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We consider small-amplitude deformations of a long thin-walled elastic tube,/€aused by a pressure dif-
ference between the interior and exterior. The tube initially has a uniform glliptical croess-section and is
subject to a large axial pre-stress. The tube length and wall thinness can be exploited to derive simplified
models of the wall mechanics. Such models typically neglect effects such as axial bending, which are
small over most of the tube but contain higher-order axial derivatives."The resulting models are unable
to satisfy the full set of clamped boundary conditions where an. elastic section of tube is joined to a rigid
support. In this work, we examine the asymptotic boundary layers'that arise near the clamped end of an
elastic-walled tube, which allow a bulk solution to a simplified model in the interior to be matched to
the boundary conditions at the tube ends. We consider the region of parameter space where the width
of the thinnest bending boundary-layer is small compared.with the tube diameter, but still much larger
than the thickness of the tube wall. Within this region, we find three distinct regimes which give rise
to different sets of nested boundary layers invelving different physical effects. Our matched asymptotic
solutions show excellent agreement with an-€xact solution in a case where the full problem can be solved
analytically.

Keywords:Starling resistor; solid mechanics; boundary-layers; elastic-walled tube; tube laws.
1. Introduction

Fluid conveying elastic-walled tubes occur in many differeiotdgical, medical, and industrial con-
texts. Instabilities in suchflows, involving fluid-structurédraction between the conveyed fluid and
the tube wall, are well-known and have been extensively stiidieing experimental, numerical, and
asymptotic techniques (see, e.g., the reviewslby & Jensen2003 Grotberg & Jenser2004 Heil &
Hazel 2011).

The canonical experimental setup for studying such flows isvkas the ‘Starling resistor’. As
shown in Figurel;a.finite length of elastic-walled tube is clamped betweenrigid tubes and placed
inside a pressure,chamber. Fluid is driven through the tubes jpysimg a pressure difference between
the inlet and outlet, or by using a volumetric pump at one eriak @xternal pressure in the chamber
cante adjusted to alter the degree of collapse of the elastiios of the tube. The axial tension in the
elastic tube can also be adjusted by altering the distanegebatthe two rigid sections of tube after
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Fic. 1. A schematic diagram of the Starling resistor setup, showifigjita length of elastic-walled tube'clamped between two
rigid tubes and placed inside a pressure chamber. A fluid fiesvinduced through the tubes either.by imposing a pressure
difference between the ends (as shown) or by using a volumetmip @t one end.

the elastic section has been clamped. Experimental stusiieg tinis setup-have revealed a rich variety
of behaviour, including the growth of large-amplitude selfiteat oscillations (see, e.gBertram &
Tscherry 2006 Bertram 2008.

In order to effectively model the fluid—structure interaction‘igtsgituations, one needs a descri-
ption of the mechanics of the elastic tube wall. In many appiins, the tube is long compared to its
diameter, and the wall is relatively thin. Both of these carelgloited in both ad-hoc and asymptotic
modelling.

A common way of modelling the wall mechanics (particularly ie tbng-wavelength thin-walled
limit) is to use a so-called ‘tube law’. This isan equation offibren p = P(A) that relates the transmural
(interior minus exterior) pressugeat a given axial position to the cross-sectional aked the tube at
that position. Such tube laws have been proposed based ng &kperimental data (e.§hapirg 1977,
Kececiogluet al,, 1981) and have also' been, derived theoretically (Elghertyet al, 1972 McClurken
etal, 198)).

More recently,Whittaker et-al. (2010 used shell-theory and long-wavelength approximations to
derive a tube law for the asymptotic limit of small-amplituddaidmations a long thin-walled elastic
tube with an initially elliptical‘cross-section. The resuffitube law took the form

%A

=kA+ky—=
p k0+2022

(1.1)

wherekg andky are numerically determined constants. The two termdLif)) @rise physically from
azimuthal bending and the interaction between axial tereiahcurvature respectively. Other physical
effects are found to be asymptotically small provided we remaia long-wavelength thin-walled
regime.

However, the full set of boundary conditions at the ends of thetie-walled tube in a Starling
resistor setup involves the elastic part beatgmpedto the rigid supports. This means that both the
position and gradient of the wall is fixed there. Within the aptatic model ofwWhittakeret al. (2010,
the normal and azimuthal displacements can be fixed at the lautdbe axial displacement and gradient
cannot. This inability to set all the boundary conditions hssfrom the neglect of terms containing
higher derivatives iz in the long-wavelength asymptotic regime.
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In order to satisfy the remaining boundary conditions, we woufzkekto find that boundary layers
occur near the ends of the tube. Within such layers, a shorial langth-scale allows some of the
neglected effects to re-enter the problem at leading order.

Initial progress in this area was made\nittaker(2015. To satisfy ‘pinned’ boundary conditions
(in which the position of the tube wall is fixed but not its gradjethe additional physical effectiof
in-plane shear was found to be needed, resulting in two nestautlboy layers. In certain regimes it
was found that the boundary layers could have a significant edfetiie bulk solution in the main part
of the tube. However, this work still did not address the isduehat boundary layers wouldibe needed
in order to satisfy fully clamped boundary conditions.

In the present work, we re-analyse the full shell equations for e wall in the thin-walled small-
deformation limit, and seek distinguished axial length sc#ihat give rise to asymptotic.balances in
the equations. This leads to the discovery of a number of diffdseundarydayers in three distinct
regimes. These boundary layers involve different balances ofdrom azimuthalbending, azimuthal
hoop stress, the interaction of the axial pre-stress with curyatheein<plane shear stress, and the
applied transmural pressure. In each of the regimes, the solutiaghe relevant boundary layers are
matched to provide a full solution that is able to satisfy thenglad boundary conditions at the tube
end and match to bulk solutions valid over most of the length@tube.

This paper is organised as follows. 48 we describe the mathematical setup of the problem and
the parameter regimes we shall be consideringi3nve derive the linearised equilibrium equations
that must be satisfied. [§£4—6 we consider the possible.asymptotic balances in boundaeydayith
different axial length scales. 1§57-9 we consider in detail the asymptotic boundary-layer structures
in three different regimes. 1§10 we validate the-asymptotic results by comparing them with @tex
solution in a special case. Finally, discussion,and commhssare presented K11

2. Mathematical setup and scaling analysis

2.1. Problem description

We follow the setup ofVhittaker(2015, and consider an elastic-walled tube that is initially arabyi
uniform elliptical cylinder. of axial length., azimuthal circumferencer, and wall thicknessl, as
shown in Figure2. The-ellipticity of the tube is set by a parametgy so that the major—minor axis
ratio is given by cotlop. Forreasonable ellipticities will be the length scale of the semi-axes of the
tube’s cross-section. The tube wall is made of linearly elas@terial with bending stiffnesi and
Poisson ratiov.-The two _ends of the tube are clamped to rigid elliptical sugpdntits initial elliptical
configuration, thetube’is subject to an externally applietbumi axial pre-stress, due to an axial tension
F. We then'wish to-consider deformations induced by an appliegitnaral pressurp (possibly non-
uniform), with dimensional scale. The dimensional scale for the induced normal deformationsen th
bulkof the tube is denotegl

2.2. Dimensionless parameters and parameter regime

In"general, we shall use the cross-sectional length scedenon-dimensionalise lengths, and the ben-
ding stiffnessK to non-dimenionalise stresses. Followihittakeret al. (2010, we introduce the
following dimensionless parameters and their asymptotissize

aF

L d
(==>1  9=-<1, F=5_0p

o), e— g <1 2.1)
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Fic. 2. The general setup of the elastic-walled tube. The tube Imgghlié, wall-thicknessd, and an initially“elliptical cross-
section with semi-axeaccoshoy andacsinhgp and a circumference ofr&. The tube is subject to an axial tensibnand a
transmural pressune. Also shown are the dimensionless Cartesian coordinatesz. The dimensionless coordinates [0, 21)
is the elliptical angle around the circumference, rather thaeagth.

The parameteré andd are aspect ratios, assumed to be large and small respectivelyldag thin-
walled tube.Z is a dimensionless measure of the axial tension, taken @(lbeso that the restoring
force from the axial tension has the same magnitude as the resforaegfrom azimuthal bending of
the tube wall. The parametermeasures the dimensionlésssamplitude of the deformationsedday
the pressure. We assurae< 1, so that allO(£?) terms can be neglected, allowing us to linearise the
problem for small amplitude perturbations.

It will also be convenient to introduce the additional paramete

~ 92027
F= 21— v?)’ (2.2)
which will appear naturally in the asymptotic equations belim this work we consider only the case
whered/ <« 1, so that¥ <« 1.

In our linearised problem, the size of the deformations (and henisgproportional to the pressure
scaleP. The constant of proportionality depends on the dominant ar&ch in the coupling between
the pressure and the«deformations. This in turn depends on the@mpariameter regime. In this work,
we consider three_distinct regimes, referred to as Regimes la, b bnAdave shall see below g4,

appropriate expressions ferare:

3p
a? Regime la
£= . (2.3)
M Regimes Ib and lab
K.Z3/2 9

The first expression followg/hittaker(20159; the second is derived here in Appendix

2.3. Coordinates for the tube wall and deformation
We describe the deformed position of the tube wall parametribaily 1, z). Motivated by an elliptical

cylindrical coordinate system, we takeandzto be dimensionless material coordinates, defined so that
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the position of the undeformed tube wall is is given by

¢ coshay cost
r(t,z)=a| csinhggsint | . (2.4)

z

The coordinates therefore lie in the ranges (0,2m) andz € (0,¢). The dimensionless constants
given by
o rtsechog
~ 2Egsechop)’

so that the circumference of the undeformed tube is precisey (Here E€k) is the complete elliptic

integral of the second kind, given by B¢ = 7% \/1— k2sir?6d6.)

We also define unit vectofsandZ aligned respectively with the andz coordinates in the undefor-
med surface, and a unit vectondrmal to the undeformed surface. Followidhittakeret al. (2010,
we introduce the scale factor

(2.5)

h(r):} or :c(%coshbo—%cosz)l/z. (2.6)
al|or
The unit vectors are then given by
. 1lor . lor L o
t—%ﬁ7 Z—aa-z, n=1txz. (27)

For later use, we also define the dimensiohlessibase-statathal curvature by

1ot / _czsinh200

BEn'HE_ T (2.8)
We adopt the same representation of the wall displacemems/diiitaker(2015, namely
. oga7 1 " X -
7= (s [erannai +eae) 29)

where the function$&; 7, ¢) describe the dimensionless displacements in the normalugziinand
axial directions, respectively. (Note that the/ ¢ in the pre-factor in2.9) means that we negfd= O(¢)
in the bulk of the tube. This choice of scaling may appeahgljgunconventional, but is used here for
consistency wittWhittaker(2019.)

The'clamped boundary conditions at the tube ends imply that

r(r,z) =r(r,2) and ﬁg—rz(r,z):o at z=0,¢. (2.10)

In terms of the dimensionless functions ih9), these boundary conditions correspond to

0¢

£=0, =0, n=0, =0 (2.11)

Standard periodic boundary conditions apply at 0 andt = 271.
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3. Equilibrium eguations

In the absence of tangential and axial forces on the wall, anchdfimertia, the Kirchhoff-Love shell
equations used byvhittakeret al. (2010 to model the wall displacements are

Oa M +N%Ppyg = —p, (3.9
OsNPE—byOgMAY = 0, (32
OsNPZ—b20sMAY = 0. (33)

whereb, g is the curvature tensdN?? is the in-plane stress tensd?” is the bending moment tensor,
and[, is the covariant derivative in the directiafi. The Greek letter indicesfange oyér2), for two
in-plane directions, and the summation convention is adopgtedn Whittakeret'al. (2010, we take
the material coordinated' to satisfy ! = ah(t)dr and &? = adz, so they are aligned with the tube
geometry in the undeformed state. Following the usual cormensubseript and superscript indices
represent covariant and contravariant tensor components reshedhdicescan be raised or lowered
using the metric tensax, g (defined in f\.2)), so e.gbgy, = aaBb[f,.

The curvature tensdy, g is obtained geometrically from the displacements, while thesssedNap
andM?® are related to the displacements through the elasti¢'consgitatv, which we assume to be
linear. FollowingWhittaker (2015, we obtain leading-order expressions for these tensors in terms of
the displacement functior{§, n, {). The detailedCalculations can be found in Appendix\e obtain

_ B(1 0, elfibn b L
baﬁ o a(O 0>+a£h<b21 boo +O<a£ E)’ (34)
K/0o ,0 eK (N S eK £
ag _ K N S 2 €
N = a2<0 e@)%@mz(s Z>+O<a2192£(19’£)>’ (3.5)
ap _  EKG M N2 eK €
M = a,é(MZl Ni22 +0 ol 1) (3.6)

in terms of the<dimensionless curvature compon&a@ the dimensionless azimuthal hoop stress
N, the dimensienless in-plane shear strEsshe dimensionless axial stress perturbagigrand the
dimensionless bending momem$'? (all functions ofr andz).

The-leading-order dimensionless curvature components are

- = =N d (nB 19 (&
buy = B<_EB+0r<h)>+dr(h+har<h))’ 3.7)
o 2
bio=by = %ﬁz (i) +%, (3.8)
N 2
by = o%. (3.9)

022"’
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the leading-order dimensionless in-plane stress components are

. BE 19 a

N— 12(—h+hdr(h)+ 02)’ (3.10)
. 121-v) (on , 92

§ = == ( ) (312)
- 14 BE 10 (n

5 12(d+v( - ha(h))) (3.12)

and the leading-order dimensionless bending moments are

-1 o &B 19 (n 10 (nB 14 (& 9% (¢
M™ = B(_h+h0r(h)> har( +har<))_"ﬁ<h>’ (3.13)

|
o - L nfE) 254
- G ()]
e - 8% a2 L0 ()
|
£() 2 0845.(9)

FromWhittaker(2015, the covariant derivativelS, are given by

1,0 10
=gy 70E), To=—o+0(e). (3.17)

As in Whittaker(2045, the only place we need to include tB¢e) correction terms in3.17) is where
the derivatives are applied to the large axial pre-stred&#nThe relevant expression is

OgNP = %NT + T NP TP Ny, (3.18)
where
1dyn 1 £ 0%n ,  €0%
ri r,=— -7 M3,=—-2 .
217 376z 227 ath 922 27 al 92 (3.19)

andyi; is a component of the in-plane shear, as definedi)(and expressed in terms &fandn in
(A.15). Finally, we introduce a non-dimensional presspréy writing

p=Pp. (3.20)
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Substituting the above expressions infolj—(3.3), and neglecting terms @(£?), we obtain the
following equilibrium equations:

SZ(M%}+|\7|T1§+|\7|§T1+|\7|§§>+§~+12(1—v2)j (i) = —-2p, (3.21)
(Ne+&) +121-v2).# (%)22—82§(M}1+M31) _ (3.22)
& S 2\ & EET n .
(s,+zz)+12(1—v)y[—(h>z+(h)u+2zu} - o, (3.23)

whereN, §, ¥ andM?f are given by 8.10—(3.16), (- ), =9/dz, (- ); = h~1d /3%, and the pressure
scaleZ is given by
92¢a’P
P = K (3.24)
The size ofZ is fixed by the relationship betweaenand P, which.will be.determined ir§4 below.
The boundary conditions on the system &d.{) atz= 0 andz = ¢, together with periodic conditions
betweenr =0 andt = 27
For 9 <« 1 and.# < 1, the highest axial derivatives«in each-of the equatih81j—(3.23 are
multiplied by small parameters, so we expect to find boundargriayWe wish to find a matched
asymptotic solution to3.21)—(3.23 and @.11) involving, boundary layers of different thicknesses in
the axialzdirection. To find the possible boundary-layer widéhave consider possible balances in the
equations whera = O(d). (The scalings are such that=1 corresponds to a thicknessaof the same
order as the diameter of the tube, while- £.corresponds to the length of the tube.) We compile table
which gives the sizes and origins of the'various terms in thelibguim equations §.21)—(3.23 when
z=0(0) < 1. In the sections that follow;,we shall use this table to carside dominant balances at
different magnitudes od that give rise to different boundary layers in the region of paransgace
whered <« 1 and.7 « 1.

4. Analysisfor > 1

For a boundary-layer of width > 1, we make use of the analysis\iihittaker (2019, where a ‘bulk
solution’ with & ="O(¢) and an ‘outer shear layer’ with = O(.% ~1/2) are found. The analysis there
must be adapted for otr'case here, in two different ways dependitite precise regime.

When .Z /2% 07 we expect the same boundary-layer structure for the outer sagar 4s in
Whittaker (2015. The bulk solution is forced directly by the transmural pressurdchvis balanced
by azimuthal*bending and axial pre-stress/curvature effects.strbeture of the outer shear layer is
primarily set by a balance between between the axial stressxaaldpae-stress/curvature effects. In
both-the"outer shear layer and the bulk, azimuthal hoop sresi-plane shear stress are also present
at'leading order. The transmural pressure does not appear direttly equations for the outer shear
layer. Instead the displacements there are forced by the matohihig layer to the bulk solution.

The inner boundary conditions on the outer shear layer thaiegd here are different from those in
Whittaker(2019, as we expect a different boundary-layer structuredfg 1. The details of the outer
shear layer wher#? ~%/2 < ¢ can be found in AppendiB below, where a solution is derived in terms
of the azimuthal eigenfunctioné () of a particular linear operator. The relationship between ittee s
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Physical Contribution to Contribution to Contribution to
Effect Normal Balance Azimuthal Axial Balance
(3.21) Balance (3.22) (3.23)

Hoop Stress BN ~ (£,1,/9) Ne~(&,n,0/8)

Shear Stress  — S~(n/d%7/3) S ~(n/s,Q)

Axial Stress  — 2,~(£/8,n/8,0/5%)

Pre-Stress/ % &~ F& /52 TNz~ FN)% T (Vi1p+(2d)

Curvature o~

F(£/6,n/8,4/%%)

Azimuthal  92(MY); 92B(MLL), —

Bending ~ 9%(&,E/5%n) ~8%(&,€/8%,n)

Torsion 92((M12) 1+ (M?1) ) 92B(M?1), —
~92(8/8%,n/82,0/8)  ~92(§/8%.0/9)

Axial 92(M?2),, — -

Bending ~9%(&,£/6%n,{/5)/5

Transmural & — —

Pressure

TaBLE 1 Scale estimates of the dimensionless.contributions toithergionless equilibrium
equations 8.21)—(3.23 from the different physical effects, over an arbitraryaxength scale
z~ 0, whered < 1. (All three equations have*been non-dimensionalised on theram scale
eK /(a3¢92), and the axial coordinate z has been non-dimensionalisewube length scale a
of the tube cross-section.)

of the deformations and the presSure scale is as fountltastaker(2019, so we have

3
e:a?P = P =9%. (4.1)

For.Z /2 > ¢ onathe other hand, the outer shear layer extends to the whate dength of the
tube, and there is'no separate bulk solution. The forcing of $@atiements in this single ‘bulk shear
layer’ must come directly from the transmural pressure acting wittahlayer. The displacements must
therefore be“smaller,.so that the transmural pressure appearsiagiesader in the equations for the
bulk shearlayer. The relevant calculations can be found ireAgdjxC below, where the solution is con-
structed in terms of the same azimuthal eigenfuncti@(is). We find that, at leading-order, the applied
transmural_pressure is balanced by the combination of all thrgdaime stresses. The relationship
between the size of the deformations and the pressure scale ttimbe

92¢4a3pP
E=—"

_ -3
< P =103, (4.2)

5. Analysisfor & = O(1)

We refer to tablel and conside® = O(1). Following our chosen parameter reginielj, we take
9 <« 1, # <« 1and# = 0O(1). We also assume that ti .#?) contribution from transmural pressure
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10 M.C. WALTERS & R.J. WHITTAKER

in (3.27) is negligible at this axial length scale. (This is approprisitece the pressure is forcing the
displacements in a region with a longer axial length scale Shorter length scale here will increase
the magnitude of some of the other terms in the equilibrium #gs, meaning that the pressure no
longer contributes to the leading-order balances.)

Whend = O(1) we have equal axial and azimuthal length-scales. This stsytes the three displa-
cements&,n,¢) should all have the same scaling, which also leads to theipahstresse$N, S %)
having this same expected scaling too. We defih®s be this common scale. Since the equations we
are considering are linear and homogeneous, the common sisadirigjtrary as far as the equations.are
concerned. It will instead be determined by the matching cammit It will turn out that appropriate
choices will be? = .Z1/2 when9 < .% < 1 (Regime la) an&® = ¢~ when.# < 8 < 1 (Regimes
Ib and lab), both of which satisfy’ <« 1.

5.1. Dominant balances in the equilibrium equations

Referring to tablel, we first consider the normal balanc{1). Sinced <1, F ' 1/andd = O(1),
the hoop-stress terBN dominates §.21). With no other terms at this ordel must vanish at its
O(%) expected order. In other words, the varidd&s’) contributions toN from the displacements
cancel between themselves at this order. The actual sikeimthen set by the maximum size of the
other terms in§.21): O(82%), O(#%) andO(Z?). The definition £.2) glvesﬁ ~ (?92.Z, and we
have assumed tha# = O(1) and/ > 1. Therefore,8? < .#, ‘and henceN is at least a factor of
O(#,%¢ 1) smaller than itO(%) anticipated scale.

In the azimuthal balanc&(22), the hoop stresll; and shear stress would be present at leading
order if they both had their expect&¥) magnitudes: Howevel\; vanishes at that order. Hence
we baveéZ = 0 at itsO(¢) expected order, with,non-zero corrections coming in only at aivelat
O(Z,¢12) smaller.

In the axial balance3(23, the shear stfes$ and axial stres&; are present at leading order, with
anO(%) magnitude. HowevelS;, mustyanishiat that order. So, taking thderivative of 3.23, we
have that,, = 0 at itsO(%) expectéd order, with non-zero corrections coming in only at aivelat
O(Z,¢12) smaller.

5.2. Form of the stress components
Based on the above arguments, we can write the stress comp@aisent

N = %[0+0(j,<5*132)}, (5.1)
S m[(%(rwwﬂr)%o(/ 1), (5.2)
- %[(BO(T)Z+C0(T)) +<€(Bl(r)z+C1(r)) +o<ﬁ,%—1@)} , (5.3)

whereAj;"B; andC; are arbitraryO(1) functions oft, and the denominator in the expression $is
chosen for later convenience. Tihe 1 functions are included because we know that the expressig)n (
will need to be matched td(5) in the outer shear layer o€(16) in the bulk shear layer. BothB(5)
and (C.16) turn out to have magnitudes equivalentQgs?), and so may induc®(%?) corrections in
(5.2.

Substituting the forms51)—(5.3) into the equilibrium equations3(21)—(3.23, we find that the
normal balance3.21) and the azimuthal balanc8.22 are automatically satisfied (%%, 42) with
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no constraints on the functiodg, B; andC;. The axial balance3(23 however, requires

1 7} (Ao 1 17} (Al

AL+ vhar h>+80:0’ AL+ vhar h)+Bl:0' (®-4)

This allows us to expredd andB; in terms ofAg andAs, though it is more convenient not to eliminate
Bp andB; at this point.

5.3. Displacement recovery
Recovering the leading-order displacements frér)((5.3) using equationsX.34)—(A.86), we abtain

€ 0 [ iB,Z+1ChZ— (Av—Dj)z--Eo
¢ ‘1mﬂ@4mﬁ“%*m<6 T IS
= ot (- 3B62 - 162+ (o D)+ Eo) (5.6)
T = aovyTe0r ~2 0 ’ '
%
. = m(%BOZZ+CoZ+Do), (5.7)

whereAg, By, Cp are the arbitraryD(1) functions oft introduced'in . 1)—(5.3); Do andEy are additional
arbitraryO(1) functions oft (arising as constants of integration); and a prime denotes diffatiem
with respect tar.

6. Analysisfor 0 <« 1

We again make use of table and consider balances in a boundary-layer of axial leldgtivhere
0 < 1. As before, we také < 1,7« 1 and.# = O(1), and assume that the(#?) transmural
pressure is negligible at this length scale. (The latter assamfs found to be consistent with the
solutions obtained.)

6.1. Azimuthal balance

Examining the ‘Azimuthal’ ¢column of table 1, the possiblentinant terms in the azimuthal balance
(3.22) are: theO(&) andO(¢/5) contributions from the hoop stress, 1@én /52) andO({ /&) contri-
butions from the shearstress, ad@3?& /5?) contributions from azimuthal bending and torsion. The
other terms arewall'asymptotically smaller than one of these.

We now censider th@©(n/5?) contribution from the shear stress. If this is asymptoticallgéar
than all the other terms, thep itself must vanish at that order. Otherwise there must be ogherstin
the’leading-order balance, in which case we need

n < max{5%,9%€,5¢ } (6.1)
From the latter we can deduce that
n< max{f,(/c‘i}, (6.2)
and also 92
572’7 < max{azf,s“f/éz,szz/a} < max{5,82£/62,z/5}. (6.3)

Gz0z 8unp || uo Jesn elbuy 1seq Jo Alsieaiun Aq Z12/S18/Z 1 0Jexyaewewl/se0 L 01 /10p/a[onie-aduBApe/jewewIl/woo dno-oiwepese//:sdiy wadf pepedjumod



12 M.C. WALTERS & R.J. WHITTAKER

6.2. Axial balance

Examining the ‘Axial’ column of table 1, the possible domimderms in the axial balanc&.@3 are:
the O(n /) contribution from the shear stress, and @ /5), O(n/d) andO({/5?) contributions
from the axial stress.

If (6.2) holds, then we see that the twyaerms in 8.23 must be asymptotically smaller than at least
one of the other terms. Hence only 19é& /5) andO({ /62) contributions from the axial stress canbe
present at leading order. Considering @€ /5°) term, we must either hav@, = 0 at that order, or
else

(59¢. (6.9)

6.3. Normal balance

Examining the ‘Normal’ column of table 1, the possible domin@nms in the normal balancg.g1)
are: theO(&), O(n) and O({/d) contributions from the hoop stress, t8.%&/62) contribution
from the axial pre-stress/curvature, €92 /5?) contribution from the torsion, and ti@(92& /%),
0(82n/5%) andO(82Z /6°) contributions from the axial bending.

If (6.2) holds, we see that th®(n) term from the hoop stress.is asymptotically smaller than one
of the other two hoop stress contributions #121), and so cannot be present in the leading-order bala-
nce. Similarly, 6.3) shows that th€@(92n /52) contribution from the'torsion is always asymptotically
smaller than one of the other terms.

If (6.4) holds, we see that th@(92{ /5°) term in the axial bending is smaller than €932& /&%)
term in (3.21), so cannot be present at leading order..\We also’see that tha{4hé) term in the hoop
stress is no larger than tia &) term there.

Hence, in the case wher6.{) and €.4) hold, the possible terms in the leading-order balance are
O(£,1/58,F & /52,97 /5.

6.4. Distinguished limits

We now seek values @ that could give rise'to distinguished limits in the three aguilm equations,
and hence determine the possible boundary-layer thicknesses.

We focus on the normal balance;-and start with the case in whithand €.4) hold. Fromg6.3, the
possible terms in the leading-order balance@(é, {/5,.% & /5°,92%& /5*), and we note thaf < 6¢&
from (6.4). However, if{'~ 6&,ithen the leading-order balance in the axial equation setsethgon
betweené and{, whichimeans that we cannot just have @ ) andO({/9d) terms alone at leading
order in the normal equation. (If this were the case, there wouldskeand conflicting relation between
¢ and{.) This means that at least two of the following terms must begmieis the normal balance:
O(£), O(.F £/ 82, 0(92¢ / 5%).

Otherwise one or both o6(1) and 6.4) do not hold. In this case, then at leading order, one of the
equations is eithen,, = 0 or {z;= 0. We would then have a polynomial solution for the correspandin
variable(s), which would appear as a forcing in the remaining @natSince the system is linear, we
can'subtract off these polynomials and the corresponding pkatimitegrals for the other variables, lea-
ving'behind a system in whiclt® (1) and 6.4) do both hold. These polynomials and particular integrals
cannot give rise to any additional distinguished limits nlotady occurring in the the system where
(6:1) and 6.4 hold.

This means that the normal balance considered above setsuhddg layer widths, via balances
between the following components: the hoop stress scalifgdwithe pre-stress/curvature scaling with
#& /52 and the axial bending scaling with’& /5*. Boundary layers occur when two or more of the
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Regime Ia (¢ < .Z < 1) Regime Ib (F < ¥ < 1)
' AB
: &\ HS
5
PC T s -
T T T - T T E——
SE-12 912 g ) F12 9l/2 gg1n S

Fic. 3. Sketches of the variation in the scale estimates for the terrtfee normal force balance as the axial scalearies;,
showing the distinguished limits (filled circles) in Regimesata Ib. The scales agfor the hoop stress (Hsg)f,z‘.f/é2 forthe
pre-stress/curvature (PC), afidé /5* for the axial bending (AB). Solid lines indicate when these effere presentat leading
order; dashed lines are used otherwise. The distinguished loodur when two of the three effects’have the, same magnitude,
and the third is smaller.

components balance, and any remaining component is asyoaitosmaller. Different pairs of these
terms balance whed = O(.#1/?), § = O(31/?) andd = O(3.# ~1/2)Whether or not the third term
is smaller (and hence we have a distinguished limit) in eadhaxe cases is controlled by the relative
sizes ofd and.7, as shown in Figuré.

For 9 <« . <« 1, which we term Regime la, we have'two yrelevant distinguishmitdj which
occur atd = O(8.7 ~%/2) and § = O(.#%2). Azimuthal'bending dominates far< 9.7 /2, pre-
stress/curvature fa#.# ~1/2 < z< .2, and the hoop stress fof /2 < z. At z= O(8.% ~1/?), we
have a balance between the pre-stress/curvattire’and azimutldaidpein what we shall term the ‘la
bending layer'. Az= O(,?l/z), we have a balance between the hoop stress and the pre-stressit@jrv
in what we shall term the ‘inner shear layer'.

For # <« 9 < 1, which we term Regime Ib,,we have only one relevant distinguadimit, which
occurs ad = O(31/?). Azimuthal bending deminates far< 9%/2, and the hoop stress dominates for
912 < z At z= O(8%/2), we havé a balance between the hoop stress and azimuthahbeindivhat
we shall term the ‘Ib bending layer'. In this regime, the pre-stresséaturg effects are always smaller,
and never contribute at leading order.

For # ~ 9 <« 1, which we term Regime lab, there is one special distinguisingt This occurs
atd = O(9%2) = O(Z V2 & 0(9.% ~1/2), where all three terms are present at leading order. As in
Regime Ib, azimuttial bending dominates fox .#1/2, and the hoop stress dominates f#8¢/? < z
The difference here i$ that pre-stress/curvature is also preseat@t.# 1/2). ~

(The Regime/nomenclature comes fralalters (2019, where a ‘Regime II' with.# > 1 was
also considered. Consideration of that regime, in which shebry no longer applies in the bending
boundary layer, is' beyond the scope of this paper.)

7. Regimela(d < # <« 1)

We now consider in detail the boundary layers that exist in Regia, whered <« F < 1. The
governing equations in each layer are derived and solved antpadder, and then the individual
boundary-layer solutions are matched to give a full solutionhis tegime, we havé < .%, which
impliesﬁ‘*l/2 < L. Hence, from the analysis 6#, we have an outer shear layer for O(ﬁ*l/z) and
a bulk solution forz= O(¢). From @.1), we haves = a®P/K and & = 92¢. The intermediate region
atz= 0O(1) was considered if5. Here we consider the expected layersZeg 1, as anticipated in
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14 M.C. WALTERS & R.J. WHITTAKER

§6.4, namely an inner shear layerat O(.#1/2) and la bending layer at= O(3.% ~/2). We will then
complete the matching between the various boundary layers.

7.1. Inner shear layer z O(.#1/2)

In the inner shear layer with = FY2 we expect a dominant balance in the normal direction between
the azimuthal hoop stress and the pre-stress/curvature terms¢ vpitsent in both these termsiat
leading order. We then také ~ 8¢ (the largest permitted scale fgp so that{ can also contribute

to the hoop stress. Fay, the magnitude is constrained b§.#)—(6.3), meaning it is absentfrom-the
normal and axial balances. We thus take- d{ to allow a contribution to the shear/ stress in the
azimuthal balance.

With the relative sizes of, n, and( fixed, the only remaining degree of freedam in the-scalings is
the overall scaling of the displacement amplitudes. Thisbgrary as far as the €quations are concer-
ned, as they are linear and homogeneous at leading-order. Tdrdtode will.be set by the matching
later on. Nevertheless, it is convenient to chose the righitgraow to simplify the matching below. It
turns out thag = O(ﬁl/z) is appropriate, to match the magnitude of the sméhit of (5.9).

We therefore introduce th®(1) scaled variable$z, &, 7, }, and write:

2= g3 E=gWE  n=3F%hy (=% (7.2)

Substituting these expressions into the equilibrium eqnoat{.21)=(3.23, we obtain the following
leading-order equations for the inner shear layer:

[ - & 2 028
B<BE+th)+(l~v )ﬁ = 0, (7.2)
[ 2B .14 %7
T <h5+(1+ v)§2‘> +(1-v)5% = 0, (7.3)
02 vBoE
7 ha - % (74
with neglected terms dB(®2.752,.%), O(.%), andO(.% ), respectively.
Eliminating { between :2y'and (7.4) we obtain
9% 0E
55 —B 55 =0. (7.5)
The generaksolution of7(5) is . B B
E=Ae B2 BeBZ L C, (7.6)
whereA, B, andC are arbitrary functions of.
Substituting this into{.2) and integrating, we then find
-V (A2 _geb2, By (2.7)
h v2 ’

whereD is another arbitrary function af, and we have used the fact tfak 0.
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Substituting 7.6) and (7.7) into (7.3) and integrating, we obtain
2 9 [@24V) (aid, gaBr)_ B ozl g
A= [T(Ae +Be ) 5 -CP| +E2+F, (7.8)

whereE andF are two more arbitrary functions of
Finally, we can use3 1]) to evaluate the shear stress as

g _ plaa-v) <aﬁ+az>

2h Jz ot

- L[ () iy o) +”§> +€]. (7.9)

This will be required for the matching below.

7.2. la bending layer z= O(9.% ~1/2)

In the la bending layer, we expect a dominant balance in the dalineation between the axial bending
and the pre-stress/curvature terms. This setsOfe# ~1/2) boundary-layer width. The appropriate
scales for the three displacements arise from the matching vetimtier shear layer froi7. 1 Linear
behaviour of the displacements in the matching region leadst O(9.% 1/2), n = 0(8.%Y/2) and
{ = O(8). (These scales mean that sizesjodnd relativexta& are larger than the maximums envi-
saged ing6.1 and§6.2 So the alternative options of,, = 0, and{;, = 0 for the azimuthal and axial
balances come in to play.) yan

We introduce thé&(1) scaled variable$z &, 7, { }, and write

o 9.5-1/23 fo 9.F-12¢E 2 9.71Y2p 7= 9¢
- J/12(1-v?)’ /1214 v?)] = VI12(1—v?)’ /121 vy)

(The O(1) factors of/12(1— v2) have been introduced for convenience in the calculationsabelo
Substituting these expressions into)the equilibrium eqoat(®.21)—(3.23, we obtain the following
leading-order equations for thela-bending layer:

(7.10)

9 9%

azi_azi = 0, (7.11)
3217
02’27 - 0, (7.12)
4

with errors ofO(3.% 1), 0(8.% 1,.%), andO(8.% ~1,.%), respectively.
Byrinspection, the general solution of.{)—(7.13 is

§ = Ael4+Be+Cz+D, (7.14)
n = Ez4F, (7.15)
{ = Gi+H, (7.16)

whereA-H are all arbitrary functions of.
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16 M.C. WALTERS & R.J. WHITTAKER

7.3. Boundary conditions and matching

Applying the boundary condition®(11) atz= 0 to solution {.14—(7.16) in the la bending layer, and
suppressing the exponential growth into the interioe(c), we obtain

B=F=H=0, A=C=-D. (7.17)

Hence the solution in the la bending layer simplifies to

E = Ale?-1+2), (7118)
n o= Ez (719)
{ = Gz (7.20)

We now consider the solutiory ©)—(7.9) in the la inner shear layer. Suppressing the exponential

growth into the interior= ), and ensuring decay of the displacementg as(0'to match with the
smaller scales in the bending layer, we must tBke 0, C = D = —A,-andF= ——((2+ v)A/hb)
The solution 7.6)—(7.8) in the la inner shear layer solution then simplifies to

§ = AlePE-1), (7.21)
~ o d (2+V)" 7|§‘2 B_ N LN

A o= ar{ o A(e —1)+mAz2]+Ez, (7.22)
> VA 772 B_,\

;o h(e 8 _1_ﬁz>, (7.23)
s z120-v) o214 v) ;g VAN | -
A C T 020

We now complete the matching between’the bending layerisnl{f.18—(7.20 asZ — « and the
shear layer solutiorn7(21)—(7.23 asZ— 0. Equating the linear behaviour &f n and{ in the matching
region, we obtain

_(1-v?B;
vh ’

A—BA. E(2+v)jr<ﬁ‘>+E, s

(7.25)

sinceB < 0. (Note'thatSin (7.24) has not been used in this matching, but will be needed in éxé n
matching below.)

Next, we match the solutiory (21)—(7.24) in the la inner shear layer &= « to the intermediate
solution 6.2) and 6.5—(5.7) asz— 0. We find that

vh

A 2 1 v2Co
Amese St hal(s)) 0

and
Ag=Do=Ey=0; (7.27)

while By, B; gndCl are unconstrained at this order. (Observe that matdEiegmecessary to obtain the
equation foikE.)
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Finally, we match the outer limit of the stresséslf—(5.3) and displacementS(5)—(5.7) in the
intermediate solution az— «, with the inner limit of the corresponding outer-shear-laydutsons
(B.4)—(B.6) and B.7)—(B.9) asZ— 0. First, we se¥ = .# /2 to match the dominant behaviour between
the layers (in particular, th# terms in). Then, completing the matching, we find that

Ay = By=0, (7.28)

Co = mlénvnm (7.29)
2

A = 2(1+v);i‘£[$i(ﬁ‘;ﬁ‘) —Yn(r)], (7.30)

B, — —wlunénvnm, (7.31)
2

Dn = E,=0, (7.32)

while C1, Do, andEg are unconstrained. Note thatthe expressions hefandBg are consistent with
(5.4), as are those foks andB; by virtue of the‘eigenvalue equatioB.().

This concludes the matching. All the arbitrary constants/fonstof integration have been deter-
mined in terms of the coefficient, from the.outer shear layer, with the exceptionGafthat would
require higher-order matching.

7.4. Final matched solutions

Combining the matchedresults above, the leading-order enkiin each layer are as follows. The
solutions are written in terms-of a single set of amplituﬁfefor the azimuthal mode¥,(1) in the outer
shear layer. In any given*problem, these amplituigsvould be determined by matching the outer
shear layer to'the bulk solution a&= O(¥). B

In the outer shear layer& z < ¢ with 2= z/.# ~1/? we have

F1/2 ® B, [1 I A !
¢ - mn;un[un@_e " )_Z} <h> ! (7.33)
FY2 2B [1 A
= A 2 L,n(l—e” )—]Yn(T% (7.34)
N -
S PR Gl Nk (7.35)
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18 M.C. WALTERS & R.J. WHITTAKER

In the intermediate regioff /2 < z < .% ~1/2 we have

FL/2 e 12« (Y

& = 21 V7B lvhnzlsnYn—znZan (h) ZZ], (7.36)
F12 12,
F1/2 o

In the la shear laye$.% ~1/2 < z < 1 with 2= z/.Z%/2, we have

d‘l/ZVh

f T i (Z B"Y”> (1), (7.39)
F32 (24 v)v . ™
= 12(1\/20r[<zB"Yn>< (1-e B')—ézz>
2 < [21+v) d (1Y, v 2(14v) )
+nlen{War <har> N <§+ m >Yn}Z] . (7.40)

7 = 1 S <z ann>< (1 e B|Z)+z) (7.41)

In the la bending layer < .Z /2 with 2='z,/12(1— v2) /(8.7 ~%/2), we have

8.7 V2h [ & .
¢ = W(ZBM) (1-2-¢7), (7.42)
_ 9FP2(14v) & Yo\ 11 /vy .
= WZBH{ <§> +un(ﬁ <h> _Yn) }Z, (7.43)
N\ : 5 Bova | 2 7.44
s N (2 ) a0

The order-of-magnitude &, n and{ in the different boundary layers, and the power-law behaviour
between them is shown in Figuféa).

8. Regimelb (¥ < 8 < 1)

We now consider in detail the boundary layers that exist in Redb, where# < 8 < 1. The gover-
ning equations in each layer are derived and solved at leaditeg,@nd then the solutions are matched
to give a full solution. In this regime, we ha¥e> .%, which implies.# ~1/2 >> ¢. Hence, from the
analysis in§4, we have a single bulk shear layer whey> 1, with width O(¢). From @.2), we have
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(@) Regime la Displacement Scales

1 NS ‘ | /ﬁ
gon| KT : 2
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Inner Shear
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(b) Regime Ib Displacement Scales
o o x
n
1+ B LXK
E
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Fic. 4. The order-of-magnitude of the three displacement funcifonsand{ in the different boundary layers, and the power-
law behaviour ¥ for a = 0,1,2) in the regions between them. The two intersecting dashed lm) reflect a change in the
asymptotic order of theandz? terms in.the expansion af between the Ib Bending layer and the Intermediate region.

£ = 920*a%P/K and # = (2. The intermediate region at= O(1) was considered ifi5. Here we
consider the expected layer foi< 1, as anticipated ifi6.4, namely a Ib bending layer at= O(9Y/2).
We will then eemplete the matching between the various bogynidgers.

8.1. Ib hending layer z= O(81/?)

In the Ib bending layer, we expect a dominant balance betweahlzending and the azimuthal hoop
stress in the normal direction, withis present at leading order in both of these terms ¢6e. The
sealing-foré is set by the need to match to the behaviéur O(¢~1) asz — 0 from the intermediate
region. We then také€ ~ d& so that it can also contribute to the hoop stress. The scaling fisr
determined by the need to match the shear séetith the intermediate regioh.

1 We haveS~ dn/dz here, and it turns out this needs to match with Ageerm in (6.2), which has a magnitude @(%?) =
O(¢~2). Hencen ~ 91/2¢-2,
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20 M.C. WALTERS & R.J. WHITTAKER

o
°

We therefore introduc®(1) scaled variable$z &, 1, Z } and write:

\/é ° _ 2
g2, V& — -vh-
z=291 [12(1_\/2)]1/4 Z, E=¢1.vhE, (8.1)
o \/é o _ \/EVZ
2q1/2 V& —yplg1/2 VeV
n=¢39 [12(1_‘/2)]1/4 n, (=079 [12(1—v2)]1/4 (8.2)

(TheO(1) factors ofv/2, 11— v2), v andh are introduced for convenience in the calculationsithatfol-
low.) On substituting&.1)—(8.2) into (3.21)—(3.23, we obtain the following leading-order equilibrium
equations for the Ib bending layer:

(1-v?)5er

(8.3)

= 0, (8.4)

BZS = o (8.5)

with errors ofO(¢~2,. %9~ 1), O(¢9Y/2,.%) andO(¢~191/24%) respectively.
We eliminateOE between 8.3) and .5 by differentiating 8.3) with respect toz’ and then
substituting ford & /dZ using .5). We obtain

(Zezg + 4B 0225 =0. (8.6)
The general solution of this equation is
{ = (Acos(|l??|1/22) + ésin(|l37|1/zi))e*®l/zi
i (écos(|l3_|l/2%) + If’)sin(||?7|1/2%))e®l/zi+ E+F2, (8.7)

whereA—F are arbitrary funcnons of.
We now re-arrangel(@) for &, and ehmmate?“f/dz“ using @.5). Noting thatB < 0, this gives

s (1-v?) 95¢ B vzﬁ
$="4BF 0% B oz’ (8:8)
from which'we _obtain
& = B 72((A-B)cos(|B[Y22) + (A+ B)sin(|BY/22) ) e B2
— o o ° 1/2s VZ °
+|B]/2(~ (& +D) cos(|BI/%2) + (€ — B)sin(|B[/22) )2 gt @
The general solution oB(4) for 1) is s i
A =GZ+H, (8.10)

whereG andH are two more arbitrary functions of
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8.2. Boundary conditions and matching

Applying the boundary conditiong(11) atz= 0 to the Ib bending-layer solutioB(7), (8.9 and 8.10),
and suppressing exponential growth into the interier:(c%), we find that we must take

B=C=D=H=0, E=-A, F=|BY2A)N2 (8.11)
The solution in the bending layer then simplifies to
E = _AB[2 [1— (cos(|B_|l/2%) +sin(|§|l/22))e—|8_\”2ﬂ : (8:12)
h o= Gz (8.13)
{ = —A{l— v—2|B|¥22— coq|B|"/?%) e*“ﬂl/zi} . (8.14)

From 3.11), the shear stress in the bending boundary layer (which wewneddrfber matching) is
then given by
~ . 512(1-v)an _ 5 12(L=)ue
_ 2 on 1g1/2) ., p-2
S=r2— o +o(z 9 ) e o (8.15)
Matching the bending-layer solutiof.(2—(8.15 asZ— « with the.intermediate solutiorb(2) and
(5.5-(5.7) asz— 0, we find that

Ao=Dg=Eg=0, Co=12(1—v?)B¥2A, " A =12(1-v?G. (8.16)

The other coefficients are unconstrained at leading order.

Finally, we match the outer limit of the stresséslj—(5.3) and displacement$(5)—(5.7) in the
intermediate solution ag — o, with the inner limit of the corresponding solutionS.(3, (C.16),
(C.11), and C.17—(C.19 in the Ib bulk.shear layer a&&— 0. The latter involves a set of amplitude
functionsqn(2) for the azimuthal mode¥,(T). The Y, (1) are fully determined, while thg,(2) must
satisfy the ordinary differential equations.(0 and C.15. The matching provides boundary conditi-
ons on thay,(2), and also expressions forthe unknown amplitudes in the intiateesolution in terms
of higher derivatives of}, atz = 0. First, we note tha#”? = /=3 from (C.20), and se%’ = ¢~! to match
the dominant behaviours’between-the layers (in particularAtierms in%). Then, completing the
matching, we find that

PO=0,  h(0)=q(0)=0 (n=123,..), (8.17)
together with
Ao(1) =0,  Bo(1)=0,  Co(1)=0p(0)+ H an(0)¥a(1), (8.18)
n=1
= Q0 9 (1 91d% °
Au(T)==2(1+ v)nzlqu(nz)ﬁr (%arh(ﬁ_\(”> B =T QO (@©19)

The remaining functionBg, Eg andC; in the intermediate solution are unconstrained by this magchin
atleading order. Note that the expressions heré\§andBg are consistent with5(4), as are those for
A1 andB; by virtue of the eigenvalue equatioB.().

An analysis of the boundary layers and matching nearthe end of the tube will result in equi-
valent conditions to&.17)—(8.19 involving the coefficients for the boundary layers at the otred of
the tube, and wittz = 0 replaced by = 1. Sinceqj(2) = 0, the conditionsjp(0) = go(1) = 0, mean
thatqo(2) =0 for all 2.
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22 M.C. WALTERS & R.J. WHITTAKER

8.3. Final matched solution

Combining the matched results above, the leading-order sakiin each layer are as follows. The solu-
tions are written in terms of a single set of functiap$2) for n= 1,2 3. .., which give the amplitudes
of the azimuthal mode¥, (1) in the bulk shear layer. These functions satisfy

ﬁ//_ (ﬁg’?uﬁ) q/A: —Qn, (8.20)

subject to
an(0) =0n(0) =0,  an(1) =0n(1) =0, (8.20)

where theQ,, (which may bez-dependent) are defined in terms of the pressure fongiog (C.9).
In the bulk shear layer & zand 1« ¢ — zwith 2= z/¢ we have

14 2 0 (1Y,
& ~ _——12(1—v2)8n;5 (hm_>Qn(2)a (8.22)
/ 2 Yy
n —m nZlEQn(z)v (8.23)
1 hd ,
{ ~ mnzlYn(T)Qn(z)- (8.24)

In the intermediate regioi'/2 < z < . ~1/2 wé have

-1 © / 12 , 9 (1Y

§ = ——12(1—\}2)8 [vhn= qn(O)YnAénzlqn(O)E <hdr> ZZ] , (8.25)
1 120, 0Ys

n = —m (%Zlq”(o)@r)ZZ’ (8.26)
gil - /!

¢ - m(?ﬂ”“’m) : @20

In the Ib bendinglayez < T with 2 = z[12(1— v?)]*/(v/291/2), we have

¢71vh i

= —— “ _ 511/25 s 1R11/28 —|B|Y/23
§ = 12(1_V2)|B|nZlQn(0)Yn(T) [1 (cos(\B\ %) +sin(|B| z))e } (8.28)
0729Y22/2(1+v) & qV(0) 8 [ 1 9 1Y, .
T T T v nZl p2 dr(%arhar—“‘)’ (8.29)
87131/2\/2 ) , v2 120 (B2 .
¢ = anl%(o)%(ﬂ {fBl/z (17COS(\B\ 2)e >+Z} (8.30)

The orders-of-magnitude of, n and  in the different boundary layers, and the power law
behaviour between them is shown in Figd(b).
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9. Regimelab (£ ~ 9 < 1)

When.# andd are both small, but comparable in size, we find ourselves in amngdiate regime
between Regime la and Regime Ib. In this case, usthg (%92 from (2.2), we have

9~ F o FV209 = 1FV2_0(1). (9-1)

With § ~.Z, the three distinguished limits depicted in Fig@rall coincide atd = O(ﬁl/z). Hence
there is just one inner boundary layer fox 1, which involves all three effects (azimuthal hoopstress,
pre-stress/curvature, and axial bending). With .# ~%/2, we have a single single bulk outer layer for
z> 1, which combines the pressure forcing and in-plane shear effBogsbehaviours in these two
layers must be matched through the intermediate regio®(1). The boundary layer.structure is thus
the same as in Regime Ib, though additional physical effectpraent in each layer here.

Regime lab can be analysed in a similar manner to the other sgotes, though we omit the full
details for brevity. If we write9 = A2.%, whereA = O(1), and use the previoUs.variablés- £ /.%1/2
andz= z/fil/z, then the differential equation governing the leading-orderabdisplacements in the
inner boundary layer is

At %8 9% ,0E
21-v?) % 8 Bgp & (9:2)

In the (singular) limitA — 0, we recover the la shearayer{f. 1, with the la bending layer df7.2as
a boundary layer within it. In the limid — oo, a re-scaling'will recover the Ib bending layers@. 1.

The outer bulk shear layer in this regime is.considered in Agpe@. Sincel?.# = O(1), that term
must be retained in the equatio@.(L0 for the'g,(2). In the limit A — o, the Regime Ib bulk shear
trivially layer is recovered. In the limidA —0 a boundary-layer analysis would be required to recover
the separate bulk and outer shear layefs of Regime la.

In Regime lab, the boundary-layéer structure and the order-of-magnitt&l, n andq in the diffe-
rent boundary layers is the same'as in,Regime Ib, as shown in FEifh)ravith the additional relations
(~.7 Y2andd ~ Z.

10. Comparison

To assess the validity of the matched asymptotic solutiensed here, we compare them with solutions
to the full problem 8:2D)=(3:23. We consider the limiting case of a circular initial cross-gettsince
in this case, exact solutions can be obtainedta}—(3.23.

We consideraninitially circular tube, correspondingsto= o, with deformations induced by the
non-azimuthally-uniform transmural pressype- —cos 2. The details of the exact solutions can be
found in AppendixD, while the corresponding calculations for the asymptotictsmhs in each regime
can be found’in AppendicésandF. In all cases, the solutions f@r(t,z) and{(t,z) are proportional
to cos 2, while the solutions fon (1, z) are proportional to sin2

Anraxially uniform pressure has been used for comparison to sinthifgomputation of the exact
solution. The asymptotic theory developed here is also vailid mon-axially uniform transmural pres-
sures. But since the boundary-layer systems contain no direatddrom the pressure, and are forced
only by matching to the limiting form of the bulk solution as theundary layers are approached, the
comparison with an axially uniform pressure should be sufficienatidate the asymptotic theory.

For Regime la, graphs comparing the asymptotic and exact aoduith each layer can be found in
Figures5 and??. (To avoid cluttering the figures, we just show the asymptotiat&m corresponding
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24 M.C. WALTERS & R.J. WHITTAKER

to the layer being depicted in each plot, rather than a cortgpesiution. Thus in figur&a for the
bulk, the asymptotic solutions do not show boundary-layeatigiur.) For Regime Ib, similar graphs
comparing the asymptotic and exact solutions can be foundguar&i’. In each case, two different
exact solutions are shown with different parameter values,dw she effect of being further from, and
closer to, the asymptotic limit. The exact solutions from theser sets of parameters (dotted lines)
show excellent agreement with the asymptotic results (contigdines), and the graphs are almost
indistinguishable. The exact solutions that are further fronafyenptotic limit (dot-dashed lines).show
noticeable discrepancies on many of the graphs.
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Fic. 5. Comparison of the‘asymptotic and exact solutions for Redgmim (a) the bulk and If) outer shear layer, as functions
of the axial coordinate. We consider the circular limitp = o with v = 0.49 and transmural pressupe="—cos . For the
normal and axial displacemenisand {, we plot the coefficient of cos2in the solutions; for the azimuthal displacement, we
plot the the coefficient.of sin2 In each case, the continuous line is the asymptotic solémicthe layer from§7.4or AppendixE,
while the dot-dashedand dotted lines are exact solutions (it , 9) = (102,10 2,10°3) and((,.#,9) = (10,10 4,10°°)
respectively, from/Appendi®. The short vertical lines of the same style below the absciséa) ishow the axial extent of the
graphs in ), and those ink) show the axial extent in Figurg?(a).

11. Discussion and conclusions

This paper provides the answer to the question of how solitiora second-order (in the axial coor-
dinate) tube-law used to describe fluid—structure-interactiohlenes should be adjusted to cope with
the full set of clamped boundary conditions at the tube end iariqular region of parameter space.
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Fic. 7. Comparison of the asymptotic and exact solutions for Retfimia (a) the bulk shear layer ant)the bending layer, as
functions of the axial'coordinate We consider the circular limitp = o with v = 0.49 and transmural pressuype="— cos . For
the normal and axial displacemei§tand(, we plot the coefficient of cos2n the solutions; for the azimuthal displacement, we
plot the the coefficient of sim2 In each case, the continuous line is the asymptotic soléticthe layer fron8.3or AppendixF,
while the dot-dashed jand dotted lines are exact solutions (it , 9) = (10,104,1073) and (¢,.#,9) = (10?,1078,1075)
respectively from Appendi®©. The short vertical lines of the same style below the abscis¢a) ishow the axial extent of the
corresponding graphs i),

The initially elliptical elastic-walled tube considered haiees circumferencer&a and length., and
is subject to an axial tensidh. The tube wall has thicknesk Poisson ratio i3, and bending stiffness
K. An applied transmural pressupeauses deformations of the tube wall with normal ampliteide

The key dimensionless parameters in the problem are: the diomess thickness of the
tube wall, 3 = d/a; the dimensionless length of the tubé,= L/a; a scaled axial tension,
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F = d?F /[2maK (1 — v?)]; and the dimensionless deformation amplitudes e/a. The problem is
first linearised fore < 1. We have then derived leading-order matched asymptoticisotufor the
boundary-layer structure when!, 9,.# < 1, and showed that there are three distinct parameter regi
mes. In each regime, the axial thicknesses of the different layialyers are described in terms of the
dimensionless axial coordinate which is scaled on the cross-sectional length seal/e therefore
have thatz = 1 corresponds to a length that is comparable with the width ofube, whilez= ¢ isthe
length of the tube. . =

In Regime la § < .# < 1) there are three boundary layers: a bending layer mattO(9% 71/2),
an inner shear layer with= O(.%1/2), and outer shear layer with= O(.# ~1/2). These are matched
to each other and to the bulk solution with= O(¢). The bending layer arises as a result of a balance
between axial bending and axial pre-stress/curvature effeatsniier shear layer/arisesias-a result of a
balance between azimuthal hoop stress and axial pre-stresgloareffects, with axial stress and shear
stress also present at leading order. The outer shear layes asiseresult of a balance between axial
stress and axial pre-stress/curvature effects, with shear stetsziamuthal hoop stress also present at
leading order. In the bulk, the applied transmural pressure isbatbby a‘combination of azimuthal
bending and axial pre-stress/curvature effects, with shear sinelsazimuthal' hoop stress also present
at leading order.

InRegime Ib (# < 9 < 1) there is only one boundary layer: abénding layer withO(9/2). This

is matched to a bulk solution with= O(¢). The bending layer arises as a result of a balance between

axial bending and azimuthal hoop stress, with axialpresssétievature effects and axial stress also
present at leading order. The leading-order balances in.thérudk/e the applied transmural pressure
and all three in-plane stresses.

In Regime lab § ~ # « 1) the structuredis as in Regime Ib, but with additional physaftdcts
present in the boundary layer and bulk solutions./Both layexs ebntain axial pre-stress/curvature
effects, in addition to the physical effects presentin Regime Ib

Since we are considering a linearised'system, the magnRuafehe forcing from the transmural
pressure affects neither the axialthicknesses nor the strugftthre boundary layers. It only affects the
amplitude of the deformations; throughjthe dimensionlessiample, as given in 2.3). The pressure
scale just needs to be small'lenough so th&t 1 holds. Moreover, as the boundary layers are only
forced through the matching with-the bulk solutions, the prefism of the transmural pressure (i.e.
any z and r dependence),also has no effect on the thicknesses and strattine boundary layers.

It can however affect'the relative amplitudes of different azimaltnodes in the layers, through the
coefficientsB,, in Regimela; andy, andg!’ in Regimes Ib and lab.

The asymptotic solutions in Regimes la and Ib are shown in Figi#gsvhere they are seen to be
in excellent agreement with full semi-analytic solutions foresgntative parameter values.

At leading order, the la shear layer here is the same as the ihear fayer that was found by
Whittaker(2015 for the case where axial bending was ignored and only pinneddaoy condition
was imposed ar = 0. (A stress-variable formulation was used to derive it there, assgupto the
displacement formulation used here.) Corrections at the next willalter the boundary layer slightly.

In the regimes considered here, the new bending boundary layerassiggy and have no leading-
order effect on the interior solutions. (The outer shear layehe&e an effect, as discusseditnittaker
(2015.))

The boundary layers described here were first considered in the P&fisTdf\Walters(2016. A
slightly different approach was used to derive them in Regimenddla but here we prefer a common
approach to both regimes. The results for the boundary layers asathe. HoweveValters(2016
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did not realise the need to change thg> 1 behaviour in Regime Ib. It is possible to consider the
solutions here as the first terms of an expansion in powefisasfd.%. Some of the first few correction
terms can be found iwalters(2016. .

We have not considered the regime in whigh > O(1) in this paper. In this case, based on
Kirchhoff-Love shell theory, the bending boundary layer wouddppedicted to be comparable to ot
narrower than the wall thickness. This means shell theory isongdr appropriate to describe<the
boundary layer. Initial work on the regime whe#é>> 1 can be found iWalters(2016.

A. Tensor evaluation

In this Appendix, we perform the calculations to evaluate thellrenand stress,tensors in terms of the
displacement functions, in order to obtain the equilibriumagiguns in§3.

A.1l. Coordinates and strain

If the wall centre-surface is given byx*, x?) in terms of material coordinates andx?, we can define
basis vectors in the usual way by

or ap xap
=— for acl12; ag=——-"". A.l
% = 5og el 8= Ta x s (A.1)

Then the metric and curvature tensors are given by

17
8qp = 8q-85, bgp=ag L (A.2)

oxB -

The.deformation of the wall material is characterised by in-plarsrnsand bending strain tensors,
which'we define as

1 _ _ _
Vap = 5 (aaﬁ - aaB) ; Kap = —Dap +bap + 203 Vs, (A.3)

where over-bars denote the values of quantities in the undefocordiyuration.
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A.2. Constitutive laws

Linear constitutive laws relate the stress and stress momentaesN?? andM?8 to the straing/g
andkgg as follows Fligge 1972 §9.4)?

NoP  — 62"525%a+D [(1—v)y"’3+v%\\a‘”3}

1—
+K {(2\/) [Zaﬁ‘sb““r aPrp? +a®opPY — bl (a%%aPY + a“VaB‘S)}

+v [a‘w b"® +a’°pP — a"BaV‘sbﬂ } Kys (A.4)
M = K [—(1—v)(bf,’yVB — b} y*B) — v (0P — b} a®B)
+%(1—v)(K"’3+K’3°’)+va"BKﬂ , (A.5)

whereéf is the Kronecker delta; is the Poisson ratio, and the extensional stiffri2ss related to the
bending stiffnes& by

12K

(A.6)

The constitutive lawsA.4) and (A.5).arise from inserting the plane-stress form of Hooke's law

into the definitions oN?? andM?8, rewriting the resulting equations in terms Wiz andk,g, and
neglecting some higher-order termsin

A.3. Relation between thist, x¢) and (1, 2) coordinates
Our dimensionless coordinatesndz are defined so thatd = ahdr and d? = adz Hence

10 7} 10
" ahdt o adz (A7)
With the definitions of the unit vectors i (7), we then have
ot - on = . 02
Frin Bhn, Frie —Bht, Frin 0. (A.8)

The corresponding partial derivatives with respect &oe all zero.

2 Some signs inA.2) differ from those inFligge(1972. This is due to our opposing sign conventions oy andM?B, and
later because of a sign error on ifig,g + kg, ) term inFlugges expression foMaE,
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A.4. Basis vectors

The basis vectorg; are computed from the definition&.(l) using the expression for the position vector
rin (2.9. The results are the same ad/inittaker(2015:

P - — d /N\\: AR € [0C.
a = t+€h[(_EB+ar(h))t+<nB+ar(h))n}réh[ar}’ P
. 106, 10n. 0.
% = ”ﬂhi’”h’;”aiz’ e
L€ — 9 [(&E\\. O0&. g2

A.5. Components of &, yup andkgg

The following components were not all evaluated explicitly/ithittaker (2015, but are needed here
for consideration of the bending layers.
From the expression\(2) for the curvature tensd, g We.obtain

by = %'a*lh%

Sl AL ()] o).
by — ag-i‘;azzz?z]%Jro(;‘Z). (A.13)
eI o) e

From the exptession\(3) for the in-plane strain tensggg we obtain:

£ — 0 /n g2
o= <£B+ Fls (h)) +0 <£2> ’ (A15)
B _lefon & g2
Yig=VY1 = >7h (02 + dr) +0 (£2> , (A.16)

€9 g2
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Finally, from the expression(3) for kg, we obtain:

€ [=( .= 8 /n d (nB 19 (& 12
= g B (1) 5 (F rhor (7)) 2G%) e
0 (10 —0 1¢e?
w2 = o [dr (h@‘BﬂW(aZ)’ 419
_ e [0 [(10¢ —n 1¢e?
K = g [ar <hdz>+Bz}+o<a€)’ (A.20)
0? 1¢e?
Koz = 7a;h dz§+o<a22>' (A1)

A.6. Components of the‘in-plané-streséiN

The in-plane stress is.given by.@). The components must be evaluated in terms of the displademen
functions(&, n, {).“The calculations have already been completed/byttaker(2015, so we just quote
their results in 8:5).

A.7. Components of the bending stres§M

The bending stress is given bi.5). We wish to express the componentdwf? in terms ofé, n, Z, to
O(e) accuracy. We note that, g andb,g always appear inA.5) multiplied by anO(e) quantity, so we
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need only retain th®(1) parts of these two tensom;; = azp =1 andby; = 5% — B/a. We then have

Mll

K[=(2=v)(ly™ = Bly™) - v(B™ — B}) (1 + )
+(1- v)K”+v(K%+K§)] +0 (K Zﬁ)

2
= K(kM+vk? )+O(K §2>

- w e (®)

0 /nB 190 (& 0%& K g2
ar<h +h@r(h))"azz Ol

M2 — K{ (1—v)(BYy'2 — blyt?) — (b2 — b (Y2 + \2)

Fi-vz ] o (K5,

M2t = K{ (bt 3l — vy (k2 4 k? )}+O<K

— { V14 (k1% k2 )}+O<K‘Z§>
_ :;](1—v){—a%;(i>+_gﬂ+0<zi>,
M2 = K[s(T=v)(-b}y?) - v(-Bh)(v + )

K 2
+(1-v)k??+ v(K11+K22)} +O< gZ)

B K g2
K a(yé2+VV11)+(K22+VK11)] +O( )

[ ar?
&K [ S0C J /n
- am[therZVB( EB+dT())

0%& 0 (nB 190 (&
‘af”m(*m()ﬂ”(

A.8. Displacement recovery from the components of the stressiten

d&. dn K g2
(ar‘az)]”(aez

€2
)

K g2
a2

)

)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)
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Whittaker(2019 derived the following expressions to recover the leading-ortiplacement variables
from the three leading-order componerits §and) of the in-plane stress tensor:

(1,2 — 12(11‘/2)/02<i(r,z’)—vl§|(r,z’)>dz’, (A.34)
A2 §r2)  9(1.2)

Nz — /()( B o )dz’, (K35)
~_h(t) (N(t,2-vE(t,2) 1 9 (n(1,2)

f0a = g (N wwar () %)

These results are utilised in the present work.

B. Theouter shear layer in Regimela

For a boundary-layer of widtld > 1 in this regime, we defer to the analysis\ivhittaker (2015,
where the bulk solution witld = O(¢) and an outer shear layer with="0(%>1/2) are found. This is
appropriate for Regime la sinced . /2 < .

Whittaker(2015 only considered transmural pressures that are*evemrgratiodic int, leading to
deformations have mirror symmetry in tkeandy axes. It is'possible to relax this and consider more
general deformations, but we retain this restriction here for saitypli

With this symmetry restrictionyWhittaker (2015 showed that the solution in the outer shear layer
can be written as a sum over azimuthal eigenmoglés) which are odd andr-periodic in7. These
eigenmodes satisfy the eigenvalue equation

L) =Yy Horn=1,23, ... (B.1)
where the linear operatd? is given hy

1910 1 9190
f=hﬂﬁm( )
and 0= o < p1 < o < -~. Theroperator? is self-adjoint with respect to the inner proddatv) =
Oz’Tuvhdr and so its eigenfunctions form a complete set. We chose to n@erthk eigenfunctions so
that (Y, Yn) = 1. This meansywe have

(B.2)

(Yn, Ym) = Oann(T)Ym(T) h(7) dt = &m, (B.3)

wherednm is the Kronecker delta.
Taking the general solutions frovithittaker(2015 and applying only the conditions that arise from
matching with the bulk exterior solution, the leading-ordeesses in the outer shear layer are given by

N 23 & By 0 (10Y, ;

— 3/2 Bn 0 (10¥n pin?
N 7 n;BZhaT(har)e T (B.4)
. 22 B,a /1 41V s
> y%mw(%arhar Y”>e T (B.5)
2= FIPY Ban(netie., (B.6)

n=1
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wherez= 2/91*1/2, theB, are a set of constants giving the amplitude of each mode. Epéadements
in the outer shear layer are recovered from these expressiongAsy-(A.36). Again, we apply only
the conditions that arise from matching with the bulk exteriduton, and obtain, to leading order,

& = g—mi{én{l(le_uni)Z:|+En+|5n2}(lej)/a (B-7)

12(1-v2)B(1) & | Hn [Hn
FY2 = (B, [1 PPN VR I
1= w0 2] e Bz, €8)
L [ S B
¢ = 12(1_‘/2){Do+n;[un(l—e ﬂn)+Dn]Yn(r)}, (B.9)

where theD,, andE, are additional set of constants giving the amplitudes of funthedes: (There is no
Ep constant term in the expression fprsince the assumed symmetry requineto,be an odd function
of 1.)

The constant8,, D, andE, appear in matching conditions with the-bulk solution in thet i the
tube and the intermediate solution§af

C. Bulk shear-layer solution in Regimes|b and lab

In Regimes Ib and lab, the estimatéq.# ~/2) thickness ‘of the outer shear layer franhittaker
(2019 is greater than or comparable with the lendtbf the elastic tube. Hence the bulk interior
solution comprises a modified form of the outer. shear layer, iithvthe transmural pressure is also
present at leading order. In this appendix, we solve for the atigphents in this bulk region.

In Whittaker(2019, the outer shear layerwas forced by the matching with the bitgkior solution.
The amplitude of the deformations was’suchthat'the transmuisdymedid not contribute in the outer
shear layer at leading order. Now théretis no separate bulkonteslution to force the displacements
in the outer shear layer. The displacement amplitude in thle $hear layer is reduced, so that the
leading-order terms in the normal equilibrium equation have #mesmagnitude as the transmural
pressure.

We now follow the outer,shear layer derivation\ihittaker (2015, but using slightly adjusted
scalings to account for'th®(¢) axial length scale and the altered amplitude of the displacésn \We
define scaled variablesiforithe axial coordinate, hoop stress, sdbess and in-plane shear stress as:

z ~ N - > A S
2_6’ N_@’ 2_629’ S_ﬂ@'
whereZ isthe dimensionless pressure scale defined.2. These scales arise from altering the axial
length’scalefron” ~1/2 to ¢ in the la outer-shear-layer scales B14)—(B.6), and then scaling the three
stresses by ja factor 682 in order for the forcing from the transmural pressure to appear at kgadin
order.
Substituting the scalesC(1) into (A.34)—(A.36) we obtain leading-order expressions for the
displacements in terms of the scaled stresses:

EP ¢ Urh o Aoh .
Nmz’ nzzwflz(li_\ﬂ)z“ Eﬂwfmzrr, (C.2)

where subscripts denote partial derivatives, but a subscrggpresents the operator'd /dr.

(C.1)

(;
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Then, substituting €.1) and C.2) into (3.21)—(3.23, we obtain the following leading-order
equations governing the bulk shear layer:

—N+(2%)B 2%, = Bp, (C.3)
N +S— (PF)s;, = 0, (C.4)

Equations C.3)—(C.5) differ from those inwWhittaker(2019 for the outer shear layer only-by the prese-
nce of thepTorcing term on the right-hand side of the first equation, and thefaof/2.% multiplying
the two2,; terms. N N

In Regime Ib, we havé’.# < 1, so the terms containing.# are asymptotically'small and can be
neglected. However, we shall retain these terms in the workémg, o simultaneously cover the case
of Regime lab, wheré.Z = O(1).

For simplicity, we restrict attention here to the case whpigeeVen andrperiodic int. The stresses
N andZ and the displacemen&and{ then share this symmetry, whiéandn are odd andr-periodic
inT.

Eliminating Sbetween C.4) and (C.5), we obtain

_Nrr+(€2j)irr+iﬁ: 0: (C.G)

Then, eliminating\ between €.3) and (C.6) yields

Sp—((PF)L(8) =~ (B_‘lf)) , (C.7)

1T

where.Z is the operator fromWhittaker (2015 defined here ing.2). As before, we represent the
eigenfunctions ofZ by Y,(1) for n& 03,2, ..., with corresponding eigenvalugs, where 0= iy <
U < Mz < ---. We have the same orthogonality and normalisation aB.i) (

From the completeness, arthogonality and normalisation ofigpenfunctions, if we define

e ={(5p) ”,Yn> - /()ZH(IBT*lﬁ)TTYnth, (C.8)

then we have that N
—i
(B p) = nZlQn(Z)Yn(r) . (C.9)
(Then =0 term is not needed irnc(9) sinceQp = 0. This can be seen by noting tha( 1) is constant
in T, and then using integration by parts {0.8) whenn = 0.)
We now introducey,(2) as the general solutions of the ordinary differential equations

=0 o (PFRd= Q@ (M=123..). (C.10)

The general solution of.7) for £ can then be written in terms of the eigenfunctions andjthes

5 — (2 + ivn(r) 2. (C.11)
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Noting thatu2Y, = £ (Ya) = (B 2Ynrr — Ya)rr, We can integrated.9) twice with respect tar to

obtain Q 1 5 1oy
— ~ n n
51p=052+ 3 (%maf“‘)' (C.12)

The new functiorQ;(2) is one of the ‘constants’ of integration. It must be set in termp and theQ,
to ensure that equality holds i€(12). The other constant of integration is necessarily zero, duedo. t
periodicity of all the other terms. _

Using the expressions fdt in (C.11) andB~1f in (C.12), we can recoveN using C.3). After
eliminatingQn(2) in favour ofgn(2) using .10, we obtain

N=aie+ 5 {2 (398) B2 v (a0 - B2) e e

Similarly, Sis recovered usingd.4) and (C.5), giving

& o LN _ < ii 1 i}%_ /!
S5 ([ )b 3 et (grsrnge b)) H@. (€19
whereS] is an arbitrary constant of integration. To ens8ie oddvand periodic irr, we must have
$=0, qp(2) =0: (C.15)
Hence > 19 19 19y,
& _ - af‘n _ /"
5=-2 what (BZh aTh o1 Y”) o (2) (€16
The leading-order displacements can then be recovered bytstibgti(C.11) into (C.2). We obtain
B ad ,
¢ 121212 {QO(Z) + n;Yn(T) Qn(z)} : (C.17)
IAX = 0Yn
n = T121-v?) Z EQn(z)v (C.18)
A 20 1¢9Yn
&~ 12(1-v2)B Z dth dr (C.19)

The constants of integration that would have been expecta@pear in the first two expressions are
already“acceunted for by the generality of the solutiorgfgrgiven the symmetries &f andn.

At this point, the solution is still undetermined, since werdit have any boundary conditions on
gr(2) for the’ ODEs C.10. These missing boundary conditions will be determined wherstiutions
are matched with the boundary-layer solutiong as 0 andz — 1.

We can, however, us€(19 to sete, the scale for the normal displacements in the bulk. Referring
t0 (2.9), we require tha€ = O(¢) whenz = O(1), which means we must hav® = O(¢~3). Referring
to (3.24), we can achieve this by setting

_ 9%taRp

_ -3
< P =103, (C.20)
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D. Exact solution in the limit of a circular cross-section

We consider the special case of a base state with a circulas seation. This corresponds to the limit

0y — . Thenh(1) = 1, B(1) = —1. The equations3(21)—(3.23 then become

92 (M + N2+ MZH 4+ NiZ2) — N+ 121 -v)) & = -2, (D.1)
(R +8) +12(1- V) Fnpt 92 (M4 KiZ) = o0, (D.2)
(5+5;) +120- ) F (&40 +28) = O, (0.3)

where( - ), = d/0z as before, but we now have ); =3 /0T.
Due to the periodicity and symmetry, and the constant coeffigién the. equations, the
dependence can be captured in Fourier modes, which then decBapatransmural pressure

00

p= ijn(z) cog2nT), (D.4)

n=|

we write

00

&= iEH(Z) cog2nr), n= inn(Z) sin2nt),y (= ZoZn(z) cog2nr). (D.5)

Then, from 8.10—(3.12), the stresses are‘given by.

N = 1Zi(fn+2nnn+v4’1) cog(2nt), (D.6)
S = 6(1-v) i(n,q —2ngy) sin(2nT), (D.7)
Y= 12i}((,’]Jrv(EnJannn))cos(an); (D.8)

and from 8.13=(3.16the bending moments are

[

M = ZD(*En+4nzfn* v&y) cog(2nr), (D.9)
M2 = 1;‘/;0 (4né&] + ny,+ 2nZy) sin(2nt), (D.10)
M2 = (1-v) iZn(E,’]+Zn)sin(2nr), (D.11)

[ee]

M2 = 2)((4n2—1—2v)§n— " —2nvnn)) cog2nt). (D.12)
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Substituting these forms into the equilibrium equatidh2()—(3.23, the system decouples, and for
eachne€ {0,1,2,...} we have

9%&n
972

04n
0z

2
[12+4n )192}5,1 2400y = —Ppn, (D.13)

20%
oA

+ (43— v)n? —2v - )92+ 125 (1 - v¥)|

—92(3v—1)n 9% [6n (1—v)92 12v}

9%y
072

20% En

2nd 02

[1292(1— V) +6(1— v)}

04n
0z
—2n<(4n2—1)32+12)En+48r12nn =0, (D.14)

0én
0z

+2n((1— V)92 - 6(1+ v))

9%
072

2F(1-v )+1] +[Fa-vi)+v] 20

n[zﬁ(l_v2)+(1+v)}aa’72”_2n2(1_v)zn = 0, (D.15)

apart fromn = 0, where the azimuthal equatioR:{t4) is absent. FromZ.11), the boundary conditions
are

&n(2) =n(2) ==&z =0 at z=0,, (D.16)

except fom = 0, where the condition'ong is absent.

For each, this is a coupled sét of forced linear ordinary differential emumstwith constant coeffi-
cients. It is amenable to solution'by the'standard solutiomriecie of seeking a particular integral and
a complimentary function made.up 6f a sum of terms of the fdffn e

For simplicity we now cofncentrate on the case where ga¢h) is uniform inz. Forn > 0, the
system is 8th order, and the solution takes the form

G = AY +ZAn ( 9 4o k'(*)) (D.17)
m(z = B+ le ( -2 e—kﬁ)Z), (D.18)
) = .Zcr(]i)<e7kg)(€fz)_e*qu)z>7 (D.19)

WhereAﬂ), Bﬁ,”, Cr(f), andkﬁi) > 0 are constants, and tlﬁb(qi))z are the roots of a 4th-order polynomial.
(Thez+ ¢ —zsymmetry in the system means the valuek otcur in positive/negative pairs, and the
solution is symmetric aboat=¢/2.)
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The constantﬂ,ﬂo) and Bﬁo) are the particular integral fob(13)—(D.15), and are found to be given
by

40?2 —1)9%2+12)
O_ PP o ( )97+ 2) P, (D.20)
(4n2 — 1) 92 24n(4n2 — 1)° 92
The sums inD.17)—(D.19) represent the complementary function for the ODE system. Fdr edc
i €{1,2,3,4}, the equations§.13)— (D 15) determineB!!) andCY in terms ofA{)). The four boundary

conditions D.16) then determine thren
Forn= 0, we instead have a 6th-order system. The solution proceduimilars exceptrg.does

not contribute, 0.14) is absent, and there are only three pairs of rdd{& The particular integral is
given by

P
AL = 150 7 (D.21)

while Bé) is not required. For eadle {1, 2,3}, the equationd¥.13) and 0:15) determrnecé) interms

of AO The three boundary conditions iB.(L6) that do not involvejgthen-determine thA0

_ These solutions can, in principle, be computed purely amaljyi in‘terms of the parameters ¢,
7,9, andZ. However, the resulting expressions are extremely unwieldingead, we use Maple to
compute the general polynomial flgg symbolically, before substituting in specific parameter value
Maple is then used to compute numerical values forthe rk}(Btsand then the coeffrcrent@n Bn ,

n . The full solutions can then be constructed franX)~and ©.17)—(D.19). Results are compared
with the asymptotic solutions igiL0.

E. Regimelaasymptotic bulk solution inthe circular limit

Netherwood & Whittake(2023 considered an” extension to the idea of a ‘tube law’ to govern the
perturbation in the bulk of a finite<length elastic-walled tubh an initially elliptical cross-section
subjected to a transmural pressure that-is evenrapdriodic inT. They used an expansion fgrin
terms of a set of azimuthal eigenfunctiong(7) and axially varying amplitudea, (2):

N1 =S an(®Wh(T), ED)
n=1

where tha\, (1) are the normalised solutions of a generalised eigenvalue pnohled each amplitude
satisfiesan (0)< an(¢) =02

Using this expansion\etherwood & Whittake(2023 obtained tube-law like expressions gover-
ning eachen(2):

d2
F 7 — o= Qn, (E-2)
whereAy/is the eigenvalue correspondingwf(t), and
/2
Qn:tanr?(Zao)/ i J <p> W, dr. (E.3)
0 ot

3 Netherwood & Whittake(2023 used a different scaling for the displacements, which émplthe additional factor of in
(E.1). They also used the notatitdfy(1) for these eigenfunctions, but in the present watKr) corresponds to a different set of
eigenfunctions.
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In the circular limitgp = o, we haveB = —1 andh = 1. In this limit, Netherwood & Whittaker
(2023 showed that the limiting forms of the eigenfunctions and ergkres are
2sin(2nt) _ An?(4n? —1)2

Wh(T) = — e A= — . E.4
(D) mA4n2+1)’ " an?+1 E4)

So in the circular limit, with a pressure forcing pf="— cog2mr) for me Z*, the orthogonality
of the trigonometric functions ing.3) means that only theith mode is excited, i.6Q, = 0 for a.# m.
From E.1)—(E.4), the solution fom is then

2sin(2mr)

1,2)=/{a(z , E.5
n(r,2) =ra(z) e 1) (E.5)
wherea(z) is the solution of the linear two-point boundary-value problem
d’a my/TT
FP— —Apa=—————,  a(0) =a(t)y=0 E.6
e S URLC (E:6)
Solving E.6) for a(z) and inserting into.5), we obtain
¢ cosh(k(z=30))4~.
1,2) = 1- sin(2mr), E.7
(.2 = e —1)2 [ cosh{2k() \am) 0

where

‘ \/ﬂ_ 2m@m? s 1)) 9.7 12 E8)
S VFe s Ayl J120-v2) '
Netherwood & Whittake (2023 provided equations for the recovery of the other two displacgme
variables from (1,2):

2 2n
£ sinh(205) + 2 21 on, ot _nhd

20T 9z ' 9t 2mdz o
wherec andhis as defined in{.5).and @.6). In thegp = « limit and with the symmetry of the pressure
forcing, these equations/simplify to

—nsin(21) =0, ndr, (E.9)

on o dn _
a0 ata Y (510
from which.we obtain
¢ ~ coshk(z—30))
é(r,20 = =172 [1 cosf(%kﬁ) coq2mr), (E.11)
ke sinh(k(z— ;)e)]
{(1,2) = - l coq2mr). (E.12)
4nP(4m? —1)2 | cosH k)

We now match these solutions to the la outer shear laygt ahd AppendixB. In the circular limit,
we haveB = —1, andh = 1. The operatorRg.2) for the shear-layer eigenfunctions then simplifies to
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Z(Y)=-Y"" —Y". The eigenfunctions and eigenvalues are then given by

Yo(T) = \/1ﬁcos(2nr) . Hn=2n(4n’+1)Y?, (E.13)

where we have applied the normalisati@3). Now, comparing the bulk solutiorE(7) and €.10)—
(E.12 asz — 0 with the la shear layer solutioB (7)—(B.9) asZ— «, and noting thab,, = E, = 0 from
(7.32, we find that

(E.14)

2
Bo=0 for n#m, B = 3\/ng<(im2v_>l(ffmtanl'@k€).

This result for theB,, together with the expressiok (L3 for the eigenfunction¥,(7) and eigenvalues

Un can be substituted into the matched solutiorid. The results are compared with the full solutions

in §10.

F. Regime Ib asymptotic bulk shear-layer solution in the circular, limit

The aim of this appendix is to compute the axial functigr&) for an axially uniform pressure forcing
of = —cog2mr) for me Z* in the limit of a circular cross=section. Thg(2) are the solutions to
(8.20—(8.21), with theQy, given by C.8).

In the circular limit, the eigenfunctions and eigenvalues aeragiven by E.13. From (C.8), we
have that
2n 02F~) A 2m

T= c0g2mr) cog2nT) dr = —4nP/TTdhm, (F.1)

Qn:— 0 PYn(T)d __ﬁ 5

wherednm is the Kronecker delta.
Since theQy are uniform inz, the solution to §.20—(8.21) for g, can be written as

Cn

30 (F.2)

(2=

coshkn(2— ) — cosh{%ky)
S

wherek, = (.7 Y2y, )
In Regime Ib;/we-have? 1/2¢ <« 1. Providech s not too large, we will havi, < 1. We can then use
the Taylor expansions of the hyperbolic functionskt? to obtain the simpler asymptotic expression

1
th(2) ~ — 5, Z(1-2)°. (F.3)
Hence for the pressure forcing="— cog21) we have, at leading order,
a2 = gzz(l— 2%, (2 =0 forn>2. (F.4)

This result for they,(2), together with the expressio& (L3 above for the eigenfunctiong (1) can be
substituted into the matched solutiong$13. The results are compared with the full solution§110.
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