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Abstract

Cooperation among individuals is fundamental to societies and economies. This
thesis comprises three essays exploring how indirect reciprocity can sustain cooper-
ation in large populations with heterogeneous helping costs.

In the first essay, I generalise the Helping Game by introducing heterogeneity in
individuals’ helping costs. I investigate whether self-interested strategies can sustain
indirect reciprocity in such a population. The findings suggest that, under certain
parameters, cooperation can be an equilibrium even when helping costs vary.

The second essay experimentally compares two reputation-based mechanisms:
“Image Scoring” (IS) and “Good Standing” (GS). IS was proposed by Nowak and Sig-
mund (1998) and tested by Engelmann and Fischbacher (2009); GS was introduced
by Sugden (1986) and modified by Leimar and Hammerstein (2001). By adjust-
ing participant information and introducing heterogeneous helping costs, I examine
which mechanism more effectively fosters cooperation and reciprocity. The results
indicate that while IS leads to higher overall cooperation, particularly in homoge-
neous cost settings, Hammerstein’s version of GS better supports reciprocal helping
by facilitating cooperative “clubs” among individuals with lower costs.

In the third essay, I experimentally test two new mechanisms: a binary version
of IS to align structurally with GS and the Sugden’s stricter version of GS. Addi-
tionally, I include a control condition without reputational information and elicit
participants’ beliefs using a novel, incentive-compatible method expressing beliefs
as frequencies. The essay also contributes theoretically by developing an axiomatic
framework for binary reputation mechanisms, identifying principles that effective
mechanisms should satisfy. The findings suggest that Sugden’s GS is most effec-
tive in sustaining reciprocal cooperation and that participants’ beliefs significantly
influence the functioning of reputation mechanisms.

Collectively, these essays advance our understanding of how indirect reciprocity
and reputation mechanisms can sustain cooperation in heterogeneous populations.
They highlight the importance of designing systems that account for variations in
helping costs.
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Introduction

In a world where acts of generosity often defy the strict calculus of self-interest, one

might wonder what compels individuals to help strangers without immediate benefit

to themselves. This paradox lies at the heart of human society, where cooperation

is both essential for collective well-being and a challenge to traditional notions of

rational behaviour. From neighbours sharing resources to nations forging alliances,

cooperative actions bind communities together. Yet, as societies become increas-

ingly diverse, the mechanisms that sustain such cooperation amidst heterogeneity

remain elusive.

The enigma of cooperation — why individuals choose to act benevolently to-

wards others without direct personal gain — has long intrigued economists and

social scientists. Traditional theories often emphasise direct reciprocity, where indi-

viduals are motivated to cooperate because they expect their actions to be recipro-

cated by the same individuals in future interactions. However, in large populations

where interactions are infrequent or anonymous, direct reciprocity alone is insuf-

ficient to sustain cooperative behaviour. In such contexts, indirect reciprocity —

where individuals base their cooperation on information about others — has been

established as an effective mechanism for promoting and maintaining cooperation.

Real-world societies are far from uniform. Individuals differ not only in their

preferences but also in their capacities and opportunities to contribute to the com-

mon good. While traditional theories provide explanations within homogeneous

populations, they often fall short in accounting for the complexities of diverse so-

cieties. This thesis seeks to explore how cooperative behaviour can be sustained in

such heterogeneous environments, examining the role of reputation-based mecha-

nisms in fostering helping behaviours among individuals.

Central to this inquiry are questions about the effectiveness of reputation mecha-

nisms in diverse societies. Are there mechanisms beyond those currently recognised

1



Introduction

in the literature that adequately encapsulate helpfulness? What principles define

such mechanisms, and how do they function within the framework of repeated in-

teractions?

Image Scoring and Good Standing are theoretically well-known mechanisms.

Image Scoring (IS), first proposed by Nowak and Sigmund (1998) and experimen-

tally tested by Engelmann and Fischbacher (2009), relies on first-order information

about individuals’ past actions. Good Standing (GS), introduced by Sugden (1986)

and modified by Leimar and Hammerstein (2001), incorporates higher-order in-

formation by considering not only whether someone helped but also whom they

helped.

This work comprises three interconnected chapters, each shedding light on dif-

ferent facets of cooperation in heterogeneous societies, from both theoretical and

experimental perspectives. The first chapter extends the analysis of cooperative

behaviour in helping games beyond the confines of homogeneous populations. We

consider an infinitely repeated helping game within a society where individuals differ

in their abilities and opportunities to help. Recognising that, in reality, individuals

vary in their capacity to assist others — some may be unable to help due to con-

straints beyond their control — we investigate whether self-interested strategies can

sustain indirect reciprocity when agents differ in their cost of helping. By character-

ising the conditions under which various cooperative strategies can be sustained in

equilibrium, we illuminate the complexities that arise when heterogeneity in costs

is introduced into this framework. The analysis reveals standing strategies have to

account for these variations, emphasising the need for more inclusive models that

reflect real-world complexities.

Building on these theoretical foundations, the second chapter employs experi-

mental methods to investigate how different reputation-based mechanisms influence

cooperative behaviour. Using a lab experiment, we compare the efficacy of IS and

GS mechanisms. The experiment introduces a heterogeneous cost condition, re-

flecting scenarios where the cost of helping varies among individuals. Our findings

suggest that while IS can lead to higher overall cooperation rates, particularly in

homogeneous cost settings, it does so without participants necessarily conditioning

their help on the reputations of others. Conversely, the GS mechanism appears to

foster more reciprocal helping behaviour, with individuals more likely to help those

2



Introduction

who have also been cooperative. GS proves more effective in supporting reciprocal

helping in heterogeneous populations, as it facilitates the formation of a cooperative

‘club’ among individuals with lower costs of helping. This indicates that the struc-

ture of the reputation mechanism significantly influences how individuals interpret

and respond to reputational information.

The third chapter tests Sugden’s version of the Good Standing mechanism and

addresses the reputation asymmetries observed in the previous chapter by introduc-

ing what we call the “Binary Image Scoring” mechanism. This mechanism simplifies

existing reputation systems and allows for a direct comparison of the two mecha-

nisms’ effects on cooperative behaviour. Additionally, we include a control condition

without reputational information to establish baseline behaviour.

An essential innovation in this chapter is the incorporation of an incentive-

compatible belief elicitation procedure. By measuring participants’ expectations

about the cooperative behaviour of others, we can disentangle the extent to which

observed actions are driven by actual preferences versus beliefs about others’ likely

actions. This allows us to explore whether misunderstandings of the reputation

mechanisms might be undermining their effectiveness.

Our experimental results indicate that Sugden’s Good Standing mechanism leads

to higher levels of both cooperation and reciprocity compared to Binary Image

Scoring and the control condition. This suggests that stricter reputation criteria

can more effectively promote cooperative behaviour by encouraging individuals to

help those who are themselves cooperative.

Collectively, these chapters contribute to a deeper understanding of how indi-

rect reciprocity can be harnessed to promote cooperation in diverse populations.

They underscore the importance of designing reputation systems that account for

heterogeneity in ability and cost, offering both theoretical and empirical insights

into mechanisms that can effectively sustain cooperation in economic interactions.

In conclusion, this thesis advances the theoretical and experimental literature

on indirect reciprocity by examining the ways in which reputation mechanisms in-

fluence cooperative behaviour. By integrating theoretical models with experimental

evidence, it offers comprehensive insights into the design of systems that can sustain

cooperation in the multifaceted landscape of human interactions.

3



Chapter 1

Standing Strategies in the Helping

Game

We provide a theoretical analysis and full characterisation of standing strategies in

the Helping Game. We further extend this framework by introducing heterogeneity

in helping costs and examining its impact on equilibrium strategies and cooperative

behaviour. We demonstrate that the distribution of helping costs significantly influ-

ences the number and nature of equilibria. Specifically, when the cost distribution

is concave, there exists at most one equilibrium with a positive level of helping,

whereas convex distributions can lead to multiple interior equilibria. Additionally,

we generalise the helping game to include the possibility that participants are not

always matched, reflecting more realistic social interactions.

4



1.1. INTRODUCTION

1.1 Introduction

Cooperation among individuals is a fundamental aspect of human societies. The

ability of people to work together has profound implications for the functioning of

economies and the development of social norms. Economists recognise that cooper-

ation problems are pervasive in many areas, including managerial economics (e.g.,

teamwork and hold-up problems; Odine, 2015), development economics (e.g., com-

munity governance and property rights; Redford, 2020), environmental economics

(e.g., natural resource management and climate protection; Carattini et al., 2019),

international economics (e.g., trade obstacles and treaty formation; Yarbrough and

Yarbrough, 2014) and public economics (e.g., tax compliance and public goods pro-

vision; Kube et al., 2015).

Two principal mechanisms have been extensively studied as channels that fa-

cilitate cooperative behaviour: direct reciprocity and indirect reciprocity. Direct

reciprocity involves mutual assistance between individuals, where one person’s co-

operative act is directly reciprocated by the other. For example, individual A helps

individual B, and B helps A back in return (Trivers, 1971). This dyadic interaction

fosters cooperation through repeated exchanges between the same individuals.

In contrast, indirect reciprocity refers to situations where a cooperative act is

not reciprocated by the original recipient but by a third party (Alexander, 1987).

In such settings, cooperation can be sustained through reputational mechanisms:

individuals are motivated to help others to maintain a good reputation, which, in

turn, increases the likelihood that they will receive help from others in the future.

The role of reputation is particularly salient in environments where direct reciprocity

cannot sustain cooperation, and indirect reciprocity has been proposed to explain

the evolution of cooperation (Nowak, 2006).

A standard way to study indirect reciprocity is through the “Helping Game,”1 in

which a large population is randomly paired to address a helping decision. In each

pair, one player (the helper2) can confer a benefit (b) upon the other player (the
1Also known as the “donor (or donation) game” (Nowak and Sigmund, 1998a; Leimar and

Hammerstein, 2001) or the “indirect reciprocity game” (Ohtsuki, 2004). Other games that are
technically identical include a repeated dictator game with random role allocation and matching,
and Sugden’s (1986) “mutual aid game,” modified so that each recipient has a single donor.

2The roles in the game are: helper and helpee. In the literature you can find these roles named
donor and recipient too.
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helpee) at a personal cost (c), with b > c > 0. If there is only a single interaction

(i.e., no repetition), the only equilibrium outcome is one in which no help is given.

However, when the game is repeated, the Folk Theorem (Friedman, 1971) shows

that helping can be sustained in equilibrium.

The link between cooperation and helping becomes clear when we recognise that

the helper’s action contributes to a pattern of reciprocal behaviour. The helper

sacrifices immediate utility for future gains. This intertemporal trade-off embodies

the cooperative essence: individuals act not solely out of immediate self-interest

but with regard for the continuation of mutually beneficial interactions.

The existing literature has predominantly examined this game under the as-

sumption of a homogeneous population — specifically, that all individuals possess

the same ability to help. By contrast, in reality, abilities (and thus the costs of

helping) often vary across individuals. In order to capture this heterogeneity, we

introduce differences in the cost of helping into the model. Such an extension is

critical, as diverse abilities characterize most real-world populations, and methods

of sustaining cooperation must remain robust in the face of this diversity.

If all members of a society are perfectly homogeneous and derive identical ben-

efits from helping one another, they may readily adopt a mutual strategy that

resolves the helping problem. However, once individuals are heterogeneous — bear-

ing different costs when helping — contentious issues can arise. In particular, when

considerations of fairness or equity enter the picture, the precise structure of the

cooperative strategy becomes critical for effective and sustainable implementation.

This chapter offers several contributions to the literature. First, it presents a

complete characterization of standing strategies (Sugden, 1986; Leimar and Ham-

merstein, 2001) in the helping game. Second, it examines the evolution of these

strategies under two modifications: (i) allowing for the possibility that some players

are unmatched, and (ii) introducing heterogeneity in individuals’ costs of helping.

The remainder of this chapter proceeds as follows: in Section 1.2, we review

related literature. The general model is presented in Section 1.3. The heterogeneous

cost analysis and some steady state considerations are provided in Section 1.4.

We conclude in Section 1.5 with a discussion where we propose possible future

improvements. The Appendix 1.A provides alternative proofs for the theorems and

additional analyses.
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1.2 Related Literature

Indirect reciprocity has been a subject of extensive study across various disciplines,

including economics, biology, and sociology. It refers to a mechanism where individ-

uals are willing to cooperate based on the previous actions of others (Trivers, 1971).

The evolution of indirect reciprocity has been central to understanding cooperation

in both human and animal societies (Sugden, 1986; Alexander, 1987; Nowak and

Sigmund, 1998b), leading to the development of theoretical models and experimen-

tal investigations aimed at explaining why individuals choose to reciprocate.

In economics, two main strands of literature address reciprocity. The first fo-

cuses on modelling non-self-interested behaviour, often incorporating social pref-

erences into individuals’ utility functions. Early work by Sugden (1986) analysed

reciprocity in the context of public goods games, proposing that individuals’ de-

cisions to contribute depend on their beliefs about others’ contributions. Rabin

(1993) formalised the concept of reciprocity using psychological game theory, sug-

gesting that individuals are motivated to reward kind actions and punish unkind

ones. This approach has been further developed by Dufwenberg and Kirchsteiger

(2004) and Falk and Fischbacher (2006), among others. These models highlight the

role of perceived intentions in shaping utility.

The second explores cooperation as pure self-interested behaviour. This litera-

ture investigates how strategic considerations and reputational mechanisms main-

tain cooperation without appealing to social preferences. In this context, scholars

have proposed various strategies to explain cooperation in the helping game or sim-

ilar environments, including standing strategies (Sugden, 1986; Leimar and Ham-

merstein, 2001), costly punishment (Kandori, 1992), and image scoring (Nowak and

Sigmund, 1998a).

Sugden (1986) introduced the concept of a standing strategy in the Mutual Aid

Game, where individuals are labelled as being in “good standing” or “bad stand-

ing” based on their past actions. Cooperation is sustained by conditional strategies

that prescribe helping those in good standing and withholding help from those in

bad standing. This framework relies on shared reputational information and allows

for the maintenance of cooperation through self-interested behaviour. Subsequent

research has explored the evolution of such strategies in different settings. For exam-
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ple, Uchida and Sigmund (2010) studied systems incorporating various assessment

rules similar to Sugden’s, and Gaudeul et al. (2021) examined how these strategies

reflect different moral judgments under indirect reciprocity.

Kandori (1992) developed the notion of community enforcement, showing that

social norms and collective punishment strategies can support cooperation in ran-

dom matching games. In his model, individuals are labelled as “innocent” or “guilty”,

and defection leads to a transition to the guilty state, triggering punishment by

others. This mechanism is similar to standing strategies but emphasises the role of

social norms and punishment in sustaining cooperation.

Nowak and Sigmund (1998a) proposed the concept of image scoring in the evolu-

tionary biology literature, where individuals’ reputations are updated based on their

actions, and cooperation is directed towards those with higher scores. However, this

approach has limitations, as it may not be robust to errors in perception or imple-

mentation. Moreover, Leimar and Hammerstein (2001) found that the evolution of

cooperation using image scoring could only occur under restrictive conditions that

consist of either the influence of genetic drift3 or a very small cost of helping.

In related work on the evolutionary stability of strategies, Ohtsuki and Iwasa

(2006) extended earlier analyses by classifying reputation-updating rules into first-,

second-, and third-order assessments and identifying the “leading eight” strategies

that seem to be able to reach high levels of cooperation in computer simulations.

Their findings underscore the complexity of reputation mechanisms and the critical

role of higher-order information in indirect reciprocity.

Despite the significant theoretical interest in indirect reciprocity, there is rela-

tively little economic research on the topic compared to other forms of reciprocity.

Recent studies, such as Berger (2011) and Berger and Grüne (2016), explore the

dynamics of reputation and cooperation, but the field remains ripe for further ex-

ploration, particularly regarding the analysis of heterogenous populations.

In recent work, Camera and Gioffré (2014, 2017, 2022) have significantly ad-

vanced the theoretical understanding of heterogeneity and asymmetric interactions

in repeated games. In Camera and Gioffré (2014), they develop a methodological

framework to identify contagious equilibria in infinitely repeated games with random

matching, leveraging key statistics of contagious punishment to derive closed-form
3The change in frequency of individuals’ scores in the population due to random chance.
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expressions for continuation payoffs. This approach not only enhances the tractabil-

ity of equilibrium analysis but also extends beyond the standard helping game to

broader settings, including the Prisoner’s Dilemma.

Building on these insights, Camera and Gioffré (2017) investigate environments

in which players experience stochastic productivity shocks, thereby generating het-

erogeneous payoffs across matches. They show that full cooperation can be sus-

tained by publicly exposing defections when it is efficient, but occasional defections

call for contagious punishments to prevent the collapse of cooperative norms. This

highlights how heterogeneity can shape the conditions for cooperative equilibria.

More recently, Camera and Gioffré (2022) provide a comprehensive existence

and characterization proof for cooperative equilibria under private monitoring in

helping games. They generalise their earlier frameworks to accommodate random

matching and asymmetric payoffs and emphasise the role of threshold discount

factors in maintaining cooperation.

Whereas Camera and Gioffré primarily focus on heterogeneity arising from pro-

ductivity shocks and employ contagious punishment to preserve cooperation, our

work introduces heterogeneity through intrinsic differences in helping ability, cap-

tured by distinct cost functions. Rather than stochastic productivity variations that

modify payoff matrices, we adopt a fundamental perspective whereby individuals

differ in their inherent cost of providing help. This shift reveals how diverse abilities

shape both the emergence and stability of cooperative equilibria.

Additionally, our generalized helping game includes periods in which certain par-

ticipants remain unmatched, a feature absent in Camera and Gioffré, who assume

all players are paired in an even-sized population. Allowing some participants to

be unmatched mirrors real-world contexts in which not all agents engage in coop-

erative interactions continuously. We show that intermittent matching affects both

the frequency of cooperation and the conditions necessary for equilibria to exist.

A further distinction is our focus on equilibrium structures under cost hetero-

geneity. While Camera and Gioffré examine heterogeneous populations via conta-

gious equilibria, we demonstrate that multiple interior equilibria may arise when

helping costs vary — particularly under specific cost distributions (e.g., quadratic).

This result deepens our understanding of how heterogeneity influences cooperative

outcomes in ways not previously emphasized.
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In summary, although prior contributions have offered key insights into mecha-

nisms that sustain cooperation, many have assumed homogeneity or have not fully

accounted for heterogeneity in helping ability. By examining how cooperation en-

dures among self-interested agents who differ in cost and may remain unmatched

in certain periods, we fill an essential gap in the literature and further enrich the

analysis of repeated games.

1.3 The Model

1.3.1 The Helping Game

The helping game is built out of a series of asymmetric stage games. In each stage,

only one player (the helper) has a choice to make, whether or not to help the

opponent (the helpee). When a player is chosen as the helper, he has to choose

whether to pay a cost c (the cost of helping), in order to provide a benefit, b (the

benefit of being helped), to the beneficiary, with b > c > 0. The intuition is that

each player could eventually need support in a future scenario, and the benefit

derived from receiving help exceeds the cost incurred by providing it.

Let N be a finite set of n agents, indexed by i ∈ {1, . . . , n}. Time is discrete

and potentially infinite: t = 1, 2, . . .. In each period, the game continues with

probability δ and otherwise terminates, so δ captures agents’ valuations of future

payoffs. For the moment, assume each agent observes all past actions taken by all

n agents, though we suppress explicit dependence on the history in the notation.

In each period t, a random matching process forms a set M(t) of paired agents

{(j, k)}, where one is assigned as helper and the other as helpee. The number of

such pairs, |M(t)|, ranges from 0, i.e., there are no matches at all (|M(t)| = 0, where

|M(t)| is the cardinality of the set), and the maximum is given by |M(t)| = N
2

if N

is even, and |M(t)| = N−1
2

if N is odd.

