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Significance

 For many countries, large-scale 
tree planting is a crucial 
component of their 
decarbonization plans. This paper 
positions those decisions in the 
context of the substantial 
uncertainties surrounding both 
future climatic and economic 
conditions. Using the United 
Kingdom as an example, this 
paper finds the following: 1) 
Nations can expose themselves to 
substantial cost risk by pursuing 
planting strategies that ignore 
uncertainty. 2) Planting strategies 
that use portfolio approaches to 
diversify risk can substantially 
reduce exposure to downside cost 
extremes. 3) Portfolio approaches 
can mitigate some risk exposure, 
but significant cost risks still exist. 
4) Despite this persistent risk 
profile, when compared to 
projected costs for alternative 
technologies, tree planting 
emerges as a highly cost-effective 
option for carbon dioxide removal.

Author contributions: F.H.T.C., C.F.L., A.L., and B.H.D. 
designed research; F.H.T.C. and B.H.D. performed 
research; F.H.T.C., C.F.L., and B.H.D. contributed new 
reagents/analytic tools; F.H.T.C., P.A., M.C.M., and C.R. 
analyzed data; and F.H.T.C., I.J.B., A.L., M.C.M., and B.H.D. 
wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2025 the Author(s). Published by PNAS. 
This open access article is distributed under Creative 
Commons Attribution License 4.0 (CC BY).

Although PNAS asks authors to adhere to United Nations 
naming conventions for maps (https://www.un.org/
geospatial/mapsgeo), our policy is to publish maps as 
provided by the authors.
1To whom correspondence may be addressed. Email: 
f.cho@exeter.ac.uk.

This article contains supporting information online at 
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.​
2320961122/-/DCSupplemental.

Published March 3, 2025.

ENVIRONMENTAL SCIENCES
SUSTAINABILITY SCIENCE

Resilient tree-planting strategies for carbon dioxide removal 
under compounding climate and economic uncertainties
Frankie H. T. Choa,b,c,1 , Paolo Aglonuccid, Ian J. Batemana , Christopher F. Leea , Andrew Lovette , Mattia C. Mancinia , Chrysanthi Raptid,  
and Brett H. Daya

Affiliations are included on p. 10.

Edited by Zhiyun Ouyang, Chinese Academy of Sciences, Beijing, China; received November 28, 2023; accepted January 13, 2025

To meet decarbonization targets, nations around the globe have made ambitious 
commitments to expand forested land. Operationalizing these commitments requires 
choosing a planting strategy: How many trees should be planted, of which species, 
and where? Given those choices must be made now but have long-term consequences, 
such decisions are plagued by uncertainty. For example, species that are well suited to 
present conditions may perform poorly under future climates, yet those future climates 
are themselves highly uncertain. Using the exemplar of the United Kingdom, a nation 
committed to achieving net zero emissions by midcentury, we quantify key uncertainties 
pertaining to coevolving climate and economic conditions and examine how modern 
methods of decision-making under uncertainty can advise on planting choices. Our 
analysis reveals that the best planting strategy assuming a “high-emissions” future is 
radically different to that for a future that remains on a “near-historic” path. Planting 
for the former while experiencing the latter results in substantial net costs to UK society. 
Assimilating uncertainty into decision-making identifies planting strategies that diversify 
risk and significantly reduce the probability of high-cost outcomes. Importantly, our 
research reveals that the scope for mitigating risk through choice of planting strategy is 
relatively limited. Despite this persistent risk, we find that tree planting remains a highly 
cost-effective carbon removal solution when compared to alternative technologies, even 
when those alternatives are assumed to be riskless.

climate risks | tree planting | carbon dioxide removal | uncertainty | portfolio optimization

 To honor commitments made under the Paris Agreement and in support of initiatives 
such as the Bonn Challenge, nations across the world are developing plans to plant trees 
as a means of removing atmospheric greenhouse gases. The scale of promised planting is 
substantial. The European Commission has pledged to plant 3 billion trees across member 
states by 2030 ( 1 ) by which time the United States will plant a further one billion trees 
( 2 ), with Australia planning to match the US commitment by 2050 ( 3 ) while China is 
expected to plant some 35 million ha of new forest by that date ( 4 ). The magnitude of 
such efforts was underscored by the IUCN Restoration Barometer 2022 that reported 
that 14 million hectares of land are under restoration efforts globally and have already 
sequestered 145 million tonnes of carbon dioxide ( 5 ). In the United Kingdom, the gov-
ernment has pledged to plant 30,000 ha of trees annually by 2025 and maintain this rate 
until 2050, a historic elevation in the rates of afforestation ( 6 ) unseen since the 1970s 
( 7   – 9 ). When executed in concert with decarbonization efforts across other emissions 
sectors, tree planting on this scale has the potential to play a central role in efforts to curb 
climate change ( 10 ,  11 ).

 To move from policy pledges to growing trees, however, demands that a number of 
urgent decisions be made concerning how many trees to plant, of what species, and where, 
decisions that create trade-offs across carbon, agricultural, and timber production out-
comes. The use of the Natural Capital approach for decision-making has been increasingly 
advocated in the academic and policymaking circles to resolve these trade-offs ( 12 ,  13 ). 
In essence, it imagines natural resources like trees as assets that provide services to mankind 
that can be captured and compared in monetary terms against the streams of income that 
could be generated by alternative uses of land, such as agricultural production. Applying 
the framework for net zero afforestation decisions thus means policymakers select the 
configuration of tree planting that delivers the best net benefits for society in the long run.

 Unfortunately, those pressing choices must be made under conditions of significant 
uncertainty. As we show in this paper, the degree to which a program of afforestation and 
reforestation delivers carbon dioxide removal (CDR) services and how cost-effective those 
services are compared to other CDR technologies ( 14 ) depends critically on uncertain 
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future environmental and economic conditions. Whether a par-
ticular tree species thrives or struggles when planted in a given 
location and the level of CDR services it can deliver depends on 
uncertain future environmental conditions ( 15 ). Similarly, the 
value society ascribes to those CDR services, the so-called Social 
Cost of Carbon (SCC), depends on uncertain future conditions 
( 16 ,  17 ). In a high-emissions future, CDR services are highly 
valuable, but along a low-emissions trajectory, the benefits to soci-
ety of drawing down atmospheric carbon are appreciably lower 
( 17 ). Likewise, the financial costs of planting trees in a location 
are determined by the difference in the value of the marketed 
products generated by the forest (often principally timber) ( 18 ) 
and the products that could have been generated by that land in 
its alternative use (typically agriculture) ( 19   – 21 ). Again, the path 
those values will follow over time is highly uncertain being deter-
mined by yields and prices that reflect uncertain future environ-
mental and economic conditions. In this paper, we consider how 
decision-makers should respond to this pervasive uncertainty and 
examine whether the risks associated with afforestation challenge 
the assumption that tree planting represents the most cost-effective 
CDR technology.

 A tool commonly used by decision-makers to engage with 
uncertainty is scenario analysis. Scenario analysis involves the 
development of a set of logically consistent stories each describing 
a plausible future, and the assessment of how different policy deci-
sions might play out under those particular futures ( 22 ). The latter 
information is usually derived with the help of models that relate 
land-use change to economic and environmental outcomes under 
each alternative assumption of future conditions (e.g. refs.  19 ,  23 , 
and  24 ). Scenario analysis, however, has certain limitations. For 
one, those scenarios selected for analysis only represent some subset 
of possible futures. Decisions founded on that limited information 
space may prove wholly unsuitable under other possible future 
conditions. Likewise, as our research demonstrates, the best plant-
ing strategy under one scenario may prove to be among the worst 
under another. Scenario analysis fails to provide a coherent struc-
ture through which policymakers can resolve the inherent uncer-
tainties that confront planting decisions.

 In this paper, we pursue an alternative approach, reframing the 
problem as a portfolio investment decision and drawing on 
state-of-the-art, risk-averse optimization methods to identify 
planting strategies which are optimal given the range of potential 
futures. The portfolio analysis framework was initially developed 
for financial decision-making particularly for choosing the com-
position of investments in different risky assets like stocks, bonds, 
and commodities ( 25 ). Unlike scenario analysis, portfolio analysis 
examines the full range of predicted future conditions, specifying 
their joint statistical distribution. That information is then used 
to choose a portfolio of investments that strikes an efficient balance 
between risk and reward.

 The portfolio approach has been shown to be broadly applicable 
to land use change problems like the forest planting problem we 
explore in this study. In this context, uncertainty about future 
climates and economic conditions complicates decisions on allo-
cating land among different activities like conservation, forestry, 
and agriculture ( 26       – 30 ). While previous studies have examined 
the risks posed by either climate or economic variables in isolation, 
these risks are inherently interdependent and correlated. Their 
joint resolution ultimately shapes the outcome of land use deci-
sions. Accordingly, this study examines the coevolution of eco-
nomic risks and climate uncertainties and leverages the portfolio 
approach to identify forest planting strategies that take both 
sources of uncertainty into consideration. The planting strategy 
recommended by a portfolio analysis will tend to be one whose 

distribution of future returns does well on average while also lim-
iting exposure to the possibility of very bad outcomes. Selecting 
such a planting strategy often involves seeking out what are termed 
“hedging” opportunities. Here, for example, trees of one species 
are planted in a given location because they tend to give good 
returns under future conditions in which trees planted in another 
location give poor returns, and vice versa. The planting strategy 
is a portfolio in the sense that it includes planting of both these 
varieties and thereby limits exposure to downside risk, the possi-
bility of returns falling below a certain threshold. While previous 
studies have applied similar portfolio analysis frameworks to land 
use decision in order to reduce exposure to downside risks from 
climate change ( 31 ), this is one of the earliest times this framework 
been applied to analyze downside risks arising from coevolving 
climate and economic uncertainty.

 This framework of analysis is globally applicable; however, we 
illustrate its use through a case study focused on UK tree planting 
in support of commitments to achieve Net Zero by 2050. Here, 
we characterize decision-makers’ uncertainty using the best current 
understanding of the joint distribution of future climatic and 
economic conditions and find that the natural capital value of tree 
planting (in monetary terms) varies significantly across the range 
of those conditions. Our findings reveal that planting strategies 
derived from portfolio optimization differ markedly from those 
designed to perform best under a single assumed future, as in 
traditional scenario analysis. Additionally, we explore the hedging 
possibilities afforded to policymakers through the strategic selec-
tion of different tree-species and planting locations. Finally, we 
compare the costs of meeting decarbonization targets from an 
optimal portfolio of tree planting to those of alternative CDR 
technologies based on bioenergy and direct air capture methods. 
Even when we adopt the extreme assumption that this alternative 
technology can deliver carbon capture without the risk of high 
costs to UK society, we find that it is outperformed by tree plant-
ing in all but extreme cases of highly risk-averse decision-makers 
or unrealistically low assumptions regarding the cost of the alter-
native technology. 

Results

 Using a spatially explicit integrated environment-economy model 
of the United Kingdom ( 24 ), we estimated the net present value 
(NPV) of different tree-planting strategies over a planning horizon 
(2020 to 2050, discounted at 3.5% per annum) under 4,000 
 internally consistent realizations of future climate and economic 
variables—each referred to as a climate –economy realization  (CER). 
Our NPV calculations capture three decision-critical components 
of the planting decision: the monetary value of the CDR services 
from planted trees; revenues from timber harvesting; and the costs 
of foregone agricultural profits from land on which trees are 
planted. The generation of CERs from an integrated model is crit-
ical in establishing coherent pathways for that set of variables. We 
find, for example, that the climate arising under different emissions 
futures not only drives particular patterns in the uncertain returns 
to woodland and agriculture but also shapes the SCC, that is to 
say, the value society attributes to carbon-removal services.

 Following a typical scenario analysis approach, a standard 
approach applied to decision-making in the United Kingdom 
[such as the United Kingdom’s National Ecosystem Assessment 
( 32 ,  33 )], we initially focus on three CERs selected from across 
the range of possible futures confronted by policymakers in Great 
Britain. Those three scenarios comprise a near-historic emissions 
(NH) CER; a medium-emissions (ME) CER; and a high-emissions 
(HE) CER. These CERs are defined by the time paths of climate D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.p

na
s.

or
g 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
E

A
ST

 A
N

G
L

IA
 o

n 
Ju

ne
 1

3,
 2

02
5 

fr
om

 I
P 

ad
dr

es
s 

19
3.

62
.9

2.
48

.



PNAS  2025  Vol. 122  No. 10 e2320961122� https://doi.org/10.1073/pnas.2320961122 3 of 11

and economic variables illustrated in SI Appendix, Fig. S2 . The 
economic variables modelled in the CERs encompass major driv-
ers of the NPV of agriculture and forestry activities, including the 
prices of seven agricultural commodities (wheat, oilseed rape, 
barley, potatoes, sugarbeet, milk, beef, and sheep), fertilizer, timber 
and carbon prices. It also responds to climate variables (tempera-
ture and precipitation) representing a range of future emission 
scenarios [Representative Concentration Pathways (RCPs) 2.6, 
4.5, 6.0, and 8.5]. As per UK policy aspirations, we assume that 
decision-makers wish to select a tree-planting strategy that delivers 
carbon sequestration totaling 12MtCO2 e per year by 2050, a level 
consistent with attaining net zero at that point ( 34 ). A planting 
strategy consists of jointly choosing what species of tree (either 
broadleaf or conifer) to plant and in which location. At present, 
woodland in the United Kingdom comprises 49% broadleaf and 
51% conifer species ( 35 ). Fast-growing conifers thrive in the 
cooler, wetter climates typical of the north, west, and southwest, 
delivering both carbon storage and commercial timber revenues. 
In contrast, slower-growing broadleaf species prefer warmer, drier 
areas as found in the southeast of the United Kingdom (Supporting 
Information SI Appendix, Fig. S4 ). Climate change projections 
show that many parts of the country will experience warmer and 
drier summers ( 36 ). Under moderate emission projections of 
future climate, the higher growth rates of conifers yield greater 
carbon storage than would broadleaf trees. However, under higher 
emission climates conifers suffer drought and depressed growth 
such that tree-planting strategies with a higher proportion of 
broadleaf trees sequester substantially more carbon by 2100 ( 37 ).

 We use optimization tools to identify the planting strategy that 
delivers the maximum value under each scenario/CER. Those 
optimal planting strategies, labeled P-NH for the NH realization, 
P-ME for the ME realization, and P-HE for the HE realization, 
are plotted in the maps in  Fig. 1 A –C  .        

  Fig. 1 A –C   clearly illustrates the fact that different future cli-
mate and economic conditions suggest drastically different opti-
mal planting strategies to meet Net Zero commitments. Under 
NH conditions, the value delivered by planting conifers in less 
agriculturally intensive northern and southwestern parts of the 
United Kingdom consistently outweighs the possible benefits pro-
duced by broadleaves. As a result, the best planting strategy 
(P-NH) consists almost entirely of conifers (with only 1% 
broadleaf ). The policy recommendation is modestly changed 
under the ME realization (66% broadleaf ) and almost entirely 
reversed in the HE realization (99% broadleaf ). Under HE con-
ditions, the monetary benefits provided by broadleaf planting in 
agriculturally productive southern parts of the country dominate 
the benefits offered by coniferous planting in most parts of the 
country. Our analysis underscores the central problem that poli-
cymakers face when presented with information from a scenario 
analysis: Which tree-planting strategy should they adopt when 
the best strategy differs markedly from scenario to scenario?

 The potential deficiencies of choosing to pursue the planting 
strategy recommended under the assumption of some particular 
scenario for future conditions are illustrated in  Fig. 1D  . We used 
our optimization tools to identify the NPV-maximizing planting 
strategy to meet carbon sequestration targets under each of our 
4,000 CERs. We then evaluated the NPV delivered by each of 
those planting strategies under the NH, ME, and HE realizations. 
The range of resulting NPVs is shown by the shaded gray bars in 
the Figure. Observe that the NPV of all planting strategies tend 
to increase as we move from the NH to the ME to the HE reali-
zation, a phenomenon primarily reflecting the greater value society 
attaches to carbon sequestration under higher-emissions futures.

 By definition, the strategies P-NH, P-ME, and P-HE are opti-
mal under their respective CERs (e.g., the P-NH planting strategy 
is optimal under the NH realization). Of course, if we were to 
pursue some planting strategy alternative to P-NH when condi-
tions turn out to be NH, then it would produce substantially 
inferior monetary value to UK society. Pursuing the P-ME plant-
ing strategy under NH conditions results in a planting strategy 
that is worth £12.4 billion less than the best planting strategy, 
whereas pursuing the P-HE planting strategy under NH condi-
tions results in a planting strategy worth £19.2 billion less than 
the best strategy. Of course, while P-NH is optimal under NH 
conditions, it is suboptimal under ME; indeed, the optimal P-ME 
also satisfies the Net Zero carbon removal target while delivering 
£4.9 billion more in net benefits than does P-NH. Such differences 
are amplified when we move to the HE realization where climate 
change is more extreme and society places much greater value on 
carbon sequestration while the drier climate reduces farming profits 
in southern England, making broadleaf tree planting the preferred 
use of land in those locations ( 20 ,  23 ). Under this HE CER, 
pursuing P-HE instead of P-NH can lead to planting that delivers 
£21.9 billion more value to UK society.

 The central message of this analysis is that a planting strategy 
designed to deliver optimally for one CER does not necessarily 
deliver well if the future follows a different climate and economic 
realization. For instance, while the P-HE strategy delivers signifi-
cant net benefits under the HE realization, it is among the worst 
possible planting strategies under the NH realization. Likewise, 
while the P-NH strategy is optimal under low (NH) emissions, 
it misses valuable opportunities to deliver cost-effective carbon 
sequestration under high emissions (e.g., HE).

  Fig. 2  develops an alternative way of visualizing the outcomes 
associated with any given planting strategy, one that better aligns 
with the characterization of uncertainty used in portfolio analysis. 
Here, for each of our 4,000 CERs, we evaluate the costs and 
benefits associated with a particular planting strategy and describe 
our uncertainty over the returns that will be realized by that strat-
egy as a probability distribution of NPVs.        

  Fig. 2A   provides box and whisker presentations of the NPV 
distributions for planting strategies P-NH, P-ME, and P-HE. The 
wide distribution of NPV reveals the extent of risk underlying 
possible tree-planting strategies. None of these three tree-planting 
strategies are guaranteed to deliver positive net benefits—all three 
have some chance of generating negative NPVs. Furthermore, no 
single planting strategy results in a distribution of outcomes that 
is consistently superior to others across all CERs. The P-NH strat-
egy is the least variable of the three (−£18.3 billion to +£22.7 
billion), the P-ME planting strategy results in the highest overall 
expected value (+£0.4 billion), while the P-HE strategy has the 
highest best-case outcome (+£51.9 billion).

 To discriminate between options, we need to understand the 
decision-makers’ preferences for risk. Here, we focus on two 
canonical risk preference positions: risk neutrality and risk aver-
sion. A risk-neutral decision-maker would wish to pursue the 
planting strategy with a NPV distribution that has the greatest 
expected value (Materials and Methods  and Eq.  13  ). Following our 
labeling convention, we denote this the P-EV planting strategy. 
In contrast, a risk-averse decision-maker might wish to minimize 
downside risk exposure, a goal which in this study is identified as 
selecting the planting strategy with a NPV distribution that has 
the minimum conditional value-at-risk (CVaR) (Materials and 
Methods  and Eq.  17  ). We label this the P-RA planting strategy. 
We employ methods of optimization under uncertainty originally 
developed for portfolio investment problems in financial 
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applications ( 25 ,  38 ) to identify the planting strategies that best 
deliver to those two differing objectives.

  Fig. 2B   details the NPV distribution arising from the P-EV 
planting strategy. By definition, this planting strategy produces a 
NPV distribution with the highest possible expected value, 
+£0.99B, a value which exceeds those resulting from the three 
planting strategies explored previously (P-NH: −£1.91B, P-ME: 
+£0.43B and P-HE: −£2.35B) or any other feasible tree-planting 
strategy. In focusing on expected value maximization, however, 
the P-EV planting strategy ignores other characteristics of the 
NPV distribution, including the range of possible outcomes. 
Nevertheless,  Fig. 2B   reveals that the range of outcomes under 
P-EV is considerably more condensed than that associated with 
P-HE ( Fig. 2A  ), reducing worst-case NPV losses from −£30.8B 
to −£19.7B.

 In contrast, the P-RA planting strategy is chosen to minimize 
downside risk. It achieves this by exploiting opportunities for risk 
diversification, choosing a portfolio of planting that ensures that 
under conditions where one species of tree planted in one set of 
locations delivers poor returns to society, some alternative set of 
trees is planted elsewhere which perform strongly under those con-
ditions. More technically, it chooses a planting strategy with a 
combination of planting sites that have jointly low covariance. If, 
for illustrative purposes, we define “poor outcomes” as losses 
exceeding £10B (red-shaded areas in  Fig. 2 B –D  ), the P-RA plant-
ing strategy almost halves the incidence of poor outcomes, reducing 
the probability of getting such an event from 9 (in P-EV) to 5%.

 Yet, reducing risks comes with trade-offs. Choosing a portfolio 
of planting that minimizes downside risk is achieved in part by 
forsaking the opportunity to plant trees in locations that, under 
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Fig. 1.   Natural capital outcomes of optimal woodland planting strategies under alternative CER each delivering the required 12MtCO2e annual sequestration 
target. (A–C) Shows the planting maps of three illustrative planting strategies with corresponding species mix (percentages show percentage of broadleaves): 
Planting under Near-Historic (P-NH); Planting under Moderate Emissions (P-ME); and Planting under High Emissions (P-HE), and the bar shows the area of 
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some possible futures, deliver very significant social benefits. 
Indeed, best-case outcomes under P-RA are significantly lower 
than those achievable under P-EV.

  Fig. 2 E  and F   presents maps of planting locations chosen by 
the P-EV and P-RA planting strategies respectively. From those, 
it is evident that both strategies comprise a mix of broadleaves 
planted in the south and east with conifers planted in the north, 
west, and southwest. However, the P-EV strategy locates substan-
tially more broadleaves in southern regions than P-RA, which 
instead places more emphasis on conifer planting in northern 
regions. This change in planting strategy suggests that the empha-
sis placed on conifers over broadleaves in the P-RA strategy is 
important in delivering risk reduction. Further light is shed on 
that supposition in  Fig. 2 G  and I   which summarizes how the 
returns to broadleaf and conifer planting under the two strategies 
vary across the range of future conditions. Notice how under 
P-EV, widespread planting of broadleaves in the south leads to a 
very high dispersion of NPV outcomes for the broadleaf planting 
element of the planting strategy. The P-RA strategy achieves risk 
reduction by swapping some of the broadleaf planting locations 
most prone to delivering large downside outcomes, with conifer-
ous planting. Dispersion in outcomes for broadleaf planting 
reduces substantially, though of course, there is an offsetting but 
relatively less substantial increase in the dispersion of NPV out-
comes across potential futures for coniferous planting ( Fig. 2I  ).

 The P-RA planting strategy illustrates that the careful choice of 
species and location can reduce downside risk, though variability 
in the returns to tree planting remains high. One of the central 
difficulties in reducing risk in this context lies in the high degree 
of covariance in returns across candidate planting sites and species. 
That covariance arises through the existence of key uncertainties 

such as climate and agricultural prices that tend to have the same 
directional impact on returns for all tree species in all locations. 
In other words, when conditions result in planting being relatively 
costly for one tree species in one location, they also tend to be 
relatively costly for other species in other locations, limiting the 
possibilities for hedging risks. The importance of “global risk factors” 
in determining uncertainty over the benefits of portfolios of envi-
ronmental interventions has been noted before in the context of 
risks to biodiversity conservation ( 39 ). In our tree planting prob-
lem, the phenomenon is illustrated in the covariance matrices in 
 Fig. 2 H  and J  . These compare the returns arising from the 
broadleaf element of a planting strategy with that from the conif-
erous element across the range of possible future conditions. With 
the P-EV planting strategy ( Fig. 2H  ), the returns from broadleaves 
exhibit very high variance (50.1) and there is relatively high covar-
iance between returns to broadleaf and conifers (14.1). 
Risk-reducing planting choices under the P-RA strategy results in 
a reduced variance for broadleaf planting (4.6) coupled with an 
offsetting but less substantial increase in the variance of returns 
to coniferous planting (23.0). Moreover, P-RA exploits hedging 
possibilities, the success of which is reflected in the halving of the 
covariance in returns between the broadleaf and conifer elements 
of the planting strategy (covariance is 14.1 under P-EV and 7.4 
under P-RA). Even so, covariance remains high, suggesting that 
hedging only serves to diversify some of the risk associated with 
adopting tree planting as a CDR technology.

 Given the limits to risk reduction possible within a CDR strat-
egy that relies exclusively on tree planting, consideration should 
be given to the possibility of incorporating other CDR technol-
ogies in the portfolio of assets delivering CDR services. If the 
returns to an alternative technology are uncorrelated with the 
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Fig. 2.   Risk-averse planting of diverse species reduces the chance of extreme losses. (A) Distribution of NPV from 4,000 CERs under P-NH, P-ME, and P-HE, 
showing minimum, 25th percentile, mean, 75th percentile, and maximum value. (B) Distribution of monetized net benefits for 4,000 CERs under the P-EV strategy 
with the horizontal line denoting the minimum and maximum of the distribution and the red shading denoting a user-defined risk threshold (losses exceeding 
£10 billion) which is replicated in the Lower panels of the Figure. (C) Shows a random subset of CERs and the corresponding net benefits achieved by the P-EV 
planting strategy (Upper) and P-RA planting strategy (Lower). CERs below the risk threshold (losses exceeding £10 billion) are again highlighted, and the probability 
of exceeding £10 billion losses shown. Outcomes of the P-EV and P-RA strategies under NH, ME, and HE are highlighted by the colored dots and lines joining the 
data points. (D) Distribution of monetized net benefits for 4,000 CERs under the P-RA strategy with the horizontal line denoting the minimum and maximum of 
the distribution; (E and F) spatial distribution of conifer and broadleaf planting across Great Britain under strategies P-EV and P-RA; (G) bivariate plot of the sum 
of NPV from all coniferous and all broadleaf planting in the P-EV strategy; (H) the variance–covariance matrix of the bivariate plot in G; (I) bivariate plot of the 
sum of NPV from all coniferous and all broadleaf planting in the P-RA strategy; and (J) the variance–covariance matrix of the bivariate plot in I.
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global factors that drive returns to tree planting, then that alter-
native approach may have an important role to play in defraying 
risks in the cost of achieving decarbonization targets.

  Fig. 3  explores this mixed-technology portfolio strategy. Here, 
we introduce the possibility of deploying a hypothetical alternative 
CDR technology making the strongly optimistic assumptions that 
this can deliver up to the target sequestration rates of 12MtCO2 e 
per year and that its cost risks are uncorrelated with the cost of 
tree planting. Now, our portfolio optimization algorithms not 
only select the locations and species for tree planting but also the 
optimal mix of this approach and deployment of the alternative 
CDR technology. As illustrated in  Fig. 3 , the relative mix of the 
tree and riskless CDR technologies depends on two factors: How 
expensive the riskless CDR is, and whether the decision-maker is 
risk-averse.        

