.309 0.113 0.420 0.250 0.293 0.357

(3.66) (1.09) (5.65) (1.28) (2.72) (2.94)
βρ -1.169 -1.962 0.560 -2.058 -1.414 -1.083

(-2.39) (-3.25) (0.97) (-3.16) (-2.47) (-2.10)
R

2 13.79% 6.15% 21.60% 6.72% 8.14% 11.80%
STOXX 50

α -1.078 -1.017 -1.086 -1.715 -1.030 -1.097
(-9.97) (-2.73) (-3.04) (-6.49) (-7.26) (-9.95)

β 0.113 0.115 0.084 -0.545 0.124 0.111
(1.62) (0.54) (0.37) (-1.97) (1.55) (1.21)

βρ -0.126 -0.210 -0.182 -0.028 -0.015 -0.040
(-0.18) (-0.28) (-0.24) (-0.04) (-0.02) (-0.05)

R
2 1.23% 0.10% -0.00% 0.68% 1.29% 0.74%

FTSE 100
α -1.319 -1.223 -1.304 -1.332 -1.140 -1.088

(-8.39) (-3.16) (-3.55) (-8.77) (-7.23) (-8.20)
β 0.049 0.075 0.042 0.071 0.151 0.240

(0.56) (0.42) (0.22) (0.49) (1.73) (2.52)
βρ -1.654 -1.799 -1.759 -1.840 -1.177 -1.161

(-2.12) (-2.39) (-2.33) (-2.17) (-1.60) (-1.72)
R

2 5.70% 5.57% 5.50% 5.62% 8.23% 10.03%
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Table B.20 (continued)

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

HANGSENG
α -0.533 0.649 1.774 -1.009 -0.515 -0.382

(-3.78) (0.98) (1.43) (-4.88) (-2.44) (-2.43)
β 0.207 1.577 2.457 -0.807 0.147 0.462

(1.44) (1.96) (1.95) (-1.23) (1.32) (2.69)
βρ -0.156 -0.330 -0.305 0.170 -0.120 -0.477

(-0.25) (-0.72) (-0.65) (0.27) (-0.18) (-0.85)
R

2 3.74% 16.71% 16.92% 1.58% 1.41% 8.04%
KOSPI 200

α -0.620 1.405 2.093 -0.842 -0.694 -0.686
(-8.37) (1.07) (1.34) (-8.82) (-9.33) (-7.99)

β 0.322 1.667 2.035 0.140 0.298 0.290
(2.99) (1.71) (1.87) (0.87) (2.50) (2.31)

βρ -0.870 -1.608 -1.688 -1.227 -1.020 -0.918
(-0.68) (-1.21) (-1.29) (-0.85) (-0.74) (-0.69)

R
2 8.10% 5.09% 6.20% 1.85% 4.64% 6.24%

NASDAQ 100
α -0.547 -1.330 -1.337 -0.938 -0.290 -0.438

(-5.49) (-5.62) (-6.15) (-7.17) (-2.79) (-4.24)
β 0.520 -0.186 -0.232 0.306 0.657 0.701

(7.42) (-1.01) (-1.16) (2.01) (9.00) (7.69)
βρ -0.316 -0.821 -0.744 -0.664 -0.024 0.313

(-0.68) (-1.16) (-1.04) (-0.92) (-0.06) (0.73)
R

2 28.79% 3.53% 3.93% 5.39% 28.76% 32.66%
RUSSELL 2000

α -0.978 -1.575 -1.568 -1.462 -0.579 -0.762
(-6.51) (-18.23) (-18.77) (-19.03) (-2.64) (-4.41)

β 0.225 -0.270 -0.270 -0.238 0.502 0.447
(2.20) (-3.95) (-4.01) (-3.91) (3.38) (3.28)

βρ -0.120 0.345 0.364 -0.072 0.258 0.327
(-0.26) (0.76) (0.80) (-0.15) (0.55) (0.76)

R
2 5.18% 11.85% 12.38% 10.02% 10.63% 9.24%

SP500
α -0.913 -1.555 -1.580 -1.432 -0.406 -0.654

(-7.83) (-5.07) (-5.55) (-12.46) (-2.56) (-5.34)
β 0.344 -0.084 -0.107 -0.058 0.633 0.584

(4.95) (-0.60) (-0.73) (-0.50) (6.53) (6.69)
βρ -1.570 -2.302 -2.237 -2.444 -1.098 -0.967

(-2.95) (-3.42) (-3.28) (-4.01) (-2.08) (-1.89)
R

2 21.61% 11.47% 11.57% 11.42% 25.89% 26.45%
Aggregated Results
Average α -0.899 -0.743 -0.557 -1.205 -0.747 -0.792
Average β 0.220 0.328 0.470 -0.093 0.307 0.351
Average βρ -0.942 -1.267 -0.998 -1.228 -0.790 -0.697
Average R

2 11.14% 8.38% 10.14% 6.66% 11.37% 13.17%
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Table B.21 Information Content of Skewness Forecasts (90 days) - MI-
DAS with 300 lagged days

This table reports the results from Mincer-Zarnowitz regressions. I regress the realized skewness of each index
in Table 3.1 on the forecasts generated from each model in Table 3.3. The forecasting horizon is 90 calendar
days. The conditioning variable in the QMIDAS model is a function of the previous 300 daily returns. The
GARCH and QMIDAS models are estimated using the whole sample. In the regressions, I control for the the
empirical correlation (ρt) between daily index returns and the index variance risk premium over the prior 12
months in order to account for any bias in the realized skewness estimates. α and β respectively denote the
intercept and the coefficient of the forecast in the regression. In addition, βρ is the coefficient of ρt, R

2 is the
adjusted R2 coefficient while the numbers in parentheses denote t-statistics, estimated using Newey-West (1987)
heteroskedasticity and autocorrelation consistent standard errors. Significant coefficients at the 5% level are
highlighted in bold. The bottom panel of the table contains the average values of α, β and βρ across indices.

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

AEX
α -0.944 -1.240 -1.250 -1.263 -0.839 -0.836

(-8.06) (-2.50) (-2.54) (-9.06) (-5.94) (-8.90)
β 0.293 0.031 0.026 0.033 0.315 0.379

(3.48) (0.15) (0.13) (0.44) (3.34) (5.89)
βρ -1.060 -1.910 -1.904 -1.976 -1.562 -1.240

(-1.67) (-2.43) (-2.43) (-2.54) (-2.49) (-2.37)
R

2 18.90% 11.83% 11.82% 11.98% 18.21% 25.79%
DAX

α -1.146 -1.114 -1.094 -1.442 -1.129 -1.096
(-6.51) (-9.06) (-8.42) (-8.84) (-13.21) (-13.98)

β 0.131 0.104 0.112 -0.139 0.134 0.178
(0.99) (1.63) (1.70) (-0.88) (2.24) (2.91)

βρ -0.124 -0.520 -0.535 -0.450 -0.207 -0.177
(-0.31) (-1.01) (-1.03) (-0.84) (-0.46) (-0.41)

R
2 1.86% 2.50% 2.69% 0.99% 2.47% 4.74%

DJIA
α -0.885 -1.595 -0.846 -1.609 -0.840 -0.908

(-6.75) (-6.40) (-10.70) (-9.43) (-7.03) (-7.44)
β 0.310 -0.121 0.324 -0.452 0.365 0.329

(3.47) (-1.37) (4.62) (-2.39) (4.45) (3.92)
βρ -0.049 -0.081 0.970 0.301 -0.029 -0.114

(-0.14) (-0.17) (1.97) (0.68) (-0.07) (-0.31)
R

2 10.22% 1.47% 21.94% 5.32% 5.75% 7.39%
STOXX 50

α -1.024 -1.455 -1.469 -1.283 -1.033 -1.071
(-7.47) (-4.27) (-4.06) (-4.65) (-7.23) (-10.39)

β 0.249 -0.045 -0.057 0.088 0.200 0.227
(2.67) (-0.29) (-0.31) (0.27) (2.40) (2.49)

βρ 0.246 0.239 0.247 0.263 0.285 0.371
(0.41) (0.34) (0.35) (0.36) (0.42) (0.56)

R
2 6.31% 0.12% 0.14% 0.14% 4.48% 5.57%

FTSE 100
α -1.111 -1.988 -1.984 -1.854 -1.134 -1.149

(-7.24) (-4.72) (-4.74) (-9.48) (-7.97) (-8.81)
β 0.270 -0.172 -0.185 -0.455 0.246 0.256

(3.78) (-1.08) (-1.09) (-2.16) (3.37) (3.42)
βρ -0.423 -0.483 -0.465 0.407 0.061 -0.359

(-0.57) (-0.59) (-0.57) (0.41) (0.07) (-0.47)
R

2 8.24% 2.29% 2.33% 5.21% 9.10% 11.11%
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Table B.21 (continued)

LRS GARCH-1 GARCH-2 QMIDAS IS CIS

HANGSENG
α -0.766 1.074 2.249 -1.712 -0.753 -0.682

(-4.94) (1.51) (1.91) (-3.28) (-3.91) (-6.51)
β 0.046 1.816 2.490 -1.684 0.035 0.106

(0.24) (2.60) (2.57) (-1.88) (0.38) (5.00)
βρ 1.777 1.357 1.364 1.155 1.768 1.093

(1.54) (2.08) (2.07) (1.44) (1.52) (1.32)
R

2 4.10% 30.95% 30.35% 18.91% 4.06% 19.66%
KOSPI 200

α -0.813 1.856 2.553 -0.697 -0.664 -0.567
(-6.22) (1.57) (1.86) (-5.79) (-5.21) (-4.11)

β -0.007 1.623 1.874 0.277 0.216 0.297
(-0.03) (2.27) (2.46) (2.24) (2.61) (3.23)

βρ -0.039 -0.526 -0.557 -0.426 0.178 0.604
(-0.03) (-0.51) (-0.56) (-0.39) (0.13) (0.47)

R
2 -0.19% 8.01% 9.28% 6.23% 1.66% 7.00%

NASDAQ 100
α -0.660 -1.648 -1.652 -1.432 -0.694 -0.781

(-5.09) (-6.79) (-7.25) (-5.11) (-4.35) (-5.83)
β 0.576 -0.137 -0.166 0.011 0.531 0.520

(8.27) (-0.97) (-1.08) (0.04) (7.05) (7.42)
βρ 0.668 0.802 0.828 0.758 0.774 0.861

(1.20) (1.07) (1.10) (1.01) (1.40) (1.57)
R

2 34.58% 1.91% 2.18% 1.19% 22.50% 28.96%
RUSSELL 2000

α -0.813 -1.896 -1.890 -1.776 -0.726 -0.817
(-5.02) (-17.17) (-16.93) (-21.57) (-3.82) (-5.03)

β 0.454 -0.301 -0.300 -0.320 0.507 0.475
(4.48) (-3.91) (-3.81) (-4.41) (4.47) (4.59)

βρ 0.465 0.995 0.986 0.992 0.515 0.727
(0.92) (1.79) (1.76) (1.71) (1.05) (1.57)

R
2 20.28% 17.48% 17.23% 17.05% 18.83% 19.95%

SP500
α -0.906 -2.178 -2.176 -1.851 -0.568 -0.750

(-6.28) (-6.30) (-6.37) (-9.97) (-3.27) (-5.91)
β 0.447 -0.214 -0.238 -0.233 0.655 0.580

(5.66) (-1.77) (-1.78) (-1.70) (6.36) (7.67)
βρ -0.959 -1.540 -1.505 -1.705 -0.911 -0.498

(-1.45) (-1.69) (-1.65) (-1.97) (-1.34) (-0.80)
R

2 25.55% 9.73% 9.80% 9.36% 27.64% 32.34%
Aggregated Results
Average α -0.907 -1.018 -0.756 -1.492 -0.838 -0.866
Average β 0.277 0.258 0.388 -0.288 0.320 0.335
Average βρ 0.050 -0.167 -0.057 -0.068 0.087 0.127
Average R

2 12.98% 8.63% 10.78% 7.64% 11.47% 16.25%
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Table B.22 Encompassing Regressions - MIDAS with 300 lagged days

This table reports the results from regressing the realized skewness on forecasts generated from the LRS, GARCH-
2, QMIDAS and CIS models, within the same regression, for each index in Table 3.1. The conditioning variable
in the QMIDAS model is a function of the previous 300 daily returns. The GARCH-2 and QMIDAS models are
estimated using the whole sample. In the regressions, I control for the the empirical correlation (ρt) between
daily index returns and the index variance risk premium over the prior 12 months in order to account for any
bias in the realized skewness estimates. α and βi respectively denote the intercept and the coefficient of the
forecast of model i in the regression. In addition, βρ is the coefficient of ρt, R

2 is the adjusted R2 coefficient
while the numbers in parentheses denote t-statistics, estimated using Newey-West (1987) heteroskedasticity and
autocorrelation consistent standard errors. Significant coefficients at the 5% level are highlighted in bold. Panel
A, B and C respectively present results for a forecasting horizon of 30, 60 and 90 calendar days. (1) - (10) are
the ten international indices of order listed in Table 3.1.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: 30 days
α 0.099 -0.669 -0.004 -0.556 0.056 1.102 2.340 -0.068 -0.504 0.561

(0.16) (-3.06) (-0.02) (-0.87) (0.17) (1.73) (1.85) (-0.20) (-4.28) (1.74)
βρ -1.365 -1.382 0.745 0.596 -1.099 -0.561 -0.122 0.077 0.319 -0.453

(-2.71) (-2.99) (2.22) (1.56) (-1.61) (-0.72) (-0.21) (0.17) (0.72) (-0.79)
βLRS 0.161 0.219 0.188 0.167 0.069 0.043 0.317 0.284 0.084 0.195

(2.07) (3.79) (2.47) (2.87) (1.14) (0.40) (4.40) (3.95) (1.21) (2.74)
βGARCH−20.268 0.113 0.361 0.020 0.364 2.397 2.782 0.026 -0.174 -0.098

(0.52) (1.41) (5.12) (0.07) (1.40) (2.46) (2.32) (0.13) (-2.17) (-0.79)
βQMIDAS0.561 -0.062 0.240 0.149 0.498 -0.866 -0.548 0.536 0.268 1.723

(2.56) (-0.29) (0.73) (0.26) (1.41) (-0.85) (-2.37) (1.27) (2.39) (4.52)
βCIS 0.184 0.095 0.348 0.227 0.383 0.369 0.183 0.428 0.485 0.489

(1.73) (1.21) (3.81) (1.89) (3.06) (2.31) (1.83) (4.17) (4.27) (4.61)
R

2 14.27% 12.69% 29.58% 6.88% 11.32% 21.32% 22.79% 26.24% 11.38% 21.33%
Panel B: 60 days

α -0.566 -0.835 -0.467 -1.187 -0.297 1.455 4.509 -0.378 -1.189 -0.697
(-0.75) (-3.43) (-3.21) (-2.61) (-0.63) (1.37) (2.23) (-2.34) (-7.03) (-2.18)

βρ -2.512 -1.037 0.358 -0.189 -1.494 -0.361 -1.565 0.876 0.606 -0.726
(-3.74) (-2.00) (0.60) (-0.32) (-2.11) (-0.66) (-1.55) (2.15) (1.46) (-1.24)

βLRS -0.079 0.126 0.170 0.123 -0.004 0.015 0.226 0.291 -0.056 0.172
(-0.92) (1.84) (2.43) (1.68) (-0.04) (0.08) (2.29) (4.04) (-0.62) (2.82)

βGARCH−20.121 0.113 0.334 0.287 0.336 2.110 3.532 -0.190 -0.159 -0.095
(0.24) (1.45) (4.75) (1.27) (1.72) (1.87) (2.49) (-1.54) (-1.29) (-0.50)

βQMIDAS0.115 -0.023 0.091 -0.700 0.030 -0.224 -0.307 0.366 -0.077 0.118
(0.50) (-0.15) (0.58) (-2.06) (0.23) (-0.49) (-1.58) (3.80) (-0.69) (0.80)

βCIS 0.311 0.058 0.053 0.068 0.316 0.169 0.193 0.433 0.351 0.440
(3.40) (0.98) (0.69) (0.74) (2.59) (1.28) (1.89) (5.39) (3.21) (5.52)

R
2 24.81% 5.27% 24.09% 2.91% 11.53% 17.92% 16.30% 40.02% 16.27% 27.18%

Panel C: 90 days

α -0.104 -0.327 -1.047 -0.873 -0.772 1.858 5.259 -0.559 -1.069 -0.674
(-0.27) (-1.18) (-6.05) (-0.92) (-2.01) (1.68) (2.05) (-3.26) (-5.94) (-2.12)

βρ -1.490 -0.359 1.385 0.241 0.210 1.074 0.258 0.738 0.983 -0.389
(-2.94) (-0.89) (3.11) (0.45) (0.31) (1.88) (0.25) (1.74) (2.54) (-0.69)

βLRS 0.118 0.073 0.125 0.191 0.165 -0.140 -0.130 0.407 0.185 0.184
(1.31) (0.77) (1.75) (2.13) (1.76) (-1.06) (-1.02) (6.22) (2.17) (2.38)

βGARCH−20.225 0.234 0.283 0.050 0.171 2.109 3.329 -0.001 -0.113 0.008
(1.49) (2.86) (4.88) (0.17) (1.37) (2.61) (2.25) (-0.01) (-1.24) (0.05)

βQMIDAS0.056 0.231 -0.372 -0.071 -0.285 0.155 -0.268 -0.034 -0.055 -0.010
(1.01) (1.45) (-2.78) (-0.14) (-1.86) (0.35) (-1.20) (-0.19) (-0.57) (-0.06)

βCIS 0.361 0.181 -0.022 0.149 0.194 0.085 0.370 0.283 0.262 0.439
(4.17) (3.84) (-0.39) (1.79) (2.60) (3.12) (3.63) (4.93) (3.91) (6.95)

R
2 28.22% 9.55% 26.88% 8.22% 14.30% 36.78% 19.23% 39.78% 28.45% 32.87%
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Table B.29 Out-of-sample performance of skewness-based portfolios -
Alternative Asset Universe

This table presents the out-of-sample performance of the equally-weighted portfolio (1/N)
and of the parametric portfolios that use the skewness forecasts from each model considered
in the paper. The portfolios include as assets all indices from Table 3.34, except from
HANGSENG and KOSPI 200. The table reports the annualised out-of-sample average
daily return (MEAN), variance of daily returns (VAR) and Sharpe ratio (SR) for each
portfolio strategy as well as the average daily turnover (TRN). It also reports p-values
from testing the hypothesis that the variances between a portfolio strategy and 1/N are
equal. The p-values are computed using the block-bootstrap approach of Ledoit and
Wolf (2011), assuming an average block size of 5 and 5,000 replications. Panel A and B
respectively present results for the periods 01/2011-12/2015 and 03/2008-12/2015.

MEAN VAR p-value SR TRN

Panel A: 01/2011-12/2015
LRS 0.0623 0.0173 0.26 0.4747 0.1800
GARCH-1 0.0650 0.0178 0.49 0.4866 0.1080
GARCH-2 0.0859 0.0175 0.06 0.6498 0.0886
QMIDAS 0.0821 0.0180 0.96 0.6119 0.0713
IS 0.0999 0.0177 0.55 0.7500 0.2405
CIS 0.1086 0.0162 0.01 0.8525 0.3556
1/N 0.0831 0.0180 1.00 0.6191 0.0039

Panel B: 03/2008-12/2015
LRS 0.0970 0.0269 0.02 0.5913 0.1678
IS 0.1098 0.0281 0.52 0.6550 0.1850
CIS 0.1429 0.0264 0.00 0.8796 0.3291
1/N 0.1110 0.0284 1.00 0.6592 0.0042
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