If an agent i is among the matched pairs at time t, the probability of being

chosen as helper in that pair is 1
2
. Let λ = |M(t)| denote the total number of

helpers each period. Define ω as the fraction of agents who are matched; hence

1− ω is the fraction of unmatched agents, who make no decisions in that period.
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1.3.2 Equilibrium Concept

We denote the possible actions for the helper j by Hj for helping the other player

and Dj for not helping the other player. Therefore, the helper has two possible

alternative actions: Hj, that means −c for his payoff, or Dj, that means 0.

In general, let ait ∈ {Hi, Di, ∅} be the realised actions player i faces at time t

in the history, where ∅ means he was not a helper in that period (either a helpee or

unmatched).

Helpee and the unmatched player do not have any action to make.

A strategy is a complete contingent plan. Here, the strategy of player j (the

helper) tells him whether to choose Hj or Dj in his next encounter given the history

of all previous play by all players.

The history h(t) is the set of all the actions all players took in every previous

period.

A strategy sj indicates the action that player j makes in every circumstance in

which he is a helper, conditional on every potential history.

The strategy profile s is the N-tuple s = (s1, ..., sN) which specifies the strategy

adopted by each player.

The strategy profile s−i is the N-tuple s−i = (s1, s2, ..., si−1, si+1, ..., sN) which

specify the action sets of all players except player i.

We define ui(s
∗) as the payoff function given the strategy profile s∗, and ui(s

′
i, s

∗
−i)

is the payoff function given by another possible strategy chosen by player i. In our

game, a Nash equilibrium is a strategy profile s∗ such that no player i has an in-

centive to deviate to a different strategy s′i, i.e., each strategy is the best response

to others’ strategies. The strategy s∗ is a Nash equilibrium if

ui(s
∗, s∗−i) ≥ ui(s

′
i, s

∗
−i) ∀i (1.1)

Moreover, we say that a strategy profile is a strict Nash equilibrium if

ui(s
∗, s∗−i) > ui(s

′
i, s

∗
−i) ∀i (1.2)
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1.3.3 Strategies

Stage Game

First, consider the one-shot (stage) game, corresponding to δ = 0. In this

scenario, each helper can either “help” or “not help” in a single interaction. Since

helping yields a personal payoff of -c, whereas not helping yields 0 (and 0 > -c), the

best response is always to refuse to help. Consequently, the unique and strict Nash

equilibrium in this one-shot setting is that no one ever helps.

Repeated game

Next, we allow for the possibility of repetition by setting δ > 0, meaning there

is some probability that the game continues. One might suspect that if players

value future interactions, everyone could agree to “always help” and thus sustain

cooperation. However, if all other players follow “always help,” any single individual

can profitably deviate by refusing to help whenever they are the helper, thereby

avoiding the cost -c. Because this unilateral defection increases the deviant’s payoff

with no immediate repercussions, “always help” cannot be a Nash equilibrium.

By contrast, “never help” is a Nash equilibrium under repetition, just as it was

in the one-shot scenario: if you know that nobody else will ever help, refusing to

help is your best response. However, the strategy “nobody helps” obviously does

not capture the widespread cooperation observed in many real-world interactions.

To resolve this apparent contradiction between theoretical predictions and real-

world outcomes, we introduce reputational mechanisms. Specifically, we adopt the

notion of status from Sugden (1986), which provides individuals with information

about others’ past behaviour. If players can observe (or infer) how someone has be-

haved previously, it may become beneficial to help in order to preserve a favourable

status, especially when the continuation probability δ is sufficiently high.

Below, we define status more formally as a label or piece of reputational in-

formation tied to each player’s history of choices. We then propose and analyse

two types of standing strategies based on the literature (Sugden, 1986; Leimar and

Hammerstein, 2001)4. By examining these reputation-based strategies, we show

how cooperation can be sustained in a repeated helping game, thereby offering a

more plausible account of why cooperative behaviour arises in social contexts.
4In the evolutionary biology literature, these strategies take different names such as “stern-

judging” or “simple-standing”. See, for example, Santos et al. (2021).
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1.3.3.1 Sugden (1986)

Player i assigns a status to each other player j at each time t, Si(j, t) ∈ {GS,BS},

where GS =“good standing” and BS =“bad standing”. All players start out at

t = 1 with some arbitrary assignment of status. Status is “in the mind” of any given

player i and it has the same definition for all the players. We assume that the initial

assignment of status is a common and shared judgement, i.e., i’s judgement of j’s

status is equal to k’s judgement of j’s status, ∀i, j, k ∈ N .

Sugden Updating Rule We update the status according to the following Sugden

updating rule:

We iterate through each pair (j, k) ∈ M(t), and update i’s perception of j’s

status by

Si(j, t+ 1) =


GS if Si(k, t) = GS ∧ aj,t = Hj,

BS if Si(k, t) = GS ∧ aj,t = Dj,

Si(j, t) otherwise.

Player k’s status is unchanged, Si(k, t+ 1) = Si(k, t).

The status of any player z ̸= j, k who is not matched at time t is unchanged,

Si(z, t+ 1) = Si(z, t).

This updating rule implies that if in successive periods player i is in BS, he can

regain the GS just playing the action Hi with an opponent that is in GS.

Sugden Good Standing Rule The good-standing rule strategy A.1 is a strategy

for player i, s(h) for each possible history h, which states that, if i is matched with

j, then s(h) = Hi (help) as long as Si(j, t) = GS and s(h) = Di if Si(j, t) = BS

(i.e., opponent j is in BS, he plays Di (defect)).

The Sugden strategy A.1 says, irrespective of your own status, to help the other

only if he is in good standing and not to help if the other is in bad standing.

Theorem 1.1. The strategy profile in which all players play A.1 is a Nash equilib-

rium, and if all players play A.1, then players help if and only if δ > 2c
[ω(b−c)]+2c

.

Proof. Given the infinite time horizon of the game and the constant discount rate,

the model is stationary, i.e., players are playing now the same stage game it will
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be played in the future. Thanks to this property, it is sufficient to compare two

strategies at the current time and generalise for the future periods.

We want to find if the strategy A.1 is a Nash equilibrium and the critical value for

which the helping behaviour occurs.

There are two probabilities we have to take into account now: the probability δ

that the games continues to t + 1 and the probability of the match ω. We have to

remember that all the probabilities should be conditional on the current situation.

Let us denote UH as the expected payoff from following strategy A.1 for ever, given

that you are matched as the helper in the current period.

As long as the game continues, this will give you the series of expected payoffs:

−c, ω(b−c)
2

, ω(b−c)
2

, ...

At time t + 1 you will get ω(b−c)
2

with probability δ. The latter will be taken

into account for all the other possible periods (we assume they could be infinite)

discounted by the time period. The ω here comes from the probability of being

matched.

Therefore, because of the probability that the game will end, becomes:

UH = −c+
ω(b− c)

2

[
δ + δ2 + ...

]
(1.3)

knowing that5

δ + (δ)2 + ... =
δ

1− δ
(1.4)

then

UH = −c+
ω(b− c)

2

[
δ

(1− δ)

]
(1.5)

Let us denote UD as the expected payoff from the strategy “defect at every stage”

(myopic self-interest) for ever, given that you are the helper in the current period.

Clearly, UD = 0.
5This comes from a geometric series approximation. Indeed, when |δ| < 1, as in our case, in

the geometric series δ + δ2 + δ3 + ... the terms of the series approach zero in the limit (becoming
smaller and smaller in magnitude), and the series converges to the sum δ

1−δ .
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Therefore, UH > UD if

−c+
ω(b− c)

2

[
δ

(1− δ)

]
> 0 (1.6)

ω(b− c)δ + 2cδ > 2c (1.7)

δ [ω(b− c) + 2c] > 2c (1.8)

δ >
2c

[ω(b− c)] + 2c
(1.9)

Therefore, if we assume 1.9 holds, A.1 is an equilibrium strategy. If the helpee is

following A.1, your best reply as helper is to help. Therefore, we can see that the

Good Standing rule (A.1 ) is the best reply to itself.

Theorem 1.1 is a generalisation of the special case studied in the literature

(Sugden, 1986) in which everyone is matched (ω = 1) randomly and players are

even. In that case the condition for the helping behaviour would become

δ >
2c

(b+ c)
(1.10)

We can also show6 that wherever the starting point is (in terms of standing in

the population) your best reply as helper is to help if your opponent is in GS, but

not if she is in BS. In fact, we made no assumption about the starting point. The

only thing that matters is the status in which you are: everything about the t + 1

period is fully determined by t status.

If I am the helper at time t and my opponent is in BS, my decision — whether

to help or not — has no impact on anyone else’s standing. In particular, it does

not affect the opponent’s status (since non-active player’s status does not change)

nor does it alter my own status.

However, starting from a period in which no one is in good standing, the Sugden

Good Standing Rule strategy (A.1 ) tells everyone not to help: no one can regain

the GS status given the A.1 strategy that does not allow to help anyone that is not

in GS.

Our generalisation, which includes the possibility of unmatched players, makes

it somewhat more challenging for equation 1.9 to be satisfied compared to the

special case (equation 1.10). As the variable ω moves to the denominator and
6See 1.A.3 in the Appendix 1.A.
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as it decreases when the matches diminish, the requirements for the continuation

probability δ become harder to meet. Consequently, the conditions for the helping

behaviour are more difficult to satisfy.

The strategy described above is therefore a Nash equilibrium and the helping

behaviour occurs when the value of δ is greater than the threshold we have derived.

1.3.3.2 Leimar and Hammerstein (2001)

Leimar and Hammerstein (2001) proposed a further strategy that allows players

to regain their good standing in every period, simply by helping regardless of the

status of their matches. In the following, we want to analyse whether this strategy

is a Nash equilibrium or not and for which δ values.

Leimar and Hammerstein Updating Rule The main difference with the Sug-

den one arises when not everyone is in good standing. Indeed, under the Sugden

rule, all helpers will rationally help when the helpee is in good standing, but not

otherwise. The Hammerstein rule gives less incentive to helping people in GS be-

cause even if you are in BS you will benefit from people in BS trying to gain GS.

But it allows a quicker return from BS.

We update the status according to the following Hammerstein updating rule:

We iterate through each pair (j, k) ∈ M(t), and update helper j’s status by

Si(j, t+ 1) =


GS if aj,t = Hj,

BS if Si(k, t) = GS ∧ aj,t = Dj,

Si(j, t) otherwise.

Player k’s status is unchanged, Si(k, t+ 1) = Si(k, t).

The status of any player z ̸= j, k who is not matched at time t is unchanged,

Si(z, t+ 1) = Si(z, t).

Leimar and Hammerstein Good Standing Rule The good-standing rule

strategy A.2 is a strategy for player i, s(h) for each possible history h , which

states that, if i is matched with j , then s(h) = Hi (help) as long as Si(i, t) = BS

(i.e., player i is in BS) or Si(j, t) = GS (i.e., opponent j is in GS ) and s(h) = Di
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if Si(j, t) = BS (i.e., opponent j is in BS, he plays Di(defect).

Player i can recover GS by helping in any period, even if the helpee is not in

GS (but if you are already in GS, you are permitted not to help someone who is

not in GS ).

Formally, strategy A.2 is to help anyone when you are in BS, and to help (only)

people in GS when you are in GS. As an intuition, it proposes to help anyone if

you need to regain GS or if the opponent is in GS.

So, similarly to the Sugden one (A.1 ), you have the possibility to help every pe-

riod someone in good standing, but, differently, in the case you are in bad standing,

regain the good standing by helping the other every time you are an helper.

Theorem 1.2. Strategy A.2 is a Nash equilibrium if and only if δ > 2c
[ω(b−c)]+2c

.

Proof. As above, the model is stationary. Therefore, we can again compare two

strategies at the current time and generalise for the future periods.

We denote UH as the expected payoff from following strategy A.2 for ever, given

that you are the helper in the current period.

As long as the game continues, this will give you the series of expected payoffs:

−c,
ω(b− c)

2
,
ω(b− c)

2
, ... (1.11)

Because of the probability that the game will end, UH becomes:

−c+
ω(b− c)

2

[
δ

(1− δ)

]
(1.12)

On the other hand, we denote UD as the expected payoff from the strategy “do not

help at every stage” (myopic self interest) for ever, given that you are the helper in

the current period. Clearly, UD = 0. Therefore, UG > UD if

−c+
ω(b− c)

2

[
δ

(1− δ)

]
> 0 (1.13)

which rearranges to

δ >
2c

[ω(b− c)] + 2c
(1.14)
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Similarities and differences between the two equilibria

First of all, the equilibrium condition for both strategies is the same, in fact

equation 1.9 and equation 1.14 are identical.

But the two strategies have different implications for behaviour starting from a

period in which not everyone is in good standing7. In the extreme case in which

everyone at the start of the game (t) is provided with a bad standing, the Sugden

rule strategy A.1 induces a Nash equilibrium with no helping at all. Effectively,

following A.1, all helpers would rationally help when the helpee is in good standing,

but not otherwise. So at time t+ 1 no help would take place, and the same results

in all the (possible) future periods.

Conversely, the Leimar and Hammerstein rule strategy A.2 induces a Nash

Equilibrium with 100% helping given that everyone would regain the GS status as

soon as possible. The curious component is that in this period every helper helps

and at t+ 1 half of the population times omega is in GS.

1.4 Heterogeneous Cost of Helping in Population

An individual’s ability to help is inherently linked to the cost they incur when

providing help. Specifically, higher ability often translates into greater efficiency

or proficiency, thereby reducing the effort or resources required to help and conse-

quently lowering the personal cost.

We extend our analysis by examining how variations in individuals’ abilities, and

therefore the costs of helping, influence the equilibrium strategies8. We find that the

conditions required for helping to be sustained become even more stringent under

such heterogeneity. However, our current focus is a theoretical examination of the

steady states in equilibrium within this game. This steady-state analysis is partic-

ularly interesting as it reveals the long-term outcomes and stability of cooperation

under different strategic settings.

In each period, a continuum of players is divided randomly into being helpers

and helpees. If the helper helps, the helpee receives a benefit b > 0, and the helper

incurs some cost c. Players differ in their costs of helping; we assume players’ costs
7See full discussion in 1.A.3 in the Appendix 1.A.
8See 1.A.4 in the Appendix 1.A.
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of helping are distributed according to a cdf F (c), with support [0,∞), and a density

f(c).

Let us assume a fraction m of players are in good standing, and “the identities”

of those players is public information. A player loses good standing if they are

matched with another player in good standing, but they fail to help.

We ask what are the possible steady-state values of m, i.e., the proportion of

players in good standing.

Proposition 1.1. Given a steady-state proportion m of players in good standing,

it is a best response for a player in good standing to help another player in good

standing if

c ≤
[

δm

δm+ 2− 2δ

]
b (1.15)

Proof. Because we are in a steady-state, the only two strategies to consider are

“help if the helpee is in good standing” and “never help”. The steady-state utility

of a player who always helps when expected to at the start of a period (prior to

knowing whether he is a helper or a helpee) is

U = m

[
1

2
UH +

1

2
UR

]
+ (1−m)δU (1.16)

For the helper who chooses to help, UH = −c + δU ; and if the player is a helpee,

UR = b+ δU . Therefore,

U = m [(b− c)δU ] + (1−m)δU (1.17)

U =
1

1− δ
· 1
2
m(b− c) (1.18)

Therefore, the utility of a player who is a helper and helps is

UH = −c+
δ

1− δ
· 1
2
m(b− c) (1.19)

In the contingency where the player is a helper and does not help, his continuation

payoff is zero. Therefore, helping is a best response if and only if

−c+
δ

1− δ
· 1
2
m(b− c) ≥ 0 −→ c ≤

[
δm

δm+ 2− 2δ

]
b (1.20)
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Therefore, for a given m, the proportion of players for whom it is a best response

to help other players in good standing is

F

(
bδm

2− 2δ + δm

)
(1.21)

In order to have a proportion m of players in good standing in steady state, m

must satisfy

F

(
bδm

2− 2δ + δm

)
= m (1.22)

Proposition 1.2. There is always an equilibrium with m = 0, i.e., nobody helps.

Proof. For m = 0, equation (1.22) becomes F (0) = 0. Because 0 is the lower bound

of the support of F and there are no mass points, this equation is satisfied.

Special Case: Uniformly Distributed Costs

For now, we assume that c is distributed uniformly on [0, 1], so F (c) = c for c ∈ [0, 1].

Proposition 1.3. If c is uniformly distributed on [0, 1], then there exists an interior

equilibrium (that is, one in which 0 < m < 1), if and only if 2
δ
− 2 < b < 2

δ
− 1, or,

equivalently, 2
b+2

< δ < 2
b+1

.

Proof. From (1.22), an interior equilibrium must satisfy

bδm

2− 2δ + δm
= m (1.23)

This rearranges to

m = b− 2

(
1− δ

δ

)
(1.24)

Therefore for an interior equilibrium we must have

0 < b− 2

(
1− δ

δ

)
< 1 (1.25)
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1.4. HETEROGENEOUS COST OF HELPING IN POPULATION

For each δ there exists a range of b compatible with an interior equilibrium, and

vice versa. For a given δ, it follows that

−b < −2
(
1−δ
δ

)
< −b+ 1 (1.26)

b

2
>
(
1−δ
δ

)
>

b− 1

2
(1.27)

2

b+ 2
< δ <

2

b+ 1
(1.28)

On the other hand, for a given b, we have

2

(
1− δ

δ

)
< b < 2

(
1− δ

δ

)
+ 1 (1.29)

2

δ
− 2 < b <

2

δ
− 1 (1.30)

Proposition 1.4. If c is uniformly distributed on [0, 1], then there exists an equi-

librium with full helping, m = 1, if and only if b ≥ 2
δ
− 1, or equivalently δ ≥ 2

b+1
.

Proof. For m = 1, equation (1.22) becomes

bδ

2− δ
≥ 1 (1.31)

Rearranging, we have

δ(b+ 1) ≥ 2 (1.32)

This means that fixing the two parameters, we can get the values for which

b ≥ 2

δ
− 1 or, equivalently δ ≥ 2

b+ 1
(1.33)

Taken together, Propositions 1.2, 1.3, and 1.4 provide a full characterisation of

the possible equilibria in the case of uniformly-distributed costs. Figure 1.1 plots

the three relevant regions of parameters. Below and to the left of the solid line,
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Figure 1.1: Regions of equilibria in the case of uniformly-distributed costs.

there is a unique equilibrium with no helping. Between the solid line and the dashed

line, there is an equilibrium with no helping, and an interior equilibrium with partial

helping, 0 < m < 1. Above the dashed line, there is an equilibrium with no helping,

and an equilibrium with full helping.

In the case with uniformly-distributed costs, there is at most one equilibrium

which involves a positive amount of helping. To understand why, we plot the

proportion of players for whom helping is a best response, H(m) ≡ F
(

bδm
2−2δ+δm

)
, as

a function of m, for selected values of b and δ in Figure 1.2.

Figure 1.2 shapes 6 possible interesting representations of equilibria in the game.

All the cases in Figure 1.2, apart from the limiting case 1.2e, stand for a region of

Figure 1.1. In the limiting case 1.2e, full help (m = 1) is the only equilibrium.

Figure 1.2a pictures the case of only “no help” as the only possible equilibrium in

our game, i.e., proposition 1.2. Figure 1.2c shows us a situation where, as predicted

by proposition 1.3, there is either an equilibrium at 0, or an internal equilibrium.

On the other hand, Figure 1.2d perfectly depicts a case in which the parameters

δ and b correspond to the dashed curve in Figure 1.1. Lastly, Figure 1.2f charac-

terises a possible situation in which, as theorised in the proposition 1.4, there is an

equilibrium at 0 or full help.
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1.4. HETEROGENEOUS COST OF HELPING IN POPULATION

(a) Proposition 1.2: Only No help
b = 1, δ = 0.500

(b) Solid line Figure 1.1
b = 1, δ = 0.667

(c) Proposition 1.3
b = 1, δ = 0.811

(d) Dotted line Figure 1.1
b = 1, δ = 0.998

(e) Limiting case
b = 1, δ = 1

(f) Proposition 1.4
b = 2, δ = 0.767

Figure 1.2: Comparison of examples with uniformly-distributed cost.
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More General Case

We note from Figure 1.2 that in all cases, H(m) is increasing and concave as a

function of m, which leads to there being at most one equilibrium with helping.