 Consider first a risk-neutral decision-maker. Their objective is 
to select the mix of tree planting and the alternative CDR tech-
nology to achieve the target sequestration rate (12MtCO2 e/year) 
so as to maximize expected value.  Fig. 3  charts the outcome of 
such decisions across the range of possible costs associated with 
the riskless CDR technology, plotting the decisions of the 
risk-neutral decision-maker in red.  Fig. 3A   shows that if the risk-
less CDR technology is available at a cost of less than £50/tCO2e, 
then the decision-maker would elect to pursue that in favor of 
tree planting. At higher costs for the alternative CDR technology, 
trees begin entering the optimal portfolio of a risk-neutral 
decision-maker. At a cost of £75/tCO2e, that decision-maker 
would be best served planting 0.1 M hectares of trees, which 
deliver about 10% of the sequestration target as shown in  Fig. 3B  . 
The advantage of the riskless CDR technology over risky tree 
planting quickly diminishes as it becomes more costly. At £100/
tCO2e, the optimal quantity of tree planting for the risk-neutral 
decision-maker increases to 1.5M hectares where 92 to 115% 
(11.0 to 13.9 MtCO2 e/year) of the sequestration target will be 
met with tree planting ( Fig. 3C  ).

 A fully risk-averse decision-maker (blue lines) chooses the risk-free 
CDR technology over tree planting until the former reaches a cost 
of around £75/tCO2e after which they too add tree planting to their 
CDR portfolio. However, by the time the alternative technology 

costs £130/tCO2e or more, even a risk-averse decision-maker relies 
fully on tree planting to meet the 12MtCO2 e decarbonization target. 
In this case, even though the alternative technology costs much more 
than tree-planting and both the risk-neutral and risk-averse 
decision-makers need to fully use tree-planting to reach the seques-
tration goal, the risk-averse decision-maker can still utilize a careful 
location and species to reduce a small amount of downside cost risks. 
When the alternative technology costs £250/tCO2e, the risk-averse 
decision-maker experiences £28.17B cost risk at the 95th percentile, 
which is £250M less than that experienced by the risk-neutral 
decision-maker at the same percentile.

 Comparison with real-world (i.e., risky) alternative CDR tech-
nologies is provided below  Fig. 3 A –C   which provides medium 
confidence cost estimates for BECCS and DACCS as reported by 
the IPCC ( 14 ,  40 ). Even at the lowest levels of these costs both 
the risk-neutral and risk-averse decision-maker would be advised 
to include tree planting within their CDR portfolios.  

Discussion

 Around the world, substantial and time-critical CDR investments 
must be made to avoid the worst impacts of climate change. For 
many countries, tree planting is mooted as an essential component 
of that investment. But tree planting is not a riskless CDR tech-
nology. Record-breaking heatwaves in Europe in 2003 and 2018 
saw widespread tree deaths with stem dehydration disproportion-
ately impacting conifer species ( 41 ,  42 ). In Sri Lanka, a substantial 
portion of newly planted trees do not survive and are affected by 
inappropriate planting sites ( 43 ). Tree disease and pest epidemics 
have seen a recent global surge and could undermine vital carbon 
sinks ( 44 ,  45 ). In California (United States), the future possibility 
of wildfires or sudden oak death has been cited as key risks to 
investments in trees as carbon offsets. Managing these risks 
through the careful development of risk-reducing planting strat-
egies will substantially influence the extent to which tree planting 
contributes to decarbonization.

 As illustrated by our research, such planting strategies can be 
identified through the application of investment portfolio 
approaches. The portfolio approach has been shown to effectively 
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reduce risk in a number of other land-use investment settings  
( 26 ,  28 ,  46         – 51 ). Our work extends its application in two ways: 
first in applying it to the problem of tree planting for decarboni-
zation and second by examining uncertainties relating to both 
economic and climatic conditions. We show that the cost risks of 
carbon removal through tree planting can be mitigated through 
selecting combinations of planting sites and species that limit 
downside risk. Adopting this risk-averse approach to planting in 
the United Kingdom would limit the risk of experiencing extreme 
losses (defined here as greater than £10B) to just 5%.

 We have demonstrated this approach to be successful for reduc-
ing risk associated with a portfolio of carbon removal activities 
and expect insights from this analysis to be applicable across a 
range of carbon removal targets. However, we cannot guarantee 
that meeting the carbon removal targets used to illustrate our 
approach will be sufficient to attain Net Zero at a national scale. 
For net zero commitments to be met, tree-planting targets must 
be continually adapted based on the future rates of carbon emis-
sions reduction and sequestration across other emissions sectors.

 Even with the adoption of risk-reducing planting portfolios, 
we find that the cost variability of tree planting in the United 
Kingdom remains relatively high. It proves difficult to hedge away 
the risks associated with tree planting because key drivers of uncer-
tainty, particularly climate effects and the SCC, tend to impact 
the costs of planting similarly, irrespective of where planting takes 
place and which species is chosen in each location. The conun-
drum we presented in the United Kingdom is shared by several 
other nations where climate change is expected to adversely affect 
the forests critical to arresting climate change. Studies have shown 
the economic value of the current forest estate across the whole 
of Europe could be dramatically reduced under climate change 
( 52 ), and a global study revealed that the negative impacts of 
climate change on forests’ natural capital could affect poorer coun-
tries much more significantly than wealthier ones ( 53 ). Countries 
must account for these predicted impacts on current and new 
forests when deciding where, what, and how trees are planted. 
Where countries can identify combinations of species and planting 
locations that jointly deliver low-correlation outcomes, particu-
larly where a heterogeneous set of planting sites are available 
within a country’s jurisdiction, diversification across space and 
species can reduce risks by minimizing the chance of all tree species 
failing simultaneously in the same climate scenario ( 54 ). 
Nonetheless, our study shows that diversification alone is unlikely 
to fully mitigate the cost risks associated with planted forests 
assessed under a natural capital framework.

 Of course, our analysis only allows for choice between two spe-
cies, selected on account of being the dominant coniferous (Sitka 
spruce) and broadleaf (pedunculate oak) species in the United 
Kingdom’s national forests ( 8 ,  35 ). It is possible, that expanding 
the planting portfolio to include a range of species (perhaps even 
those not in the current UK forest estate), each potentially better 
adapted to some particular future conditions, may open up hedg-
ing opportunities increasing the resilience of delivery of CDR 
services from new forests under uncertain climatic and economic 
futures ( 30 ,  55 ). Moreover, future research utilizing the portfolio 
approach might identify further risk-mitigation potential by con-
sidering the complementary benefits and interactions of 
mixed-species plantations within the same site relative to the mon-
oculture plantations considered here ( 56   – 58 ). Likewise, the adop-
tion of forest management regimes that optimize for long-term 
carbon stocks rather than only mirror conventional practices as 
modeled in this study can further elevate carbon storage and man-
age associated risks ( 59 ,  60 ), benefitting from improved detail in 
models to account for differences in total planting costs driven by 

variations in management techniques and site accessibility. The 
portfolio approach demonstrated in our analysis provides the 
framework through which a decision-maker can be guided in 
choosing which, if any, of those tree species should be incorporated 
in that resilient planting portfolio.

 The risk-diversifying portfolio strategy examined in this paper 
incorporates a range of CDR technologies beyond tree planting. 
As we show, even given the limited options for risk hedging through 
species and location choice considered, tree planting emerges as a 
low-regret option for CDR primarily on account of its relatively 
low costs. Indeed, tree planting forms part of the optimal CDR 
portfolio across the range of projected costs of alternative technol-
ogies such as BECCS and DACCS. Of course, the reason why 
those technologies exhibit such a wide potential cost range ( Fig. 3 ) 
is because their implementation at the scales required has yet to be 
demonstrated ( 61   – 63 ). As such, decision-makers face real uncer-
tainty over the potential costs of these alternative CDR technolo-
gies. Indeed, if one were to extend our work with an accurate 
characterization of the cost uncertainty in those alternative CDR 
technologies, it is likely to be the case that tree planting would 
dominate the CDR portfolio for a risk-averse decision-maker.

 In such an analysis, a further reason to believe that tree planting 
will remain central to a resilient CDR investment strategy arises 
from possible correlation in the uncertain costs of tree planting, 
BECCS and DACCS. That correlation arises through land-use 
change. Like tree planting, BECCS makes large demands on land 
for the purposes of growing feedstock plants such as short rotation 
coppice willow or Miscanthus ( 63 ). DACCS, on the other hand, 
has a comparatively small land footprint but likely will require 
energy produced through expansion of renewable energy supplies 
that themselves need to be produced on land ( 64 ). Common 
demands on land-use resources suggest that when conditions lead 
to high (low) land costs, all technologies are relatively more (less) 
costly driving correlated cost risks across CDR technologies. As 
such, the additional deployment of these alternative technologies 
may not necessarily deliver very significant risk reductions, lessen-
ing the value of their contribution to a low-risk CDR portfolio.

 One further reason to favor tree planting over other CDR tech-
nologies is that forests provide a wide array of ecosystem services 
in addition to CDR services. Such benefit flows include those 
from flood mitigation ( 65 ,  66 ), water quality enhancements ( 67 ), 
biodiversity gains for certain species ( 68 ), and improvements to 
noise and air pollution ( 69 ). Indeed, a wider analysis incorporating 
these effects into economic decision-making would likely change 
the optimal locations for tree planting in a way that delivers overall 
increases in social value ( 70 ,  71 ). Following the lessons of this 
paper, such analyses should acknowledge that the flows and values 
of these additional ecosystem services are also subject to uncer-
tainties ( 12 ,  22 ).

 While our analysis does much to support the strong presence 
of tree planting in CDR strategies, the prospect of technological 
change makes investment in alternative emerging CDR approaches 
worthy of consideration. Perhaps most importantly, early invest-
ments in those technologies could help resolve feasibility concerns 
and cost uncertainties ( 72 ). Decision-makers are effectively buying 
uncertainty-reducing information and providing themselves with 
the option to expand investment if those trials establish that alter-
native technologies are capable of delivering CDR at scale and at 
reasonable cost ( 73 ).

 Even though our study characterizes many of the central uncer-
tainties in the tree planting decision, numerous further uncertain-
ties exist. While our analysis does not incorporate opportunity 
costs of tree-planting from potential urban land development 
revenues, we have extensively assessed the sensitivities of the D
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planting strategies to future urban development scenarios and have 
revealed that excluding areas with potential future urban devel-
opment has limited effect on the planting strategies’ NPV and 
spatial pattern (SI Appendix, Fig. S6 and Tables S2 and S3 ). 
Furthermore, our analysis does not consider the potential for tech-
nological change in agriculture, broad-scale shifts in global food 
production, consumption, and dietary preferences that might alter 
the opportunity costs of land used for tree planting. Likewise, 
uncertainties exist over other side effects of national tree planting 
through its endogenous macroeconomic price effects ( 74 ). 
“Leakage” effects also attenuate the CDR potential of national 
afforestation initiatives if planting displaces agricultural activities 
and increases emissions overseas ( 75 ,  76 ). Further, our study only 
models climate effects, not those arising from weather. Indeed, 
weather-related extreme events such as wildfires, heatwaves, and 
windfall have potentially severe impacts on forest CDR service 
flows ( 77   – 79 ), and their frequency and scale are highly uncertain 
in a changing climate ( 80 ,  81 ).

 Notwithstanding the numerous potential avenues for expand-
ing our analysis, our study demonstrates the effective integration 
of cutting-edge environment-economy modeling with modern 
methods of risk-averse optimization. This integration is able to 
provide detailed guidance to policy-makers when faced with com-
plex environmental decisions confounded by pervasive climatic 
and economic uncertainties. In our UK case study, for example, 
we are able to identify tree-planting strategies that diversify risks 
and limit exposure to downside cost outcomes. Moreover, we are 
able to establish that, despite uncertainties over the net benefits 
arising from new forests, a carefully constructed portfolio of tree 
planting remains an indispensable component of a robust decar-
bonization strategy.  

Materials and Methods

Study Area. As part of its commitment to attaining net zero emissions of green-
house gases by 2050, the UK Climate Change Committee has proposed a UK-
wide target to establish 30,000 ha of trees a year by 2025 (9). Delivering on 
those targets would increase the country’s total woodland area from 13 to 17%, 
an expansion expected to offset emissions equivalent to 12MtCO2e per year by 
midcentury (34). A critical decision remains over which planting strategy to pur-
sue, a decision which will define the set of locations where trees will be grown 
and hence the land that will be taken out of agricultural production.

The major consequences of alternative climate futures upon optimal tree-
planting strategies sets up a challenge for decision-makers seeking to maximize 
the net benefits to society of tree planting. Within the United Kingdom (13) and 
increasingly globally (82, 83), official guidelines have adopted a natural capital 
approach (12, 84) to decision appraisal. This requires that all major benefits and 
costs, including those arising outside markets (such as the benefits of CDR), must 
be included within spending appraisals, typically by monetizing those values 
using an array of valuation tools (ibid.). This permits the use of standard economic 
assessment methods of investment appraisal such as the calculation of the NPV of 
a project. Here, we adopt such methods, seeking to maximize NPV over a typical 
30-y time horizon (2020 to 2050) with the assumption that trees are planted 
in 2020, with net benefits discounted at a rate of 3.5% consistent with British 
policy-making recommendations (13).

While there are myriad costs and benefits associated with the planting deci-
sion (85, 86), for the purposes of this paper we focus on three components that 
capture the focal changes to natural capital value flows: the monetary value of 
carbon sequestration; revenues from timber harvesting; and the costs of foregone 
agricultural profits from land on which trees are planted, all of which are sensitive 
to future climate and economic variables (described in detail in SI Appendix). 
These values are assessed using the Natural Environment Valuation (NEV) suite 
of models (24, 86), a spatially explicit integrated environment-economy model 
of land use in Great Britain that have already been extensively used to inform 
national land-use decision-making (33, 71, 86, 87). NEV operates on a 2 km grid 

defining 57,230 gridded locations across Great Britain. Accordingly, we model 
the planting decision as selecting a set of cells across that grid and the species 
to be planted on the agricultural land in each chosen cell so as to optimize the 
relevant objective (e.g. maximizing expected value in the risk-free assessment) 
subject to satisfying the carbon storage requirement.

CER. The costs and benefits of a particular planting strategy are determined by 
a set of variables describing both future climate conditions and coevolving eco-
nomic values including prices for timber and agricultural outputs as well as the 
SCC (88). When making the planting decision, however, the future pathway of 
those coevolving variables is not known with certainty. Our modeling frame-
work captures that uncertainty by generating 4,000 different CERs, where each 
CER describes one internally consistent spatial and temporal pathway for those 
uncertain variables drawn from current empirical understanding of their possible 
distributions.

A key component of each CER is the assumed path of global emissions. 
Following standard practices in the climate sciences (89) we use realizations 
of climate conditions that conform with a set of four RCPs covering the broad 
range of predicted climate outcomes (90). We use the CHESS-SCAPE projections 
produced by the Centre for Ecology and Hydrology (91), which contains climate 
projections for four emissions pathways, and four members of the Regional 
Climate Model ensemble for each emissions pathway. Each CER has an emissions 
pathway and climate model member drawn independently with equal probability. 
Another key component of a CER is the assumed relationship between global 
temperature increases and loss in global economic productivity (also known as 
the “temperature-damage relationship”) which directly influences the SCC. We 
draw the temperature-damage relationship from a probability distribution mod-
eled in ref. 92. A CER also contains other variables that depend on climate and 
the temperature-damage relationship, primarily the SCC, agricultural commodity 
prices (for the wheat, potatoes, rapeseed oil, sugarbeet, cattle, sheep, and milk 
production considered within NEV), and timber prices. A full description of how 
these variables were modeled from the climate and the temperature-damage 
relationship is given in SI Appendix.

Therefore, CERs differ widely in their predictions and outcomes even if they 
follow the same emissions pathway. For the purposes of illustrating key insights 
from our research, we selected three “focus” CERs: a “Near Historic” (NH) realiza-
tion selected to typify the general features of the set of CERs drawn from RCP2.6; 
a “Moderate Emissions” (ME) realization selected to typify the general features 
of the set of CERs drawn from RCP4.5; and “High Emissions” (HE) realization 
selected to typify general features of CERs drawn from RCP8.5 (90), illustrated 
in SI Appendix, Fig. S2.

Quantifying Uncertainties in Net Benefits from Tree Planting Activities. 
We modeled changes in natural capital from the planting of a representative coni-
fer (Sitka spruce) and broadleaf (pedunculate oak), in the arable land available 
in each grid cell. Cells where tree-planting activities lead to net emissions, for 
example through disturbance of soil organic carbon, were excluded.

Our analyses seek to identify which species of tree to plant and where to plant 
them in order to maximize the objective and achieve the carbon sequestration 
target Q (12MtCO2e per year). Since the rate at which trees sequester carbon 
differs from year to year as they grow over time, we take the yearly average carbon 
storage achieved over a single rotation period (where the rotation period is chosen 
to maximize timber revenues reflecting current common practice) to represent 
the annual sequestration services provided by growing trees. That quantity is 
calculated according to

mijs =
1

Tijs

Tijs∑
t=1

gijst ∀ i, j, s,

where mijs is the average annual carbon storage delivered by planting species j  
in cell i  under the climate pathway described by CER s . Tijs is the rotation period 
for that tree species in that cell, and gijst is the marginal net storage of carbon in 
harvested wood products, deadwood, and soil in each year t  as captured within 
the NEV system.

In achieving the sequestration target, choices of tree species and planting 
locations are made to maximize a monetary measure of social benefits. This 
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measure encompasses net revenues from the planting and growing of trees 
for timber production (calculated using CER-specific timber prices), and the 
value of the carbon sequestered in trees (monetized using the CER-specific 
SCC). Additionally, it considers costs that comprise foregone profits from agri-
cultural production on the land used to grow trees (calculated using CER-specific 
food prices).

In calculating the benefit flows that trees provide in timber and carbon seques-
tration, we again encounter the problem that their magnitudes differ markedly 
over time. The major cost of timber production, for example, is associated with 
the initial planting of trees, while the primary revenues arise only once those 
trees are harvested at the end of the rotation. As such, we choose to represent 
those uneven flows in the form of an equivalent annual benefit flow using the 
annualization of NPV approach calculated over a full rotation. The annualized 
benefit flows from timber are calculated as;

r Timber
ijs

=

⎛
⎜⎜⎝

Tijs�
t=1

bijst− cijst

(1+� )
t

⎞
⎟⎟⎠

�

1 − (1+� )
−Tijs

∀ i, j, s,

where � is the discount rate, and bijst and cijst are, respectively, the revenues and 
costs from timber production in year t  . Similarly, the annualized benefit flows of 
carbon sequestration is calculated as:

r
CO2
ijs

=

⎛
⎜⎜⎝

Tijs�
t=1

gijstSCCst

(1+� )
t

⎞
⎟⎟⎠

�

1 − (1+� )
−Tijs

∀ i, j, s,

where SCCst is the social cost of carbon in year t  along the SCC pathway dictated 
by CER s.

To simplify, we analyze the problem as if all planting occurs in the current 
period and that the decision-maker adopts a 30-year planning horizon. The value 
of planting trees of species j  in cell i  under CER s , therefore, is given by the NPV:

Rijs =

30∑
t=1

r Timber
ijs

+ r
CO2
ijs

− rFarm
ijst

(1+� )
t

∀ i, j, s,

where rFarm
ijst

 are the farm profits from cell i  in year t  that are foregone on account 
of using that agricultural land to plant trees.

Optimization Problem. The policy-maker is confronted with the task of maxi-
mizing the value function, V  , that quantifies the NPV of their CDR strategy:

V (x , z|s ) =
N∑
i=1

J∑
j=1

Rijsxij + z

30∑
t=1

SCCst − �

(1+� )
t

∀ s,

This function has two elements: a) the value of tree planting for CDR and b) the 
value of CDR from an alternative riskless technology. The tree-planting strategy 
is identified by the vector x , comprising elements xij , which are binary decision 
variables identifying whether tree species j  (from the J species in the analysis) 
is planted in cell i  (from the N cells where planting could occur). Choices over 
deployment of the alternative CDR technology are given by z , a continuous vari-
able identifying the quantity of that alternative technology (in units of MtCO2e/
yr) to include in the solution. Deploying the alternative technology delivers CDR 
services valued using the SCC at a cost of � per MtCO2e/yr which, because this 
technology is riskless, is constant across different CERs.

Choices over tree-planting strategy and deployment of the alternative CDR 
technology must satisfy a series of constraints as follows:

J∑
j=1

xij ≤ 1 ∀ i,

1

S

N∑
i=1

J∑
j=1

S∑
s=1

mijsxij + z ≥ Q,

xij ∈
[
0, 1

]
∀ i, j,

These constraints ensure that:
•a cell can only be used as a location to grow trees once and, in our analysis, 

those trees can only be of one species (Eq. 6);
•the annual carbon sequestration target, Q , is met through the combination 

of the sequestration in planted trees, mijs (averaged across all CERs), and by the 
alternative CDR technology, z (Eq. 7);

•the planting strategy variables are binary (Eq. 8).
Since the optimization is constrained to deliver the target level of annual 

sequestration Q (Eq. 7), no matter how that delivery is apportioned between 
sequestration in trees and sequestration by the alternative technology, the value 
of CDR services remains approximately constant across all solutions of x and z.

Therefore, the least-cost strategy to meet the target level of annual seques-
tration can be found by maximizing V ′:

V�(x , z|s) =
N∑
i=1

J∑
j=1

30∑
t=1

[(
r Timber
ijs

− rFarm
ijst

)
xij− z�

]
,

The principal difficulty in defining the least cost CDR strategy, however, is that s 
is not known; that is to say, that the environmental and economic conditions that 
will be faced in reality are unknown. As such, V  is stochastic from the perspective 
of the decision-maker.

Scenario Analyses. Our examination of a standard scenario analysis assumes that 
the carbon sequestration target is met by tree planting alone (z=0) . The problem 
is solved by assuming that some particular CER, s′ , is “true”, and integer program-
ming methods are used to find the tree-planting strategy that maximizes V:

x
� = argmax

x

V
(
x , z=0|s= s�

)
,

Of course, the actual value delivered by a planting strategy depends not on the 
CER that is assumed by the decision-maker in choosing that strategy, but by the 
CER that is experienced in reality. To identify what that realized value might be, we 
take the tree-planting strategy x that is optimal under CER s′ , and then evaluate 
V  under an alternative CER, s′′:

V
(
x= x

�, z=0|s= s
��
)
,

Fig. 1 A–C is constructed using this approach. Indeed, by repeating this calculation 
across the full range of possible CERs we are able to evaluate the full distribution 
of V  for any given tree-planting strategy.

Optimal Tree-Planting Strategies under Uncertainty. We use linear pro-
gramming to identify optimal planting strategies under any particular CER to 
meet the UK target of sequestering 12MtCO2e per year by 2050. In contrast 
to heuristic-based optimization approaches that identify several solutions of 
unknown optimality, linear programming can identify a single solution to the 
optimization problem with known optimality (93). Our initial analyses consider 
the decision problem where the 12MtCO2e p.a. target must be achieved through 
tree planting alone; subsequently, we explore how decisions might change if 
that carbon sequestration target can be met with a mix of tree planting and 
deployment of a hypothetical riskless CDR technology.

Given the function V  that estimates the NPV of tree-planting strategy x under 
CER s , the problem of maximizing the value of tree planting to society under an 
assumed climate–economy realization s′ can be written as

max
x,z

V
(
x , z|s= s�

)
,

Of course, the “true” future climate–economy pathway is not known, such that from the 
point of view of a decision-maker, a tree-planting strategy is not characterized by one 
NPV but a distribution of NPVs defined across the range of possible CERs. Given that 
reality, a decision-maker might be better advised to choose a planting strategy whose 
distribution of outcomes under future possible realities has desirable properties.

One possible objective is to identify a planting strategy that maximizes the 
Expected Value (EV) of the distribution of outcomes. In that case, identifying the 
planting strategy that maximizes Expected Value (P-EV) amounts to solving the 
following problem:

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
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max
x ,z

EV (x , z ) =
∑S

s=1
p(s)V (x , z|s ),

where p(s) is the probability CER s , which were constructed in such a way that we 
can assume each is equally likely to be a correct prediction of future conditions 
(i. e., p(s) = 1

S
∀ s ∈ 1, ⋯ , S).

Figs. 1 and 2 report findings where no alternative CDR technology is available, 
therefore z = 0  . In Fig. 3, we allow the alternative CDR technology to form part of 
the portfolio of CDR technology, and solutions in Fig. 3 are identified by iteratively 
solving for x and z for a range of values of �.

Another possible objective is to choose a planting strategy that minimizes the 
chances of undesirable outcomes, which we refer to as risk averse (RA) decision-
making. In this work, we quantify this downside risk using CVaR, also known as 
Expected Shortfall, a measure widely used in financial economics to quantify 
the risks associated with investment portfolios. The CVaR has been widely used 
as the standard for banks internationally as the recommended measure by the 
Basel Committee on Banking Supervision for quantifying risks and stress-testing 
in bank asset portfolios (94). The CVaR measure quantifies the average value of 
“poor outcomes” given that “poor outcomes” are defined as those that are smaller 
than a specified quantile of the distribution of outcomes. In contrast to typical 
land-use optimization applications that use variance as a measure of risk in land 
use (26–29), CVaR satisfies the properties of “coherent” risk measures found to be 
desirable in financial economics (95–98). CVaR thus remains a robust measure of 
downside risk even when the distribution of outcomes is nonsymmetrical (39, 99).

Shah and Ando (31) highlight the advantages of using a downside-risk measure 
(using a similar Lower Partial Moments approach) compared to a variance-based 
measure by testing the effectiveness of those at managing the effects of climate 
change uncertainty on the allocation of conservation resources. They found that, 
compared to variance-based approaches, downside-risk approaches are particularly 
suitable for reducing risks to climate outcomes that exhibit skewed distributions, 
and effectively diversify allocations compared to variance-based approaches. The 
authors also argued that even if outcomes are multivariate normal, variance still 
captures the wrong definition of “risk,” if the risk-averse decision-maker is only 
concerned about the possibility of returns falling below a certain threshold.

In this problem, we view realizations in V  that are lower than a specified quan-
tile in the distribution of V  as “risky.” The objective is to maximize the value of 
the realizations that are deemed as “poor outcomes” so that the value of tree 
planting will still be relatively high in realizations that are worse than expected.

CVaR� = − �s∈S

[
V (x , z|s ) | V (x , z|s )≤q�

]
,

q� = sup
� ∈ℝ

{
� | Pr

s
(V (x , z|s )≥� )≥�

}
,

CVaR is the negative of the expected value of realizations in V  that are lower than 
a quantile q� , taken at the negative such that higher values of CVaR correspond 
to “riskier” outcomes. Here, � is a parameter taking a value between 0 and 1 that 
indicates the probability of the value V  being larger than q� . For this analysis, 
the parameter � is specified as 90% , implying that q� is the 0.1-quantile of the 
distribution of V  and the undesirable outcomes are defined as the worst 10% of 
outcomes in the distribution.

As shown in Rockafellar and Uryasev (38), the tree-planting strategy that min-
imizes CVaR can be identified by minimizing the choice variable � , allowing us 
to express the CVaR of V  in terms of x and z:

CVaR� (x , z ) = min
�

� +
1

1 − �

∑S

s=1
p(s)max (−V (x , z|s )−�, 0 ),

The optimal risk averse planting strategies, P-RA, is identified by minimizing this 
CVaR metric, or in other words, maximizing the negative of the CVaR.

max
x,z

RA (x , z ) = − CVaR� (x , z ),

Like P-EV, P-RA is identified by setting z to 0 for Figs. 1 and 2 and solved for 
different values of � to optimize the objective function in Fig. 3.

Data, Materials, and Software Availability. Code used to produce analyses in 
this study is available at https://github.com/LEEP-Modelling-Team/tree-planting-
uncertainty (100). The supporting data used to replicate results is available in 
Zenodo at https://dx.doi.org/10.5281/zenodo.14744237 (101).
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