Now we ask for what distributions of costs this result will continue to hold.

If we analyse in more detail the LHS of function 1.22, and look for the derivative,

we can analyse the sign of the first derivative and the second derivative in order to

better understand the behaviour of the function.

∂F
(

bδm
2−2δ+δm

)
∂m

= F ′
(

bδm

2− 2δ + δm

)
· (2− 2δ + δm)bδ − bδmδ

(2− 2δ + δm)2
(1.34)

= F ′
(

bδm

2− 2δ + δm

)
· 2bδ − 2bδ2 + bmδ2 − bmδ2

(2− 2δ + δm)2
(1.35)

= F ′
(

bδm

2− 2δ + δm

)
· 2bδ(1− δ)

(2− 2δ + δm)2︸ ︷︷ ︸
≥0

(1.36)

All values in 1.36 are positive since b > 0, δ ∈ (0, 1] and m ∈ [0, 1]. So the first

derivative is positive, which means that H(m) is strictly monotone increasing.

Now we analyse the second derivative.

∂2F
(

bδm
2−2δ+δm

)
∂m2

= F ′′
(

bδm

2− 2δ + δm

)
·
[

2bδ(1− δ)

(2− 2δ + δm)2

]2
+ F ′

(
bδm

2− 2δ + δm

)
·
[
−2bδ(1− δ) · 2(2− 2δ + δm)δ

(2− 2δ + δm)4

]
︸ ︷︷ ︸

≤0

(1.37)

The second term in equation 1.37 is clearly negative, because it is multiplied by

a negative sign while all other variables involved are positive. A natural question,

then, is whether the first term can outweigh this negative component and ultimately

render 1.37 positive.

From the cases analysed above, in which the second derivative is negative, it

follows that there can be at most one interior equilibrium or a corner solution

involving constant help; in such scenarios, two distinct equilibria cannot coexist.

Consequently, when the function in question is uniform, there are precisely three

possible equilibria: zero (no help), an interior equilibrium, or full help. The calcu-

lations presented here lead us to the following proposition.
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1.4. HETEROGENEOUS COST OF HELPING IN POPULATION

Proposition 1.5. Let F be the cdf of the cost of helping. If F ′′ < 0, then there

exists at most one equilibrium with a positive amount of helping.

This proposition is illustrated by the examples in Figure 1.2, but it raises the

question of whether F ′′ can ever be positive. To explore this possibility, we now gen-

eralize our analysis to determine whether the second derivative can indeed become

positive. If so, two distinct equilibria may emerge.

From an economic standpoint, one way to motivate such a scenario is to consider

a linearly increasing cost distribution, implying that certain individuals face higher

costs. Mathematically, a straightforward way to investigate this is to assume an

increasing cost function and examine how the resulting equilibrium outcomes behave

under those conditions.

If we consider F (c) = kcα, therefore

F

(
bδm

2− 2δ + δm

)
=

m1/α

k
(1.38)

Example Suppose F (c) = c2, b = 1, and k = 1. Then in order for m to be an

(interior) equilibrium, (
δm

2− 2δ + δm

)2

= m (1.39)

Let us look for a value of δ such that m = 1
2

is an equilibrium. Equation (1.39)

becomes

( 1
2
δ

2− 2δ + 1
2
δ

)2

=
1

2
(1.40)(

2− 2δ +
1

2
δ

)
=

√
2

2
δ (1.41)

4δ − δ +
√
2δ = 4 (1.42)

δ =
4

3 +
√
2
≈ 0.906 (1.43)

Now, we can show that given the δ just found, we can find another m which

also satisfies the condition for an interior equilibrium.
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(
4

3+
√
2
m

2− 2 4
3+

√
2
+ 4

3+
√
2
m

)2

= m (1.44)(
4m2

(2m+
√
2− 1)2

)
= m (1.45)

m(2m+
√
2− 1)2 = 4m2 (1.46)

4m2 + 4m(
√
2− 2) + (−2

√
2 + 3) = 0 (1.47)

(2m− 1)(2m+ 2
√
2− 3)︸ ︷︷ ︸

this is a parabola

= 0 (1.48)

Therefore there are indeed two interior equilibria, m = 1
2
, and m = 3

2
−

√
2 ≈

0.0858. This is illustrated in Figure 1.3c.

(a) No interior equilibria
b = 1, δ = 0.8

(b) Double root
b = 1, δ = 0.888

(c) 2 interior equilibria
b = 1, δ = 0.9

Figure 1.3: Comparison of examples with quadratic cost function

Proposition 1.6. Let F (c) = c2, i.e., α = 2, and fix b = 1. Then there exist

exactly at maximum two interior equilibria with positive amounts of helping.

Proof. The steps are as follows.

1. We can show that the first derivative of LHS of (1.39) is equal to 0 at m = 0.

In fact, it becomes

∂F
(

δm
2−2δ+δm

)2
∂m

=
2δ2m

(δm− 2δ + 2)2
− 2δ3m2

(δm− 2δ + 2)3
(1.49)

= − 4(δ3m− δ2m)

(δm− 2δ + 2)3
(1.50)
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1.4. HETEROGENEOUS COST OF HELPING IN POPULATION

Therefore, (1.50) is equal to 0 at m = 0.

2. Given the point above, the function is differentiable at 0 and therefore also

continuous. Because this is a continuously differentiable function, this implies

that there exists some m′ such that, for 0 ≤ m < m′, δm
2−2δ+δm

< m.

3. Observe that
(

δm
2−2δ+δm

)2 − m = 0 is quadratic in m. Therefore, there are

either 0, 1, or 2 solutions (in the real numbers) for m.

m

[
δ2m

[δm+ 2(1− δ)]2
− 1

]
= 0 (1.51)

δ2m− [δm+ 2(1− δ)]2 = 0 (1.52)

δ2m− (δ2m2 − 4δ2m+ 4δ2 + 4δm− 8δ + 4) = 0 (1.53)

−δ2m2 +m(5δ2 − 4δ)− 4(δ2 − 2δ + 1) = 0 (1.54)

Divide by −δ2 to get:

m2 − m(5δ2 − 4δ)

δ2
− 4(δ2 − 2δ + 1)

δ2
= 0 (1.55)

Solve for m:

m =
−(5δ2 − 4δ)±

√
16(δ2 − 2δ + 1)δ2 + (5δ2 − 4δ)2

2δ2
(1.56)

4. We know from algebra that the determinant of the quadratic function gives

us the possible solution(s) of this equation.

In our formula the determinant is 16(δ2 − 2δ + 1)δ2 + (5δ2 − 4δ).

If the determinant is lower than 0, then we have no real equilibria. If the

determinant is equal to 0, then we have exactly one equilibrium (double root).

The latter corresponds, in our model, to the cutoff point for having at least

one equilibrium. Finally, if the determinant is greater than 0, we have two

solutions, i.e., two internal equilibria in our model.
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We can find then this cutoff point:

16(δ2 − 2δ + 1)δ2 + (5δ2 − 4δ) = 0 (1.57)

δ(16δ3 − 32δ2 + 21δ − 4) = 0 (1.58)

δ =
1

2

(
8− 1

3
√

28− 3
√
87

− 3

√
28− 3

√
87

)
≈ 0.339 (1.59)

1.5 Discussion

In this chapter, we provided a theoretical characterisation of the standing strategies

in the helping game and we extended the model by introducing heterogeneity in

individuals’ cost to help and incorporating the possibility that participants may

not be matched in every period. By modelling the cost of helping as a continuous

random variable with a specified distribution F (c), we have analysed how differences

in the ability to help influence the emergence and sustainability of cooperation in

large societies.

Our analysis reveals that the shape of the cost distribution plays a pivotal role

in determining both the number and the nature of equilibria. Specifically, when the

cost distribution function is concave (F ′′(c) < 0), there exists at most one equilib-

rium with a positive level of helping. In contrast, if the cost distribution is convex

(F ′′(c) > 0), multiple (up to two) interior equilibria may arise. This finding high-

lights the significance of heterogeneity in abilities: variations in individuals’ costs

of helping can lead to diverse equilibrium outcomes, affecting whether cooperation

is sustained within the population.

By introducing a matching probability ω, we have accounted for the realistic

scenario in which not all individuals are matched in every period. This modification

acknowledges that opportunities for interaction and cooperation are not uniformly
9The cubic equation solution for a function ax3 + bx2 + cx+ d:

p =
−b

3a
, q = p3 +

bc− 3ad

6a2
, r =

c

3a
,

x =
(
q +

√
q2 + (r − p2)3

) 1
3

+
(
q −

√
q2 + (r − p2)3

) 1
3

+ p (1.60)
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distributed, allowing us to examine how the frequency of interactions influences the

conditions under which cooperative behaviour can be maintained.

Our work differs from previous studies, such as those by Camera and Gioffré

(2014, 2017, 2022), which focus on heterogeneity arising from stochastic variations

in payoffs due to productivity shocks and rely on private monitoring and contagious

punishments to sustain cooperation. In contrast, we consider inherent differences

in individuals’ abilities to help, reflecting real-world variations such as disabilities

or resource constraints. We employ reputational mechanisms based on standing

strategies—specifically, those inspired by Sugden (1986) and further developed by

Leimar and Hammerstein (2001) — to facilitate cooperation without relying on

private monitoring or the threat of contagious punishment.

There remain several avenues for further research. One direction is to explore

alternative forms of the cost distribution F (c) including those with discontinuities

or heavy tails, to understand how different types of heterogeneity affect equilibrium

outcomes. Incorporating dynamic elements into the model — such as allowing

individuals to invest in their ability to help or to adapt their strategies based on past

experiences — could provide insights into how cooperative norms evolve over time.

Additionally, examining the impact of asymmetric information, where individuals

do not fully observe others’ abilities or past actions, can be informative.

Empirical validation of the theoretical predictions through experimental studies

could enhance our understanding of cooperative behaviour in heterogeneous popu-

lations. Investigating whether individuals behave in accordance with the proposed

strategies and how variations in abilities influence their decisions to help would of-

fer practical insights. Such studies could also assess the effectiveness of different

reputational mechanisms in promoting cooperation among diverse agents.

In conclusion, our analysis demonstrates that cooperation can be sustained

through self-interested strategies relying on reputational mechanisms, even in popu-

lations where individuals differ in their abilities to help. The presence of heterogene-

ity adds complexity to the strategic environment but also offers opportunities to

design interventions that promote cooperative behaviour. By highlighting the con-

ditions under which cooperative equilibria exist and how they are influenced by the

distribution of helping costs, this chapter contributes to the theoretical foundations

of cooperation in diverse societies.
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1.A. APPENDIX

1.A Appendix

Different approaches to deriving Theorem 1.1 and Theorem 1.2 are given below.

1.A.1 Alternative Proofs for Theorem 1.1

Proof 1

Start on period 0. Conditional on the game continuing to period 1, the proba-

bility for i to be a helper or a helpee is the same, ω
2
. This probability should also

take into account the conditionality of not being a helper, i.e., the probability of

being a helpee becomes
ω
2

1−ω
2
= ω

2−ω
. Hence, the expected benefit you can get if the

game continues to period 1 and you are not a helpee is b ω
2−ω

.

An easy way to find the critical values, it is now to substitute in equation

δ > 2c
(b+c)

(eq. 1.10) the new parameters.

Now, the equivalent for δ is δ(2− δ), i.e., the probability that game continues to

period 1. Whereas, the equivalent of b is b ω
2−ω

, i.e., the benefit you get given that

the game continues to period 1 and you are not a helper.

So, the formula becomes

δ(2− ω) >
2c

[(b ω
2−ω

) + c]
(1.61)

which rearranges to

δ >
2c

[ω(b− c)] + 2c
(1.62)

Proof 2

At time t, all players apart from player i (the one under consideration now) are

following strategy A.1. The helpee has not choices to make. So, we can see the

alternatives for the helper. Your decision (as the helper) will determine if you’ll be

in GS in the next period(s) or not, until you’ll be again a helper. What you care is

therefore the benefit you can get in the (possible) next periods t+ 1, t+ 2, .., t+ α,

where α is the number of periods in which you’ll be a helpee before you’ll be an

helper again.
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Two situations with two possible choices:

1. If the helpee is in GS and you do not help, the expected utility you get is 0:

when you will be a helpee no one will help you because you didn’t help when

you were an helper.

If the helpee is in GS and you decide to help, you incur in a loss c, the cost

of helping at t. Moreover, there is a probability δ that the game continues to

t+ 1. At the same time, conditional on the game continuing to period t+ 1,

there is probability 1/2 that you are the helper again, so the analysis ends.

Symmetrically, there is also probability 1/2 that you are the helpee: in this

case there is the cumulative probability δ
2

that you will be an helpee in the

next period t+1 and you will get b. The same probability ( δ
2
) will be taken into

account for the other periods (we assume they could be infinite) discounted

by the time period until you will be an helper again, to gain b. Therefore,

your expected utility if you help is:

−c+ ωb

[
δ

2
+

(
δ

2

)2

+ ...

]
(1.63)

This expected utility is greater than zero if the following happen:

−c+ ωb

[
δ

2
+

(
δ

2

)2

+ ...

]
> 0 (1.64)

knowing that
δ

2
+

(
δ

2

)2

+ ... =
δ

2− δ
(1.65)

then

ωb

[
δ

2− δ

]
> c (1.66)

δ >
2c

[ω(b+ c)] + 2c
(1.67)

If the above result holds, then it is better to help than to defect if the helpee

is in GS. Therefore, if δ is below the above threshold, the helping is not an

equilibrium.
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2. If the helpee is in BS, strategy A.1 prescribes him not to help. His standing

is uneffected by others strategy (they are playing A.1). Is it possible that he

wants to deviate and help? That’s impossible, in fact there is no reward for

helping and he does not want to pay a cost for helping. He will not deviate

and follow the strategy A.1.

1.A.2 Alternative Proof for Theorem 1.2

At time t, all players apart from player i (the one under consideration now) are

following strategy A.2. The helpee has no choices to make. So, we can see the

alternatives for the helper. Your decision will determine if you’ll be in GS in the

next period(s) or not, until you’ll be again a helper. What you care is therefore the

benefit you can get in the (possible) next periods t + 1, t + 2, .., t + α, where α is

the number of periods in which you’ll be a helpee before you’ll be an helper again.

Two situations with two possible choices:

1. If the helper is in GS but the opponent is not (he is in BS), the action used

will not influence future payoffs. In fact, the best reply is to defect, without

loosing the amount c (as in for strategy A.1 ).

2. In all the other combinations of matches (i.e., you are in BS or you are in

GS and the helpee is in GS too), the helper should help the other to be in

good standing immediately after the current period. If you decide to help,

you incur in a loss c, the cost of helping at t. However, given that all the

others are following the A.2 strategy, as soon as you are in GS as helpee you

will always be helped. Therefore, every subsequent period in which you will

be the helpee you will receive b. Therefore, the same mathematical proof used

to study strategy A.1, i.e., studying UH > UD applies here providing us the

same results:

if δ > 2c
[ω(b+c)]+2c

than A.2 is a strict Nash equilibrium.
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1.A.3 Population Dynamics for Strategy A.1 and Strategy

A.2 under different Starting Points

Let us analyse different starting points.

If everyone at the start of the game is provided with a BS, the Sugden rule

strategy A.1 induces a Nash equilibrium with no helping at all. So at time t + 1,

no help takes place, and the same results in all the possible rounds. In fact, A.1

prescribes helping only those who are in GS. Conversely, the Hammerstein rule

strategy A.2 induces a Nash equilibrium with 100% helping, given that everyone

would regain the GS status as soon as possible. The curious component is that in

this period every helper helps, and at t+1, half of the population is in GS. Strategy

A.2, in this particular case, leads people to help each other immediately and in all

the following periods. This is evident from Figure 1.4.

Similarly, if everyone at the start of the game is provided with a GS, both

strategies impose helping and are Nash equilibria. There is no incentive to deviate,

given that all the other players are following the same strategy.

What happens if, in period t, some players (a fraction η) are in GS and some

others are in BS (i.e., 1− η)?

We would like to estimate not only the status of players period after period but

also the helping behaviour of players in the game.

Let us start with strategy A.1.

Assuming that the population is large enough to allow us to use the Law of Large

Numbers (LLN), the matches will be in the proportions:

GS helper, GS helpee: η2. Helper helps and both players will be in GS in period

t+ 1.

GS helper, BS helpee: η(1 − η). Helper does not help but he will be in GS in

period t+ 1.

BS helper, GS helpee: η(1 − η). Helper helps and both players will be in GS in

period t+ 1.

BS helper, BS helpee: (1 − η)2. Helper does not help and both players will be in

BS in period t+ 1.
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Therefore, in period t+ 1, the proportion of players in GS will be:

ηA.1
t+1 = η2 +

η(1− η)

2
+ η(1− η) =

2η2 + 3η(1− η)

2
=

=
2η2 + 3η − 3η2

2
=

3η − η2

2
=

η(3− η)

2

(1.68)

Let us now consider the dynamics of strategy A.2.

Here, all the helpers will be in GS at t + 1 given the prescription of the strategy.

But let us analyse it more carefully starting at period t.

Assuming that the population is large enough to allow us to use the Law of Large

Numbers (LLN), the matches will be in the proportions:

GS helper, GS helpee: η2. Helper helps and both will be in GS in period t+ 1.

GS helper, BS helpee: η(1 − η). Helper does not help but he will be in GS in

period 1. Helpee remains in BS in period t+ 1.

BS helper, GS helpee: η(1 − η). Helper helps and both will be in GS in period

t+ 1.

BS helper, BS helpee: (1− η)2. Helper helps and he will be in GS in period t+1.

Therefore, in period t+ 1, the proportion of players in GS will be:

ηA.2
t+1 = η2 +

η(1− η)

2
+ η(1− η) +

(1− η)2

2
=

2η2 + 3η(1− η) + (1− η)2

2
=

=
2η2 + 3η − 3η2 + 1− 2η + η2

2
=

η + 1

2

(1.69)

Figure 1.4 compares the population dynamics of players in Good Standing (GS)

under two strategies, A.1 (Sugden in red) and A.2 (Hammerstein in blue). The

horizontal axis shows the proportion of players in GS at period t, and the vertical

axis shows the proportion at period t + 1. The 45◦ line indicates points where the

proportion of GS remains unchanged from one period to the next. Under strategy

A.1, any initial proportion in (0, 1) leads to a rise in GS each period, albeit at a

rate converging to zero as t approaches infinity.

Under strategy A.2, however, the growth of GS occurs more rapidly. Indeed,
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Figure 1.4: Dynamics of GS under strategies A.1 and A.2

when no one starts in GS (ηt = 0), the proportion immediately jumps to 1
2
. This

difference arises because A.2 allows players in GS to help those in Bad Standing

(BS), a possibility not afforded by A.1. Algebraically, one can compare

ηA.1
t+1 =

ηt(3− ηt)

2
and ηA.2

t+1 =
ηt + 1

2
,

and show that ηA.2
t+1 > ηA.1

t+1 whenever ηt ̸= 1. Both strategies nevertheless con-

verge to ηt+1 = 1 when ηt = 1, as substituting ηt = 1 into either equation yields

an equilibrium at full GS. However, for any intermediate starting proportion ηt,

the Hammerstein function (blue curve) exceeds the Sugden function (red curve),

indicating that A.2 always generates a larger share of GS by the next period.

1.A.4 The Impact of Ability on Helping Behaviour - Hetero-

geneous Costs

We can further refine our model by mapping the ability to help directly to the cost

of helping. Specifically, we want that an individual’s ability inversely affects the

cost they incur when providing help. That is, individuals with higher ability levels

face lower costs when helping, while those with lower ability levels face higher costs.

This relationship captures the notion that more capable individuals can help others

more efficiently or with less effort, resulting in a lower personal cost.

We define ability as the inherent capacity to help when requested. This capacity
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is formally conveyed by the cost of helping. For simplicity, we consider a dichoto-

mous population: individuals are either able (they know how to help) or disabled

(they cannot help)10.

An important factor in analysing games with asymmetric information is whether

certain information is public (common knowledge) or private. Given the structure

of players’ statuses and the way they are updated from one period to the next,

knowing who is able and who is not impacts the game’s dynamics. Therefore, we

find it essential to analyse both scenarios-where disability is public information and

where it is private-and examine their implications on the game’s equilibria.

We assume that the population size N is even and that all players are matched

in each period. Suppose now that a fraction ϵ of the entire population is disabled

and hence cannot help.

1.A.4.1 (Dis-)ability as Public Information: Honorary Good Standing

In this scenario, since individuals know who is incapable of helping, we assume

that the disabled players maintain their GS (good standing) status throughout the

game—they have what we call an “honorary GS”. To find the critical values for

which strategy A.1 (and similarly A.2) constitutes a Nash equilibrium, we employ

the same approach as before.

We analyse the expected utility under strategy A.1. If an able individual is the

helper at period t, they incur a cost c regardless of whether the helpee is able or

disabled, since the strategy prescribes helping those in GS, and the disabled are

always in GS. At t + 1, with probability 1
2
, the individual will be a helper again

and may incur an expected cost of c
2
. With probability 1

2
, they will be a helpee

and receive a benefit b only if matched with an able helper, which occurs with

probability 1− ϵ. Therefore, as long as the game continues and the individual can

help, the expected utility UH becomes:

UH = −c+ δ

[
1

2
((1− ϵ)b− c)

]
1

1− δ
(1.70)

where δ ∈ (0, 1) is the discount factor representing the probability that the game
10We use the terms “able” and “ability” although “expert” and “expertise” could express a similar

meaning.
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continues.

Let UD denote the expected payoff from always defecting (never helping). Clearly,

UD = 0. Therefore, UH > UD if:

−c+ δ

[
1

2
((1− ϵ)b− c)

]
1

1− δ
> 0 (1.71)

Solving inequality (1.71) for δ, we obtain:

δ >
2c

(1− ϵ)b+ c
(1.72)

This condition is stricter than in the homogeneous ability case, indicating that

heterogeneity in abilities raises the threshold discount factor δ required the strategy

to be a Nash equilibrium stricter.

1.A.4.2 (Dis-)ability as Private Information

When disability is private information, the equilibrium conditions become even

more stringent. We consider an able helper and assume that disabled individuals

are in BS (Bad Standing) because they cannot help. Strategy A.1 requires players

to help only those who are in GS.

As an able helper, the individual incurs a cost c when helping a helpee in GS,

who is able with probability 1− ϵ. At t+ 1, with probability 1
2
, the individual will

be a helper and may incur an expected cost of c
2
. With probability 1

2
, they will be

a helpee and receive a benefit b only if matched with an able helper, which occurs

with probability 1− ϵ. Therefore, the expected utility UH becomes:

UH = −c+ δ

[
1

2
(1− ϵ)(b− c)

]
1

1− δ
(1.73)

Again, UD = 0, so UH > UD if:

−c+ δ

[
1

2
(1− ϵ)(b− c)

]
1

1− δ
> 0 (1.74)
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Solving inequality (1.74) for δ, we obtain:

δ >
2c

(1− ϵ)(b− c) + 2c
(1.75)

This condition is even more restrictive than when disability is public information,

reflecting the additional uncertainty introduced by private information.

We observe that this result resembles the case where some individuals are un-

matched, with (1 − ϵ) analogous to the matching probability ω. Games where

one or both players are disabled have payoffs equivalent to those where players are

unmatched.

In a game where all players are matched but some are disabled and remain in

BS, strategy A.1 is a Nash equilibrium if and only if:

δ >
2c

(1− ϵ)(b− c) + 2c
(1.76)

A similar analysis applies to strategy A.2, and we derive analogous results by

substituting A.1 with A.2 in the equations above.

Introducing heterogeneity in abilities affects the equilibrium strategies by mak-

ing the requirements for the strategy to support helping behaviour stricter.
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Cooperation in the Helping Game:

Image Scoring or Good Standing?

Using a lab experiment, we investigate the efficiency of two often studied reputation-

based mechanisms — Image Scoring (IS) and Good Standing (GS) — in promoting

cooperation in helping games. Both mechanisms assign a score to each individual,

updating each time a choice is made. Under IS, a player’s score (0 to 5) reflects their

past help, updating only on the individual’s choices. Under GS, a player’s score

(0 or 1) reflects both their help and who they helped, considering the individual’s

choices and the recipient score. First, we suggest that the centralised and recur-

sive nature of GS encapsulates the entire history of interactions, departing from

prior interpretations. Second, we conjecture that GS incentivises differentiation

between “justified punishers” (those who do not help non-helpers) and “unjustified

non-helpers” (those who do not help despite others’ help). Our findings support our

conjecture, highlighting reciprocal helping behaviour. However, IS leads to higher

overall cooperation rates, regardless of reputation.
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2.1 Introduction

Cooperation is an important part of everyday life and essential for achieving good

societal goals. For instance, students helping each other with their coursework or a

neighbour who watches your dog when you are on vacation exemplify cooperation

on a small scale. At a larger level, cooperation between different countries can

contribute to better economic outcomes, such as trade agreements, environmental

policies, and global health initiatives. However, since groups sometimes cooper-

ate and sometimes do not, understanding the conditions that support and foster

cooperation is essential for economists, particularly in the context of institutional

design.

Often, the short-term individual costs of cooperation exceed the benefits, limit-

ing cooperation in one-shot interactions (Rand and Nowak, 2013). However, when

individuals interact repeatedly with the same group, cooperation typically emerges

(Trivers, 1971; Axelrod, 1984). This phenomenon can be explained by direct reci-

procity, where the recipient of a helpful decision reciprocates by helping the indi-

vidual who helped them in the past. For example, if Alice helps Bob, and then Bob

reciprocates by helping Alice, the cumulative benefit of cooperation can outweigh

the costs. The Folk Theorem (Friedman, 1971; Fudenberg and Maskin, 1986) pro-

vides a formal support for this: in repeated bilateral (or multilateral) interactions

where decisions are observable, reciprocal behaviour can emerge as an equilibrium

outcome, sustained by a variety of strategies, as long as interactions are sufficiently

frequent and/or agents are sufficiently patient.

When individuals seldom meet the same partners more than once, as is the

case in large populations, supporting cooperation becomes more challenging. While

it is possible to construct schemes for enforcing cooperation as equilibria in these

situations, these schemes often have implausible features. Moreover, such cooper-

ation cannot be explained by direct reciprocity alone. Instead, it can be sustained

through indirect reciprocity (Alexander, 1987), where the reciprocation of a helpful

action comes, this time, from someone other than the original recipient of the help.

For example, if Alice helps Bob, and then Caesar, who has information about this,

helps Alice in return.

Several different types of indirect reciprocity mechanisms have been proposed.
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They can be categorised into preference-based and reputation-based mechanisms.

Researchers have primarily focused on preference-based mechanisms, proposing that

reciprocity preferences can explain why prosocial behaviour is sometimes sustained

in such settings. Some researchers define reciprocity as (reciprocal) fairness, where

an individual is kind to those they perceive as having been kind to others (e.g.,

Rabin, 1993; Dufwenberg and Kirchsteiger, 2004; Falk and Fischbacher, 2006; Hopp

and Süß, 2024,1). Others describe it as (reciprocal) altruism, where an individual

acts altruistically towards those they perceive as generally altruistic (Levine, 1998).

We refer to these as “reciprocity preferences” in this chapter. Both fairness and

altruism mechanisms typically rely on information about past behaviours to assess

whether others have been kind or altruistic.

In contrast, we note that there is another class of mechanisms that can sustain

prosocial behaviour without appealing to preferences. These are reputation-based

mechanisms, which specifically focus on the structured use of shared information

about individuals’ past behaviours to sustain cooperation. Two main reputation-

based mechanisms have emerged in this context: “Image Scoring” (IS) (Nowak and

Sigmund, 1998a,b) and “Good Standing” (GS) (Sugden, 1986; Leimar and Hammer-

stein, 2001). IS and GS are both mechanisms (or information structures) for en-

coding and publicly displaying individuals’ past behaviours in environments where

mutually beneficial cooperation is supported by indirect reciprocity.

Reputation-based mechanisms like IS and GS are simplified or idealised rules

that capture the essence of how reputation can influence cooperation in a way that

is theoretically and experimentally tractable. These mechanisms are particularly

useful in controlled environments where the goal is to understand which features of

a scoring system might be most effective in encouraging efficient outcomes.

In real-world contexts, while no system may exactly mirror the IS or GS mech-

anisms, similar reputation-based systems are frequently employed. For instance,

various institutions, such as voluntary organisations, trade unions, pressure groups,

and social media platforms that use ratings and likes, can facilitate the recording

and dissemination of reputation information. These systems do not require punitive

or rewarding powers beyond updating reputations, thereby supporting cooperative
1An extension of the approach of Dufwenberg and Kirchsteiger (2004) to modelling direct

reciprocity in the context of indirect reciprocity.
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behaviour in practical settings.

These reputation-based mechanisms have potential practical applications in a

wide range of economic contexts, where centralised reputation systems can signifi-

cantly impact behaviour. For example, in crowd-sourcing platforms, contributions

can be assessed based on subscribers’ reputation scores, incentivising high-quality

inputs. In e-commerce, these scores help evaluate the trustworthiness of sellers and

buyers, improving transactional reliability2. Knowledge-sharing networks, such as

online forums, also benefit from these mechanisms, because answering questions

entails a cost (time) yet yields a benefit (satisfaction of helping others), thereby

fostering higher participation and cooperation. Therefore, while IS and GS are the-

oretical constructs, they offer valuable insights for designing systems that enhance

cooperative behaviours across various sectors.

The IS mechanism assigns each individual an observable numerical score that

updates with each cooperative decision: scores can increase when an individual

cooperates and may decrease when they do not. Because these scores are visible

to all, they form a reputation system in which people can base their cooperation

decisions on others’ scores.

However, IS captures only (a certain number of) first-order information —

namely, whether someone cooperated or not — without distinguishing between “jus-

tified” and “unjustified” non-cooperation. “Justified” non-cooperation occurs when

an individual refuses to cooperate with someone who previously did not cooperate

with others, while “unjustified” non-cooperation occurs when an individual refuses

to cooperate despite the other party’s good cooperative history. This distinction

matters because it affects perceptions of “deservingness,”3 yet IS cannot account for

it due to its limited information.

Under IS, the indirect reciprocal strategy for universal cooperation is to “co-

operate with those who have high scores.” Hence, individuals are incentivized to

maintain high scores by consistently cooperating, in the expectation that others

will reciprocate in future interactions.

The GS mechanism assigns each individual a binary “status” — either “good
2For example, see Keser (2003), and Wibral (2015).
3“Deservingness” refers to whether individuals are deemed worthy of receiving help, based on

their past behaviour.
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standing” or “bad standing” — that reflects an individual’s past cooperative be-

haviours. Similar to IS, each individual carries an observable numerical score that

updates every time they make a choice. Differently from IS, the updating rule of

the GS mechanism is not only based on the individual’s behaviour but also on the

players’ status (second-order information). This recursive feature captures a richer

history of interactions, enabling GS to more accurately track cooperative tendencies

and distinguish between justified and unjustified non-cooperation.

Under GS, the indirect reciprocal strategy for universal cooperation is to “co-

operate with others who are in good standing and refuse cooperation to those who

are in bad standing.” This rule incentivizes individuals to maintain good stand-

ing by consistently cooperating, because only those with good standing can expect

reciprocal cooperation in future interactions.

IS and GS have been theoretically explored in the so-called “helping game”(Nowak

and Sigmund, 1998a,b). The game consists of a large population of players who in-

teract repeatedly across many periods. Players are randomly matched in pairs

during each period, with one randomly selected as the “active player” and the other

as the potential receiver (named the “non-active player”) of a helping decision4. The

active player has a choice to make: whether to help the non-active player or not.

If the active player chooses to help, they incur a cost c and confer a benefit b to

the non-active player (b > c > 0). The benefit is only realised and the cost is only

incurred if the active player chooses to help. Not helping results in the “status quo

ex ante” being maintained. The receiver, or non-active player, does not have any

choice to make.

The helping game has been experimentally studied to understand the dynam-

ics of indirect reciprocity (Seinen and Schram, 2006; Engelmann and Fischbacher,

2008, 2009). Existing evidence suggests that IS can lead to high cooperation rates

in the helping game, and it has therefore been considered a robust explanation for

indirect reciprocity. However, IS has not been rigorously compared against alter-

native rating or scoring systems, which leaves us uncertain about the reasons that

make IS effective. Moreover, as discussed earlier, IS does not provide information on
4In previous literature, these roles have been referred to by various names: “helper” and

“recipient” or “helpee” (e.g., Erkut and Reuben, 2023); “donor” and “recipient” (e.g., Seinen and
Schram, 2006); “mover” and “recipient” (e.g., Bolton et al., 2005); or “buyer” and “seller” (e.g.,
Camera and Casari, 2018). We refer to the same roles.
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whether a non-active player’s prior non-helping was justified or unjustified, a criti-

cal element in effectively implementing the logic of indirect reciprocity. This logic

encompasses both a moral problem and an incentive problem. The moral problem

arises from the principle of reciprocity itself, which suggests that people who do not

help others do not deserve to be helped. The incentive problem, on the other hand,

stems from the expectation that non-helpers will be punished; however, under IS,

punishment is costly because it reduces the punisher’s score. The advantage of GS

is that it addresses these issues by ensuring that punishing non-helpers benefits the

punisher, thereby better aligning with the principles of indirect reciprocity.

Our experiment introduces two important innovations: adjusting the informa-

tion provided to individuals and testing a heterogeneous cost game. By varying

the information about previous cooperativeness that individuals receive, we can

differentiate between the IS and GS mechanisms and identify which mechanism is

more successful in inducing indirect reciprocity. Since different mechanisms require

distinct types of information, we modify the information each player receives to

assess which mechanism is more effective in fostering cooperation. Specifically, our

GS mechanism internally encodes higher order information into a binary score — 0

(“bad”) or 1 (“good”) — providing a simplified yet comprehensive representation of

a player’s cooperative behaviour. This approach departs from previous studies that

claim to investigate GS by providing first- and second-order information separately

(e.g., Wedekind and Milinski, 2000; Milinski et al., 2001; Bolton et al., 2005).

Additionally, a novel aspect of our study is the introduction of a heterogeneous

cost game, which better reflects the complexities of real-world scenarios where in-

dividuals may face varying costs in helping others. In many social contexts, co-

operation is not uniform across all members of a population; instead, it may be

concentrated within certain “clubs” or subgroups where the costs and benefits of

helping align more favourably. For example, in a population with heterogeneous

costs, a small group of individuals with low costs may find it beneficial to help one

another consistently, forming a cooperative club. However, sustaining such coop-

eration across the entire population, especially when some individuals face higher

costs, requires a robust signalling mechanism.

In this context, Image Scoring (IS), which relies on helping others based on

the number of times they have helped, may struggle to sustain cooperation among
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individuals with different costs. This is because IS does not adequately signal

whether an individual with a low score is genuinely non cooperative or simply

have the high cost of helping. On the other hand, Good Standing (GS), which

updates a player’s status based on both first-order and second-order information,

can effectively signal membership in a cooperative club. In such a club, low-cost

individuals help each other, while high-cost individuals neither help nor receive help.

This arrangement requires a public marker indicating club membership. The GS

mechanism provides such a marker endogenously, allowing individuals to opt in or

out based on their cooperative behaviour.

In our heterogeneous cost game, each player is assigned either a high (cH) or low

(cL) cost, where cH > cL. These costs remain constant throughout the game, with

players being either high-cost or low-cost individuals. If an active player chooses

to help, they incur their assigned cost (cL or cH) and confer a benefit b to the non-

active player, where b > cH > cL > 0. The benefit is only realised and the assigned

cost is only incurred if the active player chooses to help. Not helping results in the

status quo ex ante being maintained. The receiver, or non-active player, does not

have any choice to make. This setup allows us to explore how GS, compared to IS,

might better support the emergence and stability of cooperation in populations with

varying costs, reflecting the real-world challenges of sustaining prosocial behaviour

in diverse groups.

To the best of our knowledge, this chapter is the first: (i) to investigate the

differences between GS and IS in the helping game and (ii) to examine the differences

in the responses of GS and IS in heterogeneous cost games.

There are two main research questions: (i) which mechanism is the most efficient

in the helping game? (ii) do the mechanisms differ in their levels of reciprocity?

To address the first question, we examine the frequency of helping, i.e., how much

individuals help. For the second question, we operationalise “reciprocity” in terms

of how one’s propensity to help differs as a function of the non-active player’s score.

These questions will be analysed in both the homogeneous and heterogeneous cost

games to provide a comprehensive understanding of the effectiveness and differences

between the IS and GS mechanisms across different cost games.

We find that IS produces more cooperation, particularly in the homogeneous cost

game. However, GS is more capable of supporting reciprocal helping, suggesting
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that GS may encourage more reciprocal behaviour than IS.

The rest of this chapter is structured as follows: we describe the literature in

Section 2.2. Section 2.3 provides some theoretical considerations. Section 2.4 intro-

duces our experimental design and procedure. Section 2.5 presents our conjectures

and Section 2.6 shows our results. Section 2.7 concludes and offers some insights

for future research.

2.2 Literature Review

In recent decades, significant effort has been made to understand the mechanisms

underlying cooperation, particularly reciprocity. Social scientists have developed

various game theoretic models to explore these mechanisms, providing valuable in-

sights into how and why individuals cooperate. These models have been instrumen-

tal in explaining both direct and indirect reciprocity, highlighting the importance of

structured interactions and information-sharing in fostering cooperative behaviour.

Reciprocity has been identified as a key determinant of individual behaviour in

several experimental settings, including public goods games (Brandts et al., 2000;

Greiff and Paetzel, 2020), prisoners’ dilemma games (Andreoni and Miller, 1993;

Cooper et al., 1996; Gong and Yang, 2019), centipede games (McKelvey and Palfrey,

1992), trust (investment) games (Berg et al., 1995; Charness et al., 2011), and gift

exchange games (Fehr et al., 1997; Irlenbusch and Sliwka, 2005). The findings from

these experiments consistently show that reciprocity is stable and robust, and that

it can be effectively found in the laboratory.

Scholars have emphasised that strategic reputation plays a crucial role in the

occurrence of reciprocity. Strategic reputation refers to the way individuals adjust

their behaviour to build a reputation that encourages others to reciprocate. This

concept is supported by theoretical models (Trivers, 1971; Axelrod, 1984) and em-

pirical evidence, suggesting that even individuals who might not typically cooperate

may do so to increase their chances of future reciprocation.

The motivation for reciprocal behaviour in economics has been linked to pref-

erences that extend beyond self-interest. Most research has viewed reciprocity as

an intrinsic motivation rather than a purely selfish behaviour. In particular, at-

tempts have been made to define reciprocity as (reciprocal) fairness (e.g., Rabin,
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1993; Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000), (reciprocal) altruism

(Trivers, 1971; Levine, 1998; Dufwenberg and Kirchsteiger, 2004), or the pursuit of

efficiency gains through cooperation (Brandts et al., 2000).

A game-setting that allows for the investigation of reciprocity and the impor-

tance of strategic reputation is the so-called “helping game”. The helping game is a

form of game used to study cooperative behaviour, particularly indirect reciprocity.

In the game, individuals are randomly matched in pairs each period, with one serv-

ing as the active player and the other as the non-active player. The active player

is given a set amount of money and has the possibility to incur a cost to provide a

benefit to the non-active player. The non-active player does not make any decisions

during the game.

Our main contribution is to enrich the experimental literature on helping games

by expanding on three seminal studies: Bolton et al. (2005), Seinen and Schram

(2006), and Engelmann and Fischbacher (2009). Each of these works experimentally

examines reputational mechanisms akin to ours within a helping-game framework.

Bolton et al. (2005) (BKO) analyse the impact of first and second-order infor-

mation on cooperation in a finite helping game by testing two mechanisms. The

first mechanism incorporates only first-order information: the active player is in-

formed about whether the non-active player helped in their last active period. This

is similar to an image score with a one-period window. The second mechanism

incorporates both first and second-order information: in addition to being informed

about the non-active player’s most recent decision, the active player also learns

about the decision of the non-active player’s previous partner.

BKO’s findings suggest that second-order information can significantly impact

cooperation. They argue that understanding whether a recipient’s past decision is

justified or not based on their partner’s previous choice helps players make more

informed decisions about whom to help and sustain cooperation. Their study high-

lights the importance of second-order information in fostering cooperation, which

aligns with the theoretical basis of our GS mechanism.

The BKO second-order information differs from our GS in two main ways: (i) It

uses two levels of information to create a player’s score for a period, considering both

the player’s behaviour and the recipient’s previous behaviour. (ii) It uses a binary

score for each level. While this approach incorporates more levels than our GS, it
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provides less detailed information at the first level. Our GS mechanism improves

upon this by compressing information about the entire history of interactions into a

single binary score, thus providing a comprehensive and easily interpretable measure

of cooperative behaviour.

Seinen and Schram (2006) (SS) investigate indirect reciprocity through an exper-

imental helping game, where players are randomly assigned to the roles of active and

non-active players. This experiment initiated the design that our study adopts and

builds upon. Each player’s previous six decisions as an active player are recorded

and presented as an image score. SS compare the image scoring mechanism to a

no-information condition, creating two treatments (IS vs. no information). They

also vary the cost of helping, resulting in two cost treatments (high cost vs. low

cost).

They find that helping behaviour is higher when the cost of helping is lower

and when information about past cooperativeness is provided. Their findings also

indicate that when such information is provided, active players tend to base their

decisions to help on the non-active player’s image score, confirming the presence of

indirect reciprocity. However, their design cannot clearly distinguish to what ex-

tent cooperation is driven by reciprocity preferences (i.e., non-self-interested prefer-

ences) or by self-interest. This ambiguity arises because any decision that appears

indirectly reciprocal also influences the active player’s own reputation. Therefore,

when an active player helps a non-active player with a high score, it remains unclear

whether this choice is motivated by a desire to reward the non-active player or to

boost their own reputation.

To disentangle these issues, Engelmann and Fischbacher (2009) (EF) extend

SS’s analysis by designing two treatments: one where individuals have a “private

score” and another where they have a “public score”. This setup allows for a focused

examination of non-strategic reputation building. The score reflects the number of

help decisions made by the non-active player in their last five periods as an active

player. Public scores are visible to all active players, while private scores are not.

This design enables EF to compare the behaviour of active players with and

without publicly visible scores when they encounter non-active opponents. When

scores are private, active players have no self-interested incentive to help non-active

players, since the helper’s decision does not affect a publicly observed reputation
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(in fact, they cannot even see the opponent’s score). As a result, the design isolates

“pure reciprocity,” in which helping decisions are motivated by a genuine desire to

assist others, rather than by strategic concerns5.

EF find a considerable amount of cooperation in the private score treatment

and significantly more in the public score treatment. This seems to indicate that

the visibility of active players’ past decisions influences cooperative behaviour. Ad-

ditionally, in both treatments, the probability of being helped increases with the

non-active player’s score. They also observe that players in the public score treat-

ment maintain scores around 4, which is close to the self-interested optimum, while

directing their “do not help” decisions at low-score non-active players. Approxi-

mately half of the helpful decisions in the public score treatment are driven by

reputation-building motives, while the other half are attributed to reciprocity pref-

erences.

There are two relevant differences between IS and GS. First, we argue that IS

model may not fully capture indirect reciprocity in real-world scenarios because

it does not account for the full history of interactions, which our GS mechanism

encapsulates more comprehensively. Second, EF’s explanation of public-score be-

haviour implies some degree of non-self-interested preference because an entirely

self-interested player could maintain their score closer to the optimum by ignoring

non-active players’ scores. However, EF’s results also suggest that strategic self-

interest plays a role. This highlights the second difference between IS and GS: the

IS mechanism requires some level of non-self-interested preference to induce indi-

rect reciprocity, while the GS mechanism can function effectively without relying

on non-self-interested preferences.

More in general, our study builds on these foundational works by further explor-

ing the IS mechanism and introducing two novel aspects: the GS mechanism and

an original heterogeneous cost condition. While previous studies primarily focus on

homogeneous cost games, our inclusion of heterogeneous costs reflects more realistic

scenarios where individuals face varying costs in helping others. This differentiation
5Engelmann and Fischbacher (2008) also present a model of entirely self-interested behaviour

related to a simplified IS mechanism. In this model, differently from the experiment, when image
scores are updated, the decision to be deleted is randomly picked from the five in the record, not
necessarily the “oldest” one. They find equilibria in which active players are indifferent between
adjacent scores, but these equilibria do not match the behaviour observed in their experiments.
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is crucial as it affects the dynamics of cooperation and the applicability of GS and

IS mechanisms.

Other significant contributions to the study of indirect reciprocity include the

works of Wedekind and Milinski (2000) and Milinski et al. (2001). Wedekind and

Milinski (2000) were the first to experimentally test the Nowak and Sigmund’s

model of indirect reciprocity, conducting their study over six periods. They study

two treatments: in the information treatment, players have first-order information

about the helping behaviour of their partner. Specifically, active players receive a

detailed history of the non-active player’s past decisions, displayed as a sequence

of “H” for help and “N” for no help, representing whether the non-active player had

helped or not in previous periods. The other treatment provides players with no

information. Their findings indicate that cooperation increases when active players

are aware of the non-active player’s history of helping.

Milinski et al. (2001) extend their initial experiment by testing not only “image

scoring” but also their intuition of “good standing” 6. In their study, as in BKO,

the treatment that studies the good standing provides not only first-order informa-

tion but also second-order information, indicating whether the non-active player’s

behaviour was directed towards a recipient who had previously helped or not. They

find limited evidence supporting good standing.

Our mechanisms differ from those tested by Milinski et al. (2001). Using similar

reasoning to BKO, Milinski et al.’s interpretation of GS assumes that individuals

need to remember a large amount of information about others’ previous interactions.

Their approach involves detailed tracking of first-order and second-order informa-

tion separately. Therefore, the same differences highlighted previously between our

GS and BKO’s second-order information apply here as well, even more so since,

unlike BKO, Milinski et al. do not limit the information to the last three interac-

tions. We believe our understanding of GS and design summarises and simplifies

this information provision to offer a better measure of cooperative behaviour.

Our study also takes inspiration from Swakman et al. (2016), who examine the

value players place on second-order information in a repeated helping game. In their

design, active players are endowed with non-active players’ first-order information,

which includes their previous three decisions as active players. In one treatment
6For further elaboration see Section 2.3.
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of their experiment, each active player can request second-order information about

non-active player for free. In another treatment, active players can purchase this

information at a cost. Their findings indicate that second-order information is fre-

quently sought after, particularly when first-order information reveals mixed helping

behaviours. This preference for deeper insight into the motivations behind decisions

supports the use of a comprehensive GS mechanism that encompasses higher order

information.

Additionally, Ule et al. (2009) explore the role of punishment in helping games.

By allowing active players to punish non-active players, they discover that active

players are more inclined to punish when this action diminishes the earnings of the

non-active players. Their helping game differs from ours because the action set is

larger, allowing players not only to help or not help but also to punish. Although

our study does not focus on punishment per se, punishment is embedded in the

updating rule of GS mechanism, as it indirectly penalises non-helping decisions

towards “good” players by affecting their reputation.

Finally, our research contributes to the broader experimental literature on in-

definitely repeated games, particularly those exploring the conditions under which

cooperation can be sustained. This body of work includes seminal contributions

from Palfrey and Rosenthal (1994), Dal Bó (2005), Engle-Warnick and Slonim

(2006), Aoyagi and Fréchette (2009), Camera and Casari (2009), Fudenberg et al.

(2012), Arechar et al. (2017), Fréchette and Yuksel (2017), Camera and Casari

(2018), Aoyagi et al. (2019), and Ghidoni and Suetens (2022). Notably, Bigoni

et al. (2020) (BCC) investigate two record-keeping mechanisms in an indefinitely

repeated helping game using two treatments: the “Memory treatment” and the

“Money treatment”. Both mechanisms are symmetric in their approach to track-

ing and incentivising cooperative behaviour, though they differ in how they are

implemented.

In the BCC setup, the payoffs are structured such that if the active player

chooses not to help, they receive a payoff of 6, while the non-active player receives

4. If the active player chooses to help, their payoff drops to 0, incurring a cost,

while the non-active player receives a payoff of 20. This structure implies that the

cost of helping for the active player is 6, and the benefit to the non-active player is

16, resulting in a cost/benefit ratio of 0.375.
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In the Memory treatment, players alternate between the roles of active and non-

active players. Each player starts with a “balance”, initially set at 1 for non-active

players and 0 for active players in the first period. The balance increases by 1 if a

player helps as an active player and decreases by 1 if they receive help as a non-

active player. Players are informed whether their recipient’s balance is positive (≥

1) or not (≤ 0), with a positive balance signalling that the player has helped more

times than they have been helped7. Unlike IS, the total balance across all players

remains constant, averaging 0.5 per player. This system ensures that balances

shift dynamically in response to players’ actions, with deviations from cooperative

behaviour reflected in a negative or zero balance.

BCC describe a strategy supporting a helping equilibrium in the Memory treat-

ment, where active players help only if the non-active player’s balance is positive.

This strategy, similar to the our GS strategy, highlights a conditional cooperation

mechanism that effectively maintains cooperation in their setting.

In the Money treatment, a fixed supply of tokens can be transferred between

players. Initially, each non-active player starts with one token, while active players

have none. During each period, the non-active player can choose to keep their token,

transfer one to the active player, transfer one conditionally on receiving help, or

transfer one conditionally on not receiving help — provided they have at least one

token. The active player, in turn, can choose to help or not and can also choose

to help conditionally on receiving either one or no tokens. Importantly, the active

player is informed whether the non-active player has any tokens available. This

treatment effectively induces helping behaviour by allowing players to condition

their actions on the actions of others, thereby mimicking a monetary exchange

system. In this context, possessing at least one token during rounds as a non-active

player serves as an analogue to having good standing in the traditional helping

game. This mechanism illustrates how conditioning actions on others’ behaviour

can promote cooperation, even though it diverges from the traditional helping game

structure.

BCC’s findings underscore the importance of balance or record-keeping mech-

anisms in sustaining cooperation. The key distinction from our GS mechanism is

that our mechanism does not require strict alternation of roles or a constant total
7From a GS perspective, indicating “good standing” or “deservingness”.
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of balances, which provides a fixed reference point for evaluating cooperative be-

haviour. Our GS mechanism offers a more flexible and comprehensive approach by

encapsulating the entire history of interactions into a single binary score, poten-

tially accommodating heterogeneous costs and dynamically adjusting to changing

conditions.

A key contribution of our study is to provide further evidence on the effectiveness

of GS and IS mechanisms in promoting indirect reciprocity while incorporating

more realistic scenarios through heterogeneous costs. This approach builds on and

extends the findings of previous experimental studies, offering new insights into the

dynamics of cooperation and reputation in economic interactions.

2.3 Theoretical Considerations

In this section, we focus on providing some theoretical considerations derived from

our understanding of Image Scoring (IS) and Good Standing (GS) and their com-

parison with previous research. As discussed in Section 2.2, past research has tested

first-order and second-order information separately, without fully capturing the po-

tential of the GS mechanism as a single score-based system. In particular, previous

studies have effectively tested similar systems only in the context of IS.

In our study, we consider IS and GS as score-based mechanisms that publicly

provide information about players’ past behaviours. These scores are automatically

updated by the mechanisms themselves following specific updating rules. IS keeps

a record of first-order information, which tracks whether an individual has helped

in their past interactions. The updating rule of the score depends not only on the

current choice but also on the “oldest” choice in the record, which is being removed.

Specifically, the numerical score increases by one if a player helps and their choice

replaces a “do not help” choice, it decreases by one if they do not help and their

choice replaces a “help” choice, or it does not change if the new and the old choices

are the same.

GS, on the other hand, incorporates both first-order and second-order informa-

tion. First-order information involves the immediate past behaviour of a player,

while second-order information includes whether that behaviour was directed to-

wards a player who had previously helped others. In the literature, Sugden (1986)
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and Leimar and Hammerstein (2001) propose two mechanisms that differ in their

updating rules and the strategies they endorse.

Sugden’s updating rule operates as follows: (1) if an active player is in good

standing at the start of a round, they remain in good standing unless they fail to

help a non-active player who is also in good standing — if they do not help, they

fall into bad standing; (2) if an active player starts the round in bad standing, they

stay in bad standing unless they help a non-active player who is in good standing

— in which case, they regain good standing. Consequently, Sugden’s strategy is to

“cooperate with others who have good standing and do not cooperate with those

who have bad standing”, driven by self-interest to maintain or regain good standing.

Leimar and Hammerstein’s updating rule operates as follows: (1) if an active

player is in good standing at the start of a round, they remain in good standing

unless they fail to help a non-active player who is also in good standing - if they

do not help, they fall into bad standing; (2) if an active player starts the round in

bad standing, they regain good standing if they help any other non-active player,

regardless of that player’s standing. Unlike Sugden’s rule, which only allows moving

from bad standing to good standing when helping another player in good standing,

Leimar and Hammerstein’s rule is more lenient. On the equilibrium path, Leimar

and Hammerstein’s strategy is the same as Sugden’s one: “cooperate with others

who have good standing and do not cooperate with those who have bad standing”.

The key difference lies off the equilibrium path; if a player is in bad standing, the

Leimar and Hammerstein’s strategy is to help irrespective of the standing of the

recipient in order to regain good standing.

To visually understand the difference in the updating rules, please refer to Table

2.1, which provides a detailed representation of how active player score is updated.

Table 2.1: Updating rule differences

Leimar and Hammerstein Sugden
Score at t Help Do not help Help Do not help

1, 1 1 0 1 0
1, 0 1 1 1 1
0, 1 1 0 1 0
0, 0 1 0 0 0

Notes: 1st column: active player, non-active player’s score. 2nd & 4th columns: score of the
active player at t + 1 if they help. 3rd & 5th columns: score of the active player at t + 1 if
they do not help. Remember: the score of the non-active player does not change.
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In this chapter, we focus on Leimar and Hammerstein’s GS mechanism for two

reasons. Unlike Sugden’s GS mechanism, Hammerstein’s allows easy recovery from

a bad to a good standing; a player simply needs to help in one round to regain a

good standing. Additionally, this mechanism avoids the issue of an absorbing state

where all players in the population have a bad standing and cannot improve their

standing, which could potentially stall cooperation entirely.

A critical aspect of our study is our interpretation of the GS mechanism as a

centralised score-based system. This version contrasts with previous studies that

considered the provision of first- and second-order information separately and crit-

icised the GS mechanism. For instance, Milinski et al. (2001) test a “standing

strategy” that should resemble GS but, to our eyes, misinterpret it. They assume

this strategy required individuals to remember extensive information about all their

past decisions. Hence, they criticised it for demanding excessive “memory capac-

ity”, interpreting this as the amount of information an individual must remember

about others’ past interactions. However, this critique, according to us, overlooks

the actual GS model.

The GS mechanism only requires individuals to remember a single score for each

other individual — their current standing8. We argue that the GS mechanism’s up-

dating rule ensures that the standing encapsulates a complete history of interactions

in a single binary marker, thus efficiently summarising the necessary information

without overburdening the individuals’ memory capacity. This distinction is crucial

for understanding the feasibility and effectiveness of the GS mechanism in real-world

applications.

The recursive nature of the GS updating rule stems from the continuous re-

assessment of each player’s standing based on their previous choice and towards

who that choice was made (someone “good” or someone “bad”). This recursive pro-

cess allows GS to encapsulate a comprehensive history of interactions within a single

binary marker, making it more informative than IS. Moreover, the binary nature

of the GS mechanism simplifies the decision-making process, particularly by avoid-

ing the complexity of adjusting acceptable “high” scores based on the population’s

behaviour.

8In our experiment, a centralised system keeps track of them.
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Based on these theoretical distinctions, we think it is very important to compare

the effectiveness of IS and GS in a setting similar to those used by Seinen and

Schram (2006) and Engelmann and Fischbacher (2009). We hypothesise that the

recursive structure of GS offers two potential advantages over IS in supporting

indirect reciprocity:

1. Encoding Higher-Order Information: IS captures only first-order information

that allow partial justification for an individual’s decision (e.g., Alice’s rea-

soning might be: “I did not help Bob because Bob did not help Caesar").

This approach does not account for higher-order information that could al-

low a more comprehensive justification for an individual’s decision (from the

previous example, “I did not help Bob because Bob did not help Caesar, even

though Caesar had helped Daniel”). In contrast, the recursive structure of GS

allows a single binary marker to encapsulate the properties of an indefinitely

long history. This means that GS can better reflect the complexity of social

interactions and the rationale behind cooperative decisions, providing a more

robust framework for indirect reciprocity.

2. Facilitating Club Formation in Heterogeneous Cost Populations : In popu-

lations where the costs of helping vary among individuals, Pareto-improving

cooperation can be feasible within a “club” structure. In such a structure, low-

cost individuals help each other, while high-cost individuals neither help nor

receive help. This arrangement requires a public marker indicating club mem-

bership. The GS mechanism provides such a marker endogenously, allowing

individuals to opt in or out based on their cooperative behaviour. Therefore,

GS facilitates the formation of clubs, whereas IS does not. This feature is

particularly important in heterogeneous cost condition, where individuals do

not need to know the distribution of costs to make informed decisions about

whom to help.

In summary, our theoretical considerations suggest that GS, with its recursive

structure and ability to encapsulate higher-order information, provides a more effec-

tive mechanism for supporting indirect reciprocity compared to IS. This enhanced

capability makes GS particularly valuable in settings with heterogeneous costs, of-

fering a practical and robust solution for fostering cooperative behaviour.
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2.4 Experimental Design

In this section, we introduce and justify the choices made in designing our ex-

periment, and outline the structure of our helping games. We then describe the

experimental procedure, providing detailed information on how the experiment was

conducted.

2.4.1 Our Helping Games

The starting point for our experimental design is the paper by Engelmann and

Fischbacher (2009) (EF), who study indirect reciprocity using a repeated helping

game. Our design builds upon their framework with two major differences. Firstly,

instead of assessing the relevance of a private or a public score as reputation mecha-

nism, we test two mechanisms: Image Scoring (IS), and Good Standing (GS). This

is implemented through a between-subject design to avoid contamination between

the two scoring systems. Secondly, we investigate two conditions: a helping game

with homogeneous costs and a variation with heterogeneous costs (specifically, two

different costs, ch and cl). This is done using a within-subject design, which helps

control for individual differences and allows us to detect any potential differences

caused entirely by the two mechanisms.

Table 2.2 positions our experimental design in the context of existing literature:

we generally replicate the “public score” feature of EF’s experiment but introduce

three new treatments to investigate reputation-based mechanisms within a labora-

tory setting.

Table 2.2: Experimental design

WITHIN SUBJECT DESIGN
Homogeneous Cost Heterogeneous Cost

B
E
T

W
E
E
N

S
U

B
JE

C
T

D
E
S
IG

N

(b > c > 0) (b > ch > cl > 0)
Image Scoring Engelmann and

Fischbacher (2009)(IS)
Good Standing

(GS)

In each treatment (IS or GS), two cohorts of six subjects are matched ran-

domly within each cohort. These cohorts remain the same across two sequences
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of helping game that subjects face in chronological order. These sequences are the

homogeneous and the heterogeneous cost conditions, each consisting of an indefi-

nite number of rounds. The order of the sequences is counterbalanced between and

within treatments.

Interaction in a round: Within each sequence and each cohort, subjects are matched

into pairs for each round and face a helping game. In each pair, one player is

randomly assigned the role of the active player, while the other assumes the role of

the non-active player. Both players begin the round with an account endowed with

£7.

In each sequence, subjects are informed of their own cost of helping, which

remains fixed for that sequence. They are also told that the benefit of being helped

is £10 in each round. Additionally, subjects are informed that other players might

have different costs, but that these costs would not exceed £6. However, the exact

costs of other players are not disclosed, ensuring that decisions are made under

some degree of uncertainty regarding others’ costs.

In the homogeneous cost condition, if the active player chooses to help, the non-

active player earns £10, which is added to the £7 in their account, while the active

player loses £4, deducted from the £7 in their account. If the active player chooses

not to help, both players retain the £7 in their accounts without any changes. The

surplus from cooperation is £69. The cost of cooperation to the active player is £4,

and the benefit to the recipient is £10, resulting in a cost/benefit ratio of 0.4. We

selected this ratio to align with Engelmann and Fischbacher’s paper, as they use

the same ratio.

In the heterogeneous cost condition, half of the active players are randomly

assigned a high cost (£6) and the other half a low cost (£2), with this assignment

remaining constant throughout the rounds. If the active player chooses to help,

regardless of their cost, the non-active player earns £10, which is added to the £7

in their account. For the active player, helping results in either a £6 deduction (if

they are a high-cost player) or a £2 deduction (if they are a low-cost player) from

the £7 in their account. This creates cost/benefit ratios of 0.6 for high-cost players

and 0.2 for low-cost players.
9The surplus is calculated as the difference between the sum of the accounts in the case of

help versus no help:[(7− 4) + (7 + 10)]− [7 + 7] = £6 .
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We chose these ratios to align with the two different cost treatments used in

Seinen and Schram’s study, where they were applied in separate games. However,

in our experimental design, both costs are incorporated into the same game rather

than being tested separately. This design allows us to investigate two key aspects:

first, the responses of the GS and IS mechanisms to a game with heterogeneous costs,

and second, whether a population with different costs of helping behaves differently

compared to a population with uniform costs, depending on the mechanisms (i.e.,

scores) they are presented with. It is also important to note that the cost/benefit

ratio in the homogeneous cost condition (0.4) is precisely halfway between the two

cost/benefit ratios of the heterogeneous cost condition (0.6 and 0.2).

In each treatment, we provide subjects with the following information: (i) their

own specific costs, one for the homogeneous cost condition and another for the

heterogeneous cost one, (ii) their own value of benefit, (iii) that each session is

divided into two cohorts of 6 subjects each, (iv) that the benefit is the same for all

subjects within their cohort, and (v) that different members of their cohort may

have different costs. The wording of (v) is crafted to be applicable to both cost

conditions, ensuring that subjects are not explicitly informed about the difference

between the homogeneous and heterogeneous cost conditions.

This setup was explained to the subjects as follows: the roles were labelled as “ac-

tive player” and “non-active player”. Following Engelmann and Fischbacher (2009),

the helping choices were labelled as “help” and “do not help” to clearly define the

choices available to the active player. Each active player was informed about their

endowment, their score (see explanation below) and the potential outcomes based

on their decisions. The active player’s decision screen provided a clear breakdown

of their possible choices, the associated costs, and how their score would update

based on their decision (Figure 2.110). Non-active players, on the other hand, were

informed of their role and could see their own current score, but not the active

player score. They had no decisions to make (see Figure 2.14 in the Appendix.).

We believe that labeling the players with this terminology, i.e., “active player”

and “non-active player”, rather than “helper” or “donor” and “helpee” or “recipient”

has two advantages. First, this terminology does not alter the structure of the game
10The GS screen for the active player had score 0 and 1 and associated updating rule. You can

see the decision screen in the Instructions for Good Standing in the Appendix.
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Figure 2.1: Active player’s decision screen in IS treatment

but clearly indicates which players have a choice to make and which do not. Second,

terms like “helper” or “donor” suggest an expectation to help or donate, which we

want to avoid to maintain neutrality.

At the end of each round, each player receives a summary screen providing

essential information about that round. This screen displays the round number,

the role they played (active or non-active), and a summary of their earnings if that

round would have been chosen to be paid out for real. This summary includes the

endowment, any deductions or additions resulting from the active player’s choice,

and the resulting balance. This comprehensive summary ensures that players are

fully informed about the outcomes of that round and the potential implications in

a clear and concise manner.

IS and GS treatments: Each subject is assigned a score, either IS or GS, and has

the updating rule explained to them according to their treatment group. These

scores are represented by circled numbers, providing a compact summary of their

behaviour in previous rounds. Non-active players see only their own scores, while

active players see both their own scores and those of the non-active players.

In the IS treatments, we follow Engelmann and Fischbacher’s public IS. We de-

63



CHAPTER 2

cided to use their mechanism because it aligns well with our objective of comparing

IS and GS. Their design effectively captures the dynamics of reputation and coop-

eration in a controlled setting, making it suitable for our experimental purposes.

A subject’s score ranges from 0 to 5 and reflects the number of times they chose

to help in their last five rounds as active players. Everyone starts with a score of

5. If a subject has fewer than five active rounds, the missing rounds are assumed

to be instances where they helped, ensuring their initial score is 5. The score then

updates according to the following rule: the most recent decision (help or no help)

replaces the oldest of the last five decisions. This means the score increases by one if

a helping decision replaces a non-helping decision, decreases by one if a non-helping

decision replaces a helping decision, or remains the same if the new decision matches

the oldest one.

In the GS treatments, we follow Leimar and Hammerstein’s GS mechanism. A

subject’s score is binary (0 or 1) and represents the subject’s standing (0 = bad,

1 = good). However, during the experiment, we did not use the labels “good” and

“bad” to explain the scores to the subjects. Instead, we provided numerical scores

(0 and 1) to maintain comparability with the IS mechanism.

Everyone starts with a score of 1. In every round, the score updates according

to the following rule: if the active player helps, their score becomes 1. If they do

not help, their score depends on the non-active player’s score: it becomes 0 if the

non-active player had a score of 1, or remains unchanged if the non-active player

had a score of 0.

Subjects in both conditions start with the full score (5 for IS and 1 for GS) for two

reasons. First, we aim to observe whether subjects can maintain helping behaviour

from an initial state where everyone has the highest possible score. Second, based on

the public goods game literature (e.g., Lugovskyy et al., 2017), where cooperation

tends to decay over time, we wanted to start from a situation where cooperation is

likely to be sustained for a while, allowing us to better investigate the dynamics of

maintaining cooperation.

Both treatments allow active players to click on their scores to see detailed infor-

mation on how the scores were computed, ensuring transparency and understanding

of the scoring mechanisms.

We chose to test the Leimar and Hammerstein’s GS mechanism for three main
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reasons. First, it is straightforward and easier to explain in an experimental setting.

Second, unlike Sugden’s GS mechanism, it allows easy recovery from a score of 0

to 1; a subject simply needs to help in one round to regain a score of 1. Third,

this mechanism avoids the problem of an absorbing state where all players have a

score of 0 and cannot improve their scores, which could potentially stall cooperation

entirely.

Session: Each session involves 12 subjects in the lab at the same time, all exposed

to the same information treatment. Six sessions use IS information, while another

six use GS information.

In each session, participants play two distinct sequences: one under homoge-

neous costs and one under heterogeneous costs. The order of these sequences

is counterbalanced across sessions: in six sessions, participants begin with the

homogeneous-cost sequence, whereas in the other six they begin with the heterogeneous-

cost sequence. Participants are informed that the cost condition might change be-

tween the first and second sequence, but they are not told the specific costs they

would face. This design ensures that all participants are in a symmetrical position

concerning their awareness of any role changes throughout the experiment.

We chose the cohort size of six players for several reasons. First, the use of six

subjects per cohort balances the need for anonymity — important for simulating

large population interactions — with the practicalities of laboratory-based experi-

mentation. Second, the even-numbered cohort size aligns with the structure of the

helping game, which involves pairs of players. The choice of six subjects enhances

the robustness of our design, enabling random pairing within each cohort to allow

for extensive interaction that the GS and IS mechanisms are designed to influence.

Within each cohort, subjects are randomly re-matched into pairs at the start

of each round, resulting in a 1
5

probability of meeting the same participant in two

consecutive rounds. Subjects do not know with whom they are paired, nor do they

know who is in their matching cohort in any sequence. Each round, the computer

randomly assigns one subject to the non-active player’s role and the other to the

active player’s role, with equal probability. Hence, in every round, half the subjects

are non-active players and half are active players.

A random continuation rule determines the duration of each sequence (Roth and

Murnighan, 1978). Each sequence has 40 fixed rounds, after which the sequence
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continues with a probability of 0.67. This design ensures a finite but indeterminate

duration of interaction; beginning with round 40, the sequence is expected to con-

tinue for three further rounds. In the experiment, a computer simulates the roll of a

six-sided die. If the roll iss 1 or 2, the sequence would end; otherwise, the sequence

continues to round 41. At the end of each round, all subjects observe the number

drawn, which informes them about the end or continuation of the sequence and

also serves as a public coordination device. Sequences terminate simultaneously for

both cohorts in every session.

2.4.2 Experimental Procedure

The experimental software was programmed in oTree (Chen et al., 2016) and the

sessions were conducted in the Laboratory for Economic and Decision Research

(LEDR) at the University of East Anglia. In total, 144 students participated in

12 experimental sessions (6 in IS treatment and 6 in GS). Each session had 12

participants. The subjects were recruited from the university’s database.

The experiment lasted on average for roughly one hour and twenty minutes and

participants earned on average £17.5011. This average amount is in accordance with

common rules of the lab.

Each experimental session begins with participants being randomly assigned

to their desks. Instructions12 for the experiment are read aloud to ensure clarity

and common knowledge, and participants complete a comprehension quiz to confirm

their understanding of the games. Following this, participants engage in the helping

games, which last approximately 50 minutes (see Section 2.4.1 for details).

After the game, participants complete a short survey that includes a set of

socio-economic questions to capture individual characteristics, along with questions

designed to elicit preferences using the Falk et al. (2018)’s validated survey. This

survey measures time preferences, risk preferences, positive and negative reciprocity,
11Standard deviation: ± 8, median: £14. The minimum amount for a participant was £4,

corresponding to £1 for the heterogeneous costs condition and £3 for the homogeneous cost con-
dition. This case resembles the situation in which the player is paid for both rounds as active
player and decided to help in both the conditions. The maximum amount was £34, corresponding
to £17 for the heterogeneous costs condition and £17 for the homogeneous cost condition. This
case resembles the situation in which the player is paid for both rounds as non-active player and
was helped by the active players

12See Instruction in the Appendix 2.A.2. In particular, Experimenter (2.A.2) shows a detailed
description used as a guide for the experimenters in every session.
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altruism, and trust, linking participants’ experimental choices to their underlying

preferences. Upon completing the survey, the experiment concludes, participants

are compensated, and they are free to leave.

2.5 Conjectures

Our primary objective is to examine differences in the extent of helping behaviour

(i) between good standing (GS) and image score (IS) treatments and (ii) between

homogeneous and heterogeneous cost conditions. We are interpreting these differ-

ences as comparisons between mechanisms rather than tests of theories.

Our analysis focuses on two primary concerns: the frequencies of helping be-

haviour and the ability to discern reciprocal cooperation from non-reciprocal coop-

eration under varying cost treatments.

Drawing on the theoretical considerations outlined in Section 2.3 and insights

from previous literature (Section 2.2), we propose three conjectures:

Conjecture 0 - Replication of results:

In the homogeneous cost condition of the IS treatment, our average helping rates

per round will broadly replicate the ones of Engelmann and Fischbacher (2009) in

their corresponding treatment.

Our homogeneous cost condition in the IS treatment closely mirrors the public

score treatment of their experiment. Given this replication, we anticipate that our

results will be roughly similar to theirs. Validating this conjecture is important

for establishing the robustness of our experimental design and ensuring that any

observed differences in other treatments can be attributed to the mechanisms under

investigation rather than methodological variations. Moreover, it allows us to assess

whether differences in participant populations or experimental interfaces influence

the outcomes.

Conjecture 1 - Frequency of Helping Behaviour:

There are differences in the frequencies of helping behaviour between IS and GS

mechanisms across the two cost treatments (homogeneous and heterogeneous).

While we conduct a two-tailed test to examine these differences, we believe that
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the helping behaviour will be greater under the GS mechanism compared to the IS

mechanism. Our belief is grounded in theoretical predictions about the effectiveness

of the GS mechanism in fostering cooperation. The GS mechanism incorporates a

norm of justified defection, where individuals who refuse to help not-helpers do

not suffer reputational harm. This feature is expected to sustain higher levels of

cooperation compared to the IS mechanism, which updates reputations based only

on the helping actions.

Conjecture 2 - Reciprocity in Helping behaviour:

There are differences in the correlation coefficient between IS and GS mechanisms

across the two cost treatments (homogeneous and heterogeneous).

We anticipate a stronger positive correlation between the score of non-active

players and the relative frequency of being helped in GS, indicating indirect reci-

procity. In this case, reciprocity refers to the desire to help people with a higher

score, which reflects past cooperative behaviour. If our prediction is accurate, we

ought to observe a stronger correlation between this two variables (helping and

non-active player’s scores) in GS. This could imply that GS is more capable of

facilitating reciprocal helping than IS.

By clearly distinguishing between the concepts of frequency of helping and reci-

procity, we aim to increase our understanding of the effectiveness of GS and IS

mechanisms in fostering cooperative behaviour in helping games.

2.6 Results

In total, our study included 144 subjects13, equally divided into two groups of 72

individuals each, corresponding to the GS and IS scoring systems. For every scoring

system, we had a consistent team of 36 active players available during each round

of both sequences.

Figure 2.2 and Figure 2.3 provide an overview of the experimental outcomes

across different rounds for both the GS and IS treatments, illustrating trends in

helping behaviour and scoring over the course of 40 rounds for both homogeneous

and heterogeneous cost conditions.
13See summary statistics in Table 2.18 in the Appendix.
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(a) Good Standing treatment (b) Image Scoring treatment

Figure 2.2: Trends average helping per round
Thick lines display homogeneous cost. Dash lines display heterogeneous cost.

Figure 2.2 depicts the average helping rates per round, highlighting the differ-

ences between the GS and IS mechanisms. In both panels of Figure 2.2, the solid

line represents the homogeneous cost condition, while the dashed line denotes the

heterogeneous cost condition. In the GS treatment, shown in Figure 2.2a, helping

rates decrease initially for around 5 rounds but tend to stabilise around 40% average

help after the initial rounds, suggesting that players develop consistent behaviour

patterns. A similar stabilisation trend is observed in the IS treatment depicted in

Figure 2.2b where helping rates also stabilise after some rounds, albeit at generally

higher initial levels than in the GS treatment. This stabilisation indicates that, de-

spite the different initial helping rates, players in both treatments reach a relatively

steady state in their cooperation levels as the game progresses.

Result 0: The average helping rate per round in the homogeneous cost condition of

our IS treatment replicates the ones of Engelmann and Fischbacher (2009) in their

treatment in which both players have public scores.

The thick line in Figure 2.2b, representing the homogeneous cost condition in

our IS treatment, exhibits average helping levels primarily ranging between 0.5 and

0.8. This pattern of helping behaviour closely replicates the findings of Engelmann

and Fischbacher (2009) in their treatment where both participants maintained pub-

lic scores. A direct comparison between the trends observed in Figure 2.2b and
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their data reveals a striking similarity14. Additionally, both our sessions and theirs

demonstrate comparable end-game effects, reinforcing the consistency between the

two studies. This parallel suggests that our findings robustly reproduce their results

within the context of their public score treatment.

(a) Good Standing treatment (b) Image Scoring treatment

Figure 2.3: Trends average score per round
Thick lines display homogeneous cost. Dash lines display heterogeneous cost.

Figure 2.3 presents the trends in average scores over the rounds, reflecting how

players’ scores evolve under the GS and IS mechanisms. The GS treatment, illus-

trated in Figure 2.3a, uses a strictly binary scoring system with only two possible

values: 0 or 1. Both cost conditions display stabilisation in scores after the initial 5

rounds, indicating that players’ standings become stable as they adapt to the game.

In contrast, the IS treatment, shown in Figure 2.3b, uses the IS scoring system rang-

ing from 0 to 5, reflecting the cumulative number of helping actions. Scores under

the IS treatment also stabilise, in this case between round 5 and round 10. This

occurs slightly later than GS, aligning with the scoring mechanism’s reliance on a

moving window of the last five decisions. This stabilisation is crucial as the score

in IS becomes a meaningful representation of a player’s behaviour only after each

active player has made at least five decisions, which realistically happens around

round 10.

The observed stabilisation of helping rates and scores in both treatments justifies

our focus on rounds 10 to 35 for the main analysis. By round 10, players would have

made enough decisions to establish their behaviour patterns, making their scores un-
14See Figure 3 in page 25 of Engelmann and Fischbacher (2008).
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der both mechanisms meaningful and reflective of their strategy. Analysing rounds

beyond round 35 might introduce biases related to end-game effects, as participants

might alter their behaviour in anticipation of the game ending. Focusing on rounds

10 to 35 ensures that we capture the stable, steady-state behaviour of participants,

reducing the impact of early learning effects and late-game strategic adjustments.

We begin our analysis at the cohort level, as this approach provides independent

data points that allow for a clearer and more reliable examination of the overall help-

ing behaviour. In Subsection 2.6.1, we present results related to our first conjecture

by analysing the average helping rates across different cohorts. Following that, we

move into individual-level data to investigate more specific behavioural patterns.

In Subsection 2.6.2, we present the findings from our second conjecture, as well as

a deeper investigation of individual decision-making processes in the helping game.

2.6.1 Cohort-level Analysis

In this subsection, we evaluate rounds 10 to 35 of each game and use the aver-

age choices of each cohort in a sequence as the unit of observation15. We restrict

the sample to rule out rounds where there is learning and endgame effects. This

approach provides us with 24 independent data points, corresponding to the 24

independent cohorts in our experiment.

2.6.1.1 Cooperation rates between GS vs IS in helping games

A preliminary examination of the data suggests that helping rates are very different

in each cohort. Figure 2.4 presents both the box plot and the dot plot of the average

helping rates for each cohort in the homogeneous cost helping games. Each dot

represents a cohort and the black line inside each box denoting the median helping

rate. The box itself represents the interquartile range (IQR), encompassing the

middle 50% of the data. Figure 2.5 provides the corresponding information for the

heterogeneous cost helping games.
15Results are robust if we use the full dataset.
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Figure 2.4: Average helping rate in homogeneous cost helping games
Each dot represents one cohort. Each cross represents the average for each treatment.

In the homogeneous cost condition (Figure 2.4), the Good Standing (GS) mech-

anism exhibits a median helping rate of 0.382, whereas the Image Scoring (IS) mech-

anism demonstrates a higher median helping rate of 0.681. In the heterogeneous

cost condition (Figure 2.5), the Good Standing (GS) mechanism exhibits a median

helping rate of 0.396, whereas the Image Scoring (IS) mechanism demonstrates a

higher median helping rate of 0.743.

Figure 2.5: Average helping rate in heterogeneous cost helping games
Each dot represents one cohort. Each cross represents the average for each treatment.

The variance in helping rates is notably higher for the GS group compared to

the IS group in both conditions. Specifically, in the homogeneous cost condition the

variance for GS is 0.056, while for IS, it is 0.022 (Fligner-Killeen test, χ̃2 = 3.477,

p = 0.062). In the heterogeneous cost condition, the variance for GS is 0.060,

compared to 0.037 for IS (Fligner-Killeen test, χ̃2 = 0.086, p = 0.769).

Result 1: The Image Scoring mechanism induces higher levels of cooperation com-

pared to the Good Standing mechanism.

The crosses (+) in Figures 2.4 and 2.5 indicate the mean helping rates for each

mechanism under both cost conditions. The average helping rates differ between

GS and IS in the homogeneous cost condition, with mean helping rates of 0.395 for
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GS and 0.691 for IS (Fisher-Pitman, Z = −2.958, p = 0.002). In the heterogeneous

cost condition, the mean helping rates are 0.470 for GS and 0.668 for IS, although

the difference here is smaller (Fisher-Pitman, Z = −2.037, p = 0.041).

We find that the Image Scoring mechanism generally promotes greater coopera-

tion than the Good Standing mechanism. These findings appear to disconfirm Con-

jecture 1, which posited that the Good Standing mechanism would induce higher

levels of cooperation.

2.6.1.2 High cost and low cost players in heterogeneous game

We further analyse the dynamics of helping behaviour under heterogeneous cost

conditions to explore whether the cost differences affect cooperation levels within

each mechanism. Figure 2.6 and figure 2.7 present the same information as Figure

2.5, but focus on the low-cost and high-cost players within each cohort in the

heterogeneous cost games. In particular, the crosses illustrate the average helping

rates for subjects facing low and high costs under the GS and IS mechanisms.

Figure 2.6: Average helping rate in heterogeneous cost helping games for players
with a low cost

Each dot represents one cohort. Each cross represents the average for each treatment.

For the low-cost players (Figure 2.6), the average helping rate was higher in

the IS treatment (0.780) compared to the GS treatment (0.544) (Fisher-Pitman,

Z = −2.497, p = 0.010). The variance in helping rates was lower in IS (0.025) than

in GS (0.057) (Fligner-Killeen test, χ̃2 = 1.969, p = 0.161).

For the high-cost players (Figure 2.7), the average helping rate was also higher

in the IS treatment (0.562) compared to the GS treatment (0.396) (Fisher-Pitman,

Z = −1.349, p = 0.181). The variance in helping rates was 0.097 for GS and 0.078

for IS (Fligner-Killeen test, χ̃2 = 0.650, p = 0.420).

Within the GS treatment, the variance increased from 0.051 for low-cost players
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Figure 2.7: Average helping rate in heterogeneous cost helping games for player
with a high cost

Each dot represents one cohort. Each cross represents the average for each treatment.

to 0.084 for high-cost players (Fligner-Killeen test, χ̃2 = 0.211, p = 0.646), while

the mean helping rates did not show a large difference (Fisher-Pitman, T = 0.189,

p = 0.0884). In the IS treatment, the variance increased from 0.028 to 0.069 when

comparing low to high-cost players (Fligner-Killeen test, χ̃2 = 2.007, p = 0.157), and

there was a noticeable difference in mean helping rates (Fisher-Pitman, T = 0.194,

p = 0.0432).

These findings reinforce the general trend observed in the homogeneous cost con-

dition, where the IS mechanism generally induced higher cooperation rates than the

GS mechanism. This pattern persists in the heterogeneous cost condition, particu-

larly among low-cost players, suggesting that IS might be more effective in sustain-

ing cooperation across different cost structures. However, the observed differences in

variability between high-cost and low-cost players within both treatments indicate

that cost asymmetry plays a role in influencing cooperative behaviour. This find-

ing is consistent with the broader trend that IS tends to generate more consistent

cooperation, while GS shows more variability.

2.6.1.3 Order effect

We examine the potential impact of order effects on cooperation. To ensure robust

data collection, we implemented a counterbalancing strategy to evenly distribute

the first condition played across the sessions. Specifically, we have 24 cohorts di-

vided between the IS and GS mechanisms. For each mechanism, 6 cohorts played

the homogeneous cost condition sequence first, followed by the heterogeneous cost

condition sequence, while the other 6 cohorts played the sequences in the opposite

order. This setup allows us to assess whether individuals exhibit higher or lower
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rates of helping when they play the homogeneous cost condition first, as opposed

to starting with the heterogeneous cost condition. This comparison is illustrated in

Figure 2.8, and Figure 2.9.

Figure 2.8 illustrates the average helping rates under the GS mechanisms across

the homogeneous (2.8a) and heterogeneous cost conditions(2.8b). Fisher-Pitman

permutation tests and Fligner-Killeen tests were performed to assess differences in

mean and variance between cohorts that played the homogeneous cost condition first

and those that played the heterogeneous cost condition first within each mechanism.

(a) Homogeneous cost (b) Heterogeneous cost

Figure 2.8: Average helping rates in GS
Each dot represents one cohort. Each cross represents the average for each starting

condition.

In the GS mechanism under the homogeneous cost condition, the mean helping

rate was 0.410 for cohorts that played the homogeneous cost condition first and

0.380 for those that played the heterogeneous cost condition first (Fisher-Pitman,

Z = −0.219, p = 0.838). The variances were 0.045 and 0.079, respectively (Fligner-

Killeen test, χ̃2 = 3.477, p = 0.062). Similarly, under the heterogeneous cost

condition, the mean helping rate was 0.438 for the cohorts that started with the

homogeneous cost condition and 0.502 for those that started with the heterogeneous

cost condition (Fisher-Pitman, Z = 0.457, p = 0.697), with variances of 0.088 and

0.042, respectively (Fligner-Killeen test, χ̃2 = 0.124, p = 0.725).

(a) Homogeneous cost (b) Heterogeneous cost

Figure 2.9: Average helping rates in IS
Each dot represents one cohort. Each cross represents the average for each starting

condition.

For the IS mechanism, Figure 2.9 presents the average helping rates across both

the homogeneous (2.9a) and heterogeneous cost conditions (2.9b). In the homoge-
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neous cost condition, the mean helping rate was 0.694 for cohorts that played the

homogeneous cost condition first and 0.688 for those that played the heterogeneous

cost condition first (Fisher-Pitman, Z = −0.082, p = 0.957). The variances were

0.010 and 0.038, respectively (Fligner-Killeen test, χ̃2 = 4.429, p = 0.035). Under

the heterogeneous cost condition, the mean helping rate was 0.519 for cohorts that

started with the homogeneous cost condition and 0.817 for those that started with

the heterogeneous cost condition (Fisher-Pitman, Z = 2.702, p = 0.007), while

the variances were 0.021 and 0.006, respectively (Fligner-Killeen test, χ̃2 = 1.220,

p = 0.270).

This difference in helping rates, particularly in the heterogeneous cost condition,

suggests a potential order effect within the IS mechanism. Participants appear to

adjust their helping behaviour depending on whether they first encountered the

homogeneous or heterogeneous cost structure. As discussed in Section 2.6.1.4, un-

der IS, players need to adjust their behaviour continuously to maintain a good

score. Transitioning between cost conditions requires recalibrating their strategies

to match the new cost-benefit structure, which likely explains the observed shifts

in cooperation levels.

These findings indicate that the order of conditions has a minimal effect on aver-

age helping rates within the GS mechanism. In contrast, the IS mechanism exhibits

more complex dynamics, particularly under the heterogeneous cost condition. The

difference in mean helping rates and the observed variation in behaviour across con-

ditions highlights the IS mechanism’s sensitivity to both the sequence of conditions

and the cost structure. This contrasts with earlier results, where GS showed greater

variability in helping behaviour, particularly when costs were heterogeneous. To-

gether, these observations emphasise the context-dependence of IS, where players

must adjust strategies based on the cost structure, whereas GS induces more stable,

albeit variable, patterns of behaviour.

2.6.1.4 Correlation between average helping rates within IS and GS

Figure 2.10 presents two scatter plots illustrating the relationship between average

helping rates in the homogeneous and heterogeneous cost conditions under the Good

Standing (GS) and Image Scoring (IS) mechanisms. To quantify these relationships,
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we calculate Pearson correlation coefficients for each mechanism.

Figure 2.10: Correlation between average helping rates in homogeneous and
heterogeneous cost condition

Each symbol corresponds to a cohort (× cohorts started with the homogeneous cost
condition; • cohorts started with the heterogeneous cost condition). Left panel: Good

Standing. Right panel: Image Scoring.

For the GS mechanism, there is a strong positive correlation between helping

rates in the two cost conditions (Pearson correlation, r(12) = 0.827, p = 0.001).

This statistically significant result suggests that cohorts who help more in the homo-

geneous cost condition also tend to help more in the heterogeneous cost condition.

The high correlation indicates a consistent pattern of behaviour across different

cost structures under the GS mechanism. This consistency aligns with our earlier

findings that GS encourages more stable cooperation across various scenarios, as

evidenced by the similar variances and helping rates observed between the homo-

geneous and heterogeneous cost conditions.

One possible explanation for this stability is that under the GS mechanism,

players internalise the rule of cooperation, leading to behaviour that is less sensitive

to changes in external conditions. This might be due to the binary nature of the GS

score, where being in “good standing” consistently promotes reciprocal behaviour

across different contexts. The wider range of helping rates observed under the GS
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mechanism can also be explained by reciprocity theory, which suggests the existence

of multiple equilibria depending on cohort-specific dynamics, such as the proportion

of cooperative individuals and the random initial conditions during the first few

rounds. These dynamics can set the tone for the entire sequence, leading to the

observed positive correlation in helping rates between the two conditions.

In contrast, the IS mechanism shows virtually no correlation between helping

rates in the homogeneous and heterogeneous cost conditions (Pearson correlation,

r(12) = 0.138, p = 0.670). The lack of statistical significance implies that helping

rates in one condition do not predict helping rates in the other condition within

the IS mechanism. This suggests that the IS mechanism may lead to more context-

dependent behaviour, where participants’ helping rates are influenced more by the

specific cost structure than by their general propensity to help.

This context-dependence in IS is consistent with our earlier findings of a no-

ticeable order effect under the IS mechanism, particularly in the heterogeneous

cost condition. In the IS treatment, players must continuously adjust their helping

behaviour to maintain a score that is perceived “as good”. When participants tran-

sition from one cost condition to another, they need to recalibrate their strategies

to align with the new cost-benefit structure, which may lead to significant shifts in

cooperation levels. This adaptation process likely contributes to the lack of pre-

dictive power of helping rates between conditions in IS, as each game presents a

distinct challenge that requires a fresh strategic approach. For further insights into

this phenomenon, see Figure 2.15 in the Appendix, where differences in low and

high scores are highlighted on the y-axis, illustrating how initial conditions might

influence the trajectory of cooperation within cohorts.

By contrast, the strong positive correlation observed under the GS mechanism

indicates that players tend to remain reciprocal irrespective of the cost condition.

One explanation might be that the GS rule encourages a focus on sustaining recip-

rocal relationships rather than merely optimizing scores. Once such relationships

are established, they are likely to persist across different cost environments.
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2.6.2 Individual-level Analysis

In this subsection, we shift our focus to the individual-level data to further ex-

plore the dynamics of helping behaviour. We will specifically examine the results

related to Conjecture 2, which involves analysing the frequency of being helped as

a function of an individual’s score under both the IS and GS mechanisms. Addi-

tionally, we will investigate other aspects of scoring, such as how scores correlate

with helping behaviour across different cost conditions. Finally, we will review the

data from control questions to ensure that participants understood the instructions

correctly and to confirm that our experimental design was implemented without

any significant errors.

Our selected rounds ensured that we maintained a minimum number of obser-

vations for each combination of scoring system and cost condition, which amounted

to 36 active players multiplied by 24 rounds, yielding 864 individual helping data

points for each treatment condition16.

2.6.2.1 Analysis of frequency of being helped

Figures 2.11 and 2.12 analyse how a non-active player’s standing (in the GS mech-

anism) and image score (in the IS mechanism) influence their likelihood of being

helped under two different cost structures: homogeneous costs (Figure 2.11) and

heterogeneous costs (Figure 2.12). The key distinction between the Good Standing

(GS) and Image Scoring (IS) mechanisms is evident in the frequency with which

non-active players with low scores receive help. These figures aim to highlight this

critical difference, illustrating how each mechanism treats low-scoring individuals

under different cost conditions.

In both figures, the left panels show how good standing affects helping rates.

In the homogeneous-cost condition, non-active players with a score of 0 are helped

only 11.5% of the time, whereas those with a score of 1 enjoy a notably higher

59.2% helping rate. Similarly, in the heterogeneous-cost condition, the correspond-

ing figures (12.2% vs. 64.3%) further confirm the strong and stable influence of

good standing on the likelihood of receiving help.
16The analysis does not change substantially in case we use full data. For the homogeneous

cost condition we have 1480 observations, and for the heterogeneous cost condition we have 1512
observations.
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Figure 2.11: Homogeneous cost, frequency of being helped by score
Left panel: Good Standing. Right panel: Image Scoring.

The right panels of Figures 2.11 and 2.12 explore the relationship between the

non-active player’s image scoring and the frequency of being helped. Under het-

erogeneous costs (Figure 2.12), there is a clear monotonic increase in helping rates

as the image score rises. Non-active players with a score of 0 are helped 36.5% of

the times, which steadily increases to 75.8% and 78.1% for non-active players with

scores of 4 and 5, respectively. This pattern suggests that when costs are heteroge-

neous, a higher image score is strongly associated with a greater likelihood of being

helped.

However, when the cost of helping is homogeneous (Figure 2.11), the relation-

ship between the non-active player’s score and helping rates becomes less linear.

While there is still an overall increase in helping rates with higher image scores,

the progression is not as smooth. For instance, the frequency of being helped for a

non-active player with a score of 1 drops to 46.0%, lower than the 58.5% observed

for a score of 0, before increasing again with higher scores. The frequency of being

helped eventually reaches 74.5% and 79.1% for scores of 4 and 5, respectively. This

variability at lower scores may indicate a more complex decision-making process

when costs are homogeneous, possibly reflecting a combination of strategic consid-

erations and the perceived value of the non-active player’s image. Additionally, the

lower helping rates at certain scores, such as 1, could be driven by a smaller number

of observations at these specific scores, which might influence the stability of the
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Figure 2.12: Heterogeneous cost, frequency of being helped by score
Left panel: Good Standing. Right panel: Image Scoring.

observed trends.

To quantify these relationships, we conduct Pearson and Kendall correlation

tests for both the GS and IS treatments in both the cost conditions. These tests

provide a statistical measure of the strength and direction of the association between

non-active player standing and non-active player image scoring with the frequency

of being helped.

In the GS condition, we observe strong positive correlations between the non-

active player’s standing and the frequency of being helped in both the homogeneous

and heterogeneous cost games. Specifically, in the homogeneous cost game, the

Pearson correlation is r(864) = 0.480, and the Kendall correlation is τ(864) =

0.480 (both with p < 0.001). In the heterogeneous cost game, the correlations

remain similarly strong, with a Pearson correlation of r(864) = 0.492, and a Kendall

correlation of τ(864) = 0.492 (both with p < 0.001). These results indicate that

players in good standing are more likely to be helped, and the consistency between

the Pearson and Kendall correlations suggests that this relationship is both linear

and monotonic across both cost structures.

In contrast, the IS condition shows notably weaker correlations between the non-

active player’s image score and the frequency of being helped. In the homogeneous

cost game, the Pearson correlation is r(864) = 0.176, and the Kendall correlation is

τ(864) = 0.163 (both with p < 0.001). In the heterogeneous cost game, the Pearson
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correlation increases slightly to r(864) = 0.282, and the Kendall correlation to

τ(864) = 0.236 (both with p < 0.001). These results suggest that while a higher

image score does increase the likelihood of being helped, the effect is notably less

pronounced compared to the influence of good standing.

These results confirm our Conjecture 2 and suggest that IS, as operationalized

in this experiment, exerts only a modest influence on being helped, casting doubt on

its robustness as a reputation-based mechanism for explaining indirect reciprocity

in this context.

Result 2: The Good Standing mechanisms induces higher levels of reciprocity com-

pared to the Image Scoring mechanism.

The difference in correlation strength between the GS and IS conditions suggests

that good standing may be more strongly tied to helping behaviour than image

score. In particular, the higher correlation observed in the GS condition indicates

that good standing could play a larger role in shaping cooperative actions. These

results imply that although reputational factors matter in fostering cooperation,

their influence may depend on the specific facet of reputation under consideration.

Within this experimental context, GS appears to be a stronger predictor of helping

behaviour than IS.

There are important limitations to note regarding these correlation measures.

In the GS condition, we are comparing the correlation between standing (which is

binary, either 0 or 1) and helping behaviour. In the IS condition, however, we are

measuring the correlation between helping behaviour and a more granular score,

ranging from 0 to 5. This discrepancy in score range limits the direct comparability

of the correlations between the two mechanisms. The broader range of scores in

IS introduces more variability, which likely weakens the strength of the correlation.

Additionally, the binary nature of the GS mechanism may make it easier for par-

ticipants to interpret and act upon, leading to clearer and stronger relationships

between standing and helping rates.
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2.6.2.2 Analysis of helping choice

In this section, we examine the factors influencing participants’ decisions to help

in both the Good Standing (GS) and Image Scoring (IS) treatments. Using probit

regression models, we analyse how the characteristics of both active and non-active

players affect the likelihood of helping. The models include individual fixed effects

to control for unobserved heterogeneity among participants. Standard errors are

clustered at the session, cohort, and round levels to account for potential depen-

dencies within the data. Our analysis focuses on rounds 11 to 34, allowing us to

observe behaviour after participants have become familiar with the experimental

setting.

Table 2.3 provides a comprehensive summary of the key variables used in the

regression analysis. Each variable is listed alongside a brief description of its mean-

ing or role within the context of the study. This summary serves to clarify the

interpretation of the variables and their relevance to the model, offering readers

a clear understanding of the constructs and measurements underlying the empiri-

cal analysis. The table includes a combination of game-specific factors, individual

characteristics, and behavioral measures derived from prior literature, ensuring a

holistic representation of the variables utilized.

Table 2.3: Summary of regressions’ variables and their meanings

Variable Meaning
player_helped Our dependent variable. Dummy: 1 if help
other_status Status of the non-active player matched with the active player.
help_change_status Dummy: 1 if the active player’s help action changes their status.
round Round of the game.
male Dummy: 1 if the participant is male.
Falk_favour Positive reciprocity (Falk et al., 2018).
Falk_future Patience (Falk et al., 2018).
Falk_giving Altruism (Falk et al., 2018).
Falk_intentions Trust (Falk et al., 2018).
Falk_revenge Negative reciprocity (Falk et al., 2018).
Falk_risk Risk-taking (Falk et al., 2018).
other_image_X Dummy: 1 if non-active player’s image score is X ∈ {0, 1, 2, 3, 4}.
lagY_player_helped Lagged choice of active player’s help action.
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Good Standing (GS)

Table 2.4 presents the results of probit regressions for the helping choices of

active players in the GS treatment under both homogeneous and heterogeneous

cost conditions. The dependent variable is a binary indicator of whether the active

player chose to help the non-active player.

In the homogeneous cost condition (columns 1–3), the coefficient on other_status

is positive and highly significant across all specifications. This indicates that active

players are more likely to help non-active players who have a higher status. This

behaviour aligns with the principles of indirect reciprocity inherent in the GS mech-

anism, where helping those in good standing is beneficial for maintaining one’s own

reputation.

The variable help_change_status also has a strong positive and significant effect

on the likelihood of helping. This suggests that active players are particularly

motivated to help when doing so will improve their own status from 0 to 1. The

substantial magnitude of this coefficient reflects the strong incentive embedded in

the GS mechanism for participants to attain or maintain good standing.

In model (2), we include the variable round to test for any temporal trends.

The coefficient is positive but not statistically significant, implying that there is no

significant change in helping behaviour over time within this treatment.

The inclusion of the variable male in model (2) reveals that male participants

are significantly more likely to help than female participants in the homogeneous

cost condition. However, when we include the Falk_ variables in model (3), the

coefficient on male decreases and remains significant only at the 10% level.

The Falk_ variables in model (3) capture individual differences in social pref-

erences. The coefficients on Falk_favour and Falk_future are positive and highly

significant, indicating that participants who place a higher value on favouring oth-

ers and who consider future consequences are more inclined to help. The coefficient

on Falk_risk is also positive and significant, suggesting that more risk-tolerant

individuals are more likely to help.
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Table 2.4: Probit models for the help choice of active players in GS

Individual fixed effects are used in all regressions. Clustered standard errors take the
dependence of the data within sessions, cohorts, and rounds into account. Only data

from round 11 to round 34 are included.

Homogeneous Cost Heterogeneous Cost

(1) (2) (3) (4) (5) (6)

Constant −1.452∗∗∗ −1.808∗∗∗ −4.787∗∗∗ −1.319∗∗∗ −1.424∗∗∗ −3.758∗∗∗

(0.101) (0.218) (0.543) (0.105) (0.205) (0.449)

other_status 1.597∗∗∗ 1.629∗∗∗ 1.725∗∗∗ 1.610∗∗∗ 1.614∗∗∗ 1.765∗∗∗

(0.117) (0.121) (0.134) (0.118) (0.118) (0.142)

help_change_status 6.724∗∗∗ 6.829∗∗∗ 7.329∗∗∗ 6.495∗∗∗ 6.515∗∗∗ 7.270∗∗∗

(0.111) (0.133) (0.190) (0.122) (0.126) (0.236)

round 0.007 0.005 0.005 0.006
(0.008) (0.008) (0.007) (0.007)

male 0.348∗∗∗ 0.190∗ −0.039 −0.425∗∗∗

(0.103) (0.115) (0.097) (0.112)

Falk_favour 0.184∗∗∗ 0.203∗∗∗

(0.041) (0.039)

Falk_future 0.105∗∗∗ 0.166∗∗∗

(0.031) (0.031)

Falk_giving 0.005 −0.092∗∗∗

(0.031) (0.032)

Falk_intentions 0.016 −0.054∗∗

(0.023) (0.023)

Falk_revenge 0.041 0.029
(0.029) (0.024)

Falk_risk 0.066∗∗ 0.034
(0.030) (0.030)

Observations 864 864 864 864 864 864
Log Likelihood −410.656 −404.457 −370.632 −442.432 −442.065 −405.343
Akaike Inf. Crit. 827.312 818.913 763.263 890.865 894.130 832.686

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In the heterogeneous cost condition (columns 4–6), the patterns are similar.

The coefficients on other_status and help_change_status remain positive and sig-

nificant, though the coefficient on help_change_status is slightly lower than in the

homogeneous cost condition. This may reflect the increased cost of helping for some

participants in this treatment.

Interestingly, the coefficient on male becomes negative and significant in model

(6), indicating that male participants are less likely to help under heterogeneous

costs when controlling for individual preferences. The Falk_ variables continue
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to have significant effects, with Falk_favour and Falk_future positively associated

with helping. However, Falk_giving and Falk_intentions have negative coefficients,

suggesting more complex interactions between individual preferences and the cost

structure.

Overall, these results highlight the importance of both reputational considera-

tions and individual social preferences in shaping helping behaviour within the GS

mechanism. Participants are responsive to the status of others and to opportuni-

ties to improve their own status, and individual differences further modulate these

decisions.

Image Scoring (IS)

Table 2.5 presents the probit regression results for the IS treatment under both

homogeneous and heterogeneous cost conditions. The dependent variable remains

the binary choice to help. We have a relatively smaller number of observations

compared to the GS because in some sessions some participants took more time to

have a full score (i.e., composed of 5 previous active histories).

In the homogeneous cost condition (columns 1–3), the coefficients on other_image_X

are generally negative and significant, indicating that active players are less likely to

help non-active players with lower image scores compared to those with the highest

score (image score 5). For example, the coefficient on other_image_1 is −0.816∗∗∗,

suggesting a substantial reduction in the likelihood of helping non-active players

with an image score of 1.

The variables lagY_player_helped capture the influence of an active player’s own

past helping behaviour on their current decision to help. The positive and significant

coefficients on these variables indicate that participants who have helped in previous

rounds are more likely to help again. This persistence in helping behaviour suggests

the presence of individual dispositions towards cooperation.

In model (3), we include the Falk_ variables to account for individual prefer-

ences. The coefficient on Falk_favour is positive and significant, indicating that

participants who value favouring others are more inclined to help. The coefficients

on Falk_revenge and Falk_risk are negative and significant at the 10% level, sug-

gesting that individuals with higher tendencies towards revenge or risk aversion are

less likely to help.
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Table 2.5: Probit models for the help choice of active players in IS

Individual fixed effects are used in all regressions. Clustered standard errors take the
dependence of the data within sessions, cohorts, and rounds into account. Only data

from round 11 to round 34 are included.
Homogeneous Cost: Heterogeneous Cost:

(1) (2) (3) (4) (5) (6)

Constant −0.534∗∗∗ −0.430∗∗ −0.666∗ −0.705∗∗∗ −0.386∗∗ −0.105
(0.134) (0.182) (0.365) (0.114) (0.176) (0.411)

other_image_0 −0.363∗ −0.342 −0.354∗ −0.965∗∗∗ −0.922∗∗∗ −0.989∗∗∗

(0.212) (0.212) (0.211) (0.152) (0.152) (0.156)

other_image_1 −0.816∗∗∗ −0.808∗∗∗ −0.824∗∗∗ −0.753∗∗∗ −0.806∗∗∗ −0.844∗∗∗

(0.188) (0.188) (0.196) (0.248) (0.255) (0.263)

other_image_2 −0.425∗∗∗ −0.419∗∗∗ −0.441∗∗∗ −0.424∗∗∗ −0.372∗∗ −0.385∗∗

(0.138) (0.137) (0.141) (0.150) (0.153) (0.156)

other_image_3 −0.350∗∗∗ −0.355∗∗∗ −0.350∗∗∗ −0.375∗∗∗ −0.355∗∗∗ −0.374∗∗∗

(0.115) (0.115) (0.119) (0.120) (0.120) (0.123)

other_image_4 −0.036 −0.035 −0.035 −0.128 −0.124 −0.138
(0.117) (0.118) (0.122) (0.118) (0.120) (0.123)

lag5_player_helped 0.581∗∗∗ 0.583∗∗∗ 0.540∗∗∗ 0.670∗∗∗ 0.675∗∗∗ 0.650∗∗∗

(0.089) (0.089) (0.091) (0.092) (0.093) (0.094)

lag4_player_helped 0.173∗ 0.171∗ 0.123 0.277∗∗∗ 0.275∗∗∗ 0.252∗∗∗

(0.091) (0.091) (0.093) (0.096) (0.096) (0.097)

lag3_player_helped 0.337∗∗∗ 0.333∗∗∗ 0.290∗∗∗ 0.275∗∗∗ 0.255∗∗∗ 0.229∗∗

(0.090) (0.090) (0.091) (0.099) (0.099) (0.098)

lag2_player_helped 0.427∗∗∗ 0.421∗∗∗ 0.374∗∗∗ 0.390∗∗∗ 0.362∗∗∗ 0.339∗∗∗

(0.089) (0.090) (0.092) (0.092) (0.092) (0.093)

lag1_player_helped 0.271∗∗∗ 0.263∗∗∗ 0.218∗∗ 0.487∗∗∗ 0.448∗∗∗ 0.422∗∗∗

(0.091) (0.091) (0.093) (0.093) (0.093) (0.093)

round −0.004 −0.005 −0.012∗∗ −0.012∗∗

(0.004) (0.004) (0.005) (0.005)

male 0.011 0.040 0.051 0.100
(0.083) (0.094) (0.086) (0.095)

Falk_favour 0.102∗∗∗ 0.048
(0.032) (0.032)

Falk_future −0.004 0.024
(0.027) (0.026)

Falk_giving 0.007 −0.016
(0.021) (0.023)

Falk_intentions 0.001 0.008
(0.018) (0.019)

Falk_revenge −0.037∗ −0.050∗∗

(0.020) (0.022)

Falk_risk −0.049∗ −0.080∗∗

(0.029) (0.033)

Observations 812 812 812 820 820 820
Log Likelihood −410.656 −404.457 −370.632 −442.432 −442.065 −405.343
Akaike Inf. Crit. 827.312 818.913 763.263 890.865 894.130 832.686

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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In the heterogeneous cost condition (columns 4–6), the patterns are broadly

similar. The negative coefficients on other_image_X remain significant, with even

larger magnitudes for other_image_0, indicating a stronger reluctance to help those

with the lowest image scores under heterogeneous costs.

The lagged helping variables continue to be positive and significant, reinforcing

the idea that past helping behaviour influences current decisions. The variable

round is negative and significant in models (5) and (6), suggesting a slight decline

in helping behaviour over time in the heterogeneous cost condition.

The Falk_ variables in model (6) show that Falk_revenge and Falk_risk have

negative and significant coefficients, indicating that individuals with higher ten-

dencies towards revenge or risk aversion are less likely to help. The coefficient on

Falk_favour is positive but not significant in this condition.

Overall, these results indicate that in the IS treatment, helping behaviour is

influenced by the image score of the non-active player and by the active player’s

own history of helping. Participants are less inclined to help those with lower image

scores and more likely to help if they have previously helped others.

Discussion

The regression analyses reveal distinct patterns in the determinants of helping

behaviour under the GS and IS mechanisms.

In the GS treatment, the decision to help is strongly influenced by the non-active

player’s status and by opportunities for the active player to improve their own sta-

tus. The large and significant coefficients on other_status and help_change_status

highlight the central role of reputational incentives within the GS mechanism. Par-

ticipants are motivated to help those in good standing and to take actions that

enhance their own reputation.

In contrast, in the IS treatment, while the non-active player’s image score in-

fluences helping decisions, the effect is less pronounced than in the GS treatment.

The negative coefficients on other_image_X indicate a reluctance to help those

with lower image scores, but the magnitude of these effects is smaller than the

corresponding effects of other_status in the GS treatment.

Additionally, the significant influence of lagged helping behaviour in the IS treat-

ment suggests that individual tendencies towards helping are persistent over time.

This may reflect a personal norm or habit of cooperation that is less directly tied
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to the reputational incentives provided by the mechanism.

The varying effects of the Falk_ variables across treatments and cost conditions

further suggest that individual social preferences interact differently with the GS

and IS mechanisms. In the GS treatment, preferences related to favouring others

and considering future consequences are more influential, while in the IS treatment,

tendencies towards revenge and risk aversion play a more significant role.

These findings support our earlier conjectures regarding the effectiveness of the

GS mechanism in fostering reciprocal cooperation. The stronger influence of the

recipient’s status and the active player’s ability to improve their own status in the

GS treatment indicates that this mechanism provides clearer and more direct rep-

utational incentives for helping. In the IS treatment, helping behaviour appears to

be influenced by a combination of reputational concerns and individual dispositions

towards cooperation.

By examining these differences, we gain a deeper understanding of how repu-

tational mechanisms can be designed to promote cooperative behaviour. The GS

mechanism, by incorporating a norm of justified defection and providing more nu-

anced reputational information, seems better equipped to sustain reciprocal helping

in environments where indirect reciprocity is essential.

2.6.2.3 Cost-benefit analysis of helping

We now present a series of tables that summarise the helping behaviour observed

in each treatment and cost condition. These tables provide a detailed analysis of

the choices made by participants and allow us to examine what would constitute

the rational choice based on an expected cost–benefit analysis. In the homogeneous

cost condition, all players face the same cost when deciding whether to help. In the

heterogeneous cost condition, players are divided into two groups: those facing a

low cost and those facing a high cost when deciding whether to help. We keep the

analysis of these groups separate.

Homogeneous Cost in GS Treatment

Table 2.6 displays the data for the GS treatment under the homogeneous cost

conditions. The scores for both active and non-active players are binary, taking the

value of 0 or 1.
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Table 2.6: Helping percentages in GS treatment in homogeneous cost games

Non-active player Proportion of
scores 0 1 active players

A
ct

iv
e

pl
ay

er 0 10.88% 20.53% 39.01%

1 11.90% 82.33% 61.00%

Proportion of 41.32% 58.68%non-active players
Actual

11.48% 59.17%helped
observed
Expected 11.50% 58.23%experience

The entries in table 2.6 below the scores represent the percentage of times an

active player provided help, given their own score and the score of the non-active

player. For example, an active player with a score of 1 helped a non-active player

with a score of 1 in 82.33% of cases. The column labelled “Proportion of active

players” indicates the distribution of scores among active players; 61.00% of active

players had a score of 1.

The row “Proportion of non-active players” shows the distribution of scores

among non-active players. The “Actual helped observed” row provides the over-

all percentage of times help was provided to non-active players with each score,

regardless of the active player’s score. For instance, non-active players with a score

of 1 were helped in 59.17% of cases.

The “Expected experience” is a weighted average, calculated by considering the

frequency of help given by active players with each score and the proportion of

active players holding that score. Specifically, it is computed by summing, for each

active player score, the product of the percentage of help given and the proportion

of active players with that score (last column of the table). This metric reflects the

expected probability of receiving help for a non-active player with a given score,

considering the distribution of active players’ scores.

Table 2.7 presents the cost–benefit analysis for the active players in the homoge-

neous cost GS treatment. Active players incur a cost of £4 when helping to have a

score of 1, and a cost of £0 when no helping. The expected benefit is calculated by

multiplying the “Expected experience” from Table 2.6 by £10, which is the benefit

received when helped. The net gain is the expected benefit minus the cost.

We observe that active players with a score of 1 achieve a higher net gain (£1.82)

90



2.6. RESULTS

Table 2.7: Cost–benefit analysis in homogeneous cost games for GS treatment

Active Player’s Score Cost Expected Benefit Net Gain
0 £0 £1.15 £1.15
1 £4 £5.82 £1.82

compared to those with a score of 0 (£1.15). This suggests that, from a self-

interested perspective, choosing to have or keep a score of 1 and incurring, when

needed, the cost of helping is the rational choice, as it leads to greater expected

returns.

Heterogeneous Cost in GS Treatment - Low cost players

Table 2.8 shows the helping behaviour for active players with a low cost in the

heterogeneous cost games in the GS treatment.

Table 2.8: Helping percentages in GS treatment in heterogeneous cost games for
low cost players

Non-active player Proportion of
scores 0 1 active players

A
ct

iv
e

pl
ay

er 0 9.68% 29.09% 20.28%

1 17.56% 91.30% 79.72%

Proportion of 38.21% 61.79%non-active players
Actual

16.05% 78.24%helped
observed

Experienced 15.96% 78.68%experience

Active players with a score of 1 helped non-active players with a score of 1 in

91.30% of cases, a high rate reflecting the lower cost of £2 for helping.

The expected benefit and net gain for these players are shown in Table 2.9.

Active Player’s Score Cost Expected Benefit Net Gain
0 £0 £1.60 £1.60
1 £2 £7.87 £5.87

Table 2.9: Cost–benefit analysis in heterogeneous cost games for GS treatment,
low cost players

The net gain for active players with a score of 1 (£5.87) is substantially higher

than for those with a score of 0 (£1.60), reinforcing the incentive to help when costs

are low.
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Heterogeneous Cost in GS Treatment - High cost players

Table 2.10 presents the helping behaviour for active players with a high cost in

the GS treatment.

Table 2.10: Helping percentages in GS treatment in heterogeneous cost games for
high cost players

Non-active player Proportion of
scores 0 1 active players

A
ct

iv
e

pl
ay

er 0 9.68% 19.01% 46.36%

1 4.76% 53.64% 54.13%

Proportion of 28.41% 71.60%non-active players
Actual

7.20% 52.70%helped
observed

Experienced 7.04% 51.91%experience

Here, the cost of helping is £6 for active players. The rate at which these players

help non-active players with a score of 1 drops to 53.64%, significantly lower than

in the low-cost condition.

The cost–benefit analysis in Table 2.11 reveals that the net gain for active players

with a score of 1 is negative (£–0.81), making helping a less attractive option.

Table 2.11: Cost–benefit analysis in heterogeneous cost games for GS treatment,
high cost players

Active Player’s Score Cost Expected Benefit Net Gain
0 £0 £0.70 £0.70
1 £6 £5.19 -£0.81

Comparing the three cost conditions in the GS treatment, we observe a clear

pattern: helping behaviour is sensitive to the cost of helping. When the cost is

low, active players with a score of 1 are highly likely to help, resulting in higher net

gains. As the cost increases, the propensity to help decreases, and the net gains for

helping diminish or even become negative.

This pattern suggests that participants are responding to the incentives embed-

ded in the cost structure, adjusting their behaviour in a manner consistent with

rational self-interest. The higher net gains associated with helping when costs are

low encourage reciprocal behaviour, while high costs deter helping.
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Homogeneous Cost in IS Treatment

We now turn to the IS treatment, where scores range from 0 to 5. Table 2.12

shows the helping percentages under homogeneous cost conditions.

Table 2.12: Helping percentages in IS treatment with homogeneous costs

Active Non-active player score Proportion of
player score 0 1 2 3 4 5 active players

0 0% 0% 0% 10.00% 9.09% 16.67% 4.98%
1 66.67% NA 50.00% 50.00% 50.00% 28.57% 3.24%
2 55.56% 25.00% 61.54% 39.47% 75.00% 55.56% 12.27%
3 50.00% 69.23% 72.41% 71.67% 73.33% 57.14% 23.38%
4 83.33% 22.22% 62.50% 67.19% 77.05% 82.61% 27.89%
5 60.00% 71.43% 76.00% 82.93% 85.51% 95.65% 28.24%

Proportion of 4.75% 4.28% 13.43% 25.35% 26.74% 25.46%
non-active players

Actual 58.54% 45.95% 61.21% 63.47% 74.46% 79.09%
helped

observed
Experienced 60.85% 45.62% 65.00% 65.87% 74.59% 71.98%
experience

Notes: NA: situation not happened.

In this table, each cell below the scores represents the percentage of times an

active player with a given score helped a non-active player with a particular score.

For example, an active player with a score of 5 helped a non-active player with a

score of 5 in 95.65% of cases. The “Proportion of active players” column shows the

distribution of scores among active players, whereas the “proportion of non-active

players” raw the distribution of scores among non-active players.

The “Actual helped observed” row provides the overall percentage of times non-

active players with each score were helped. The “Expected experience” row calcu-

lates the weighted average of helping probabilities, considering the distribution of

active players’ scores.

Table 2.13 shows the cost–benefit analysis for active players in the homogeneous

cost IS treatment. In this case, the cost of helping is calculated as cost of having

one score. The latter varies as a function of how many times you need to help in

order to get that score. For example, an active player needs to help 5 times in a row

to have a score of 5, therefore paying the full cost (i.e., for the homogeneous cost

games, £4). In case they want to have a score of 4, they have to help 4/5 times,

therefore the cost that they’ve to pay £3.20. Formally, the cost for an active player

to have a score S is calculated as cost = (S
5
)×£4.

Interestingly, the highest net gain is achieved with a score of 0 (£6.09). However,

in Section 2.6.2.1, we observed that participants often maintained higher scores and

helped more at higher rates. This suggests that motivations beyond immediate
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Table 2.13: Cost–benefit analysis in homogeneous cost games for IS treatment

Active Player’s Score Cost Expected Benefit Net Gain
0 £0 £6.09 £6.09
1 £0.80 £4.56 £3.76
2 £1.60 £6.50 £4.90
3 £2.40 £6.59 £4.19
4 £3.20 £7.46 £4.26
5 £4.00 £7.20 £3.20

monetary returns, such as reputational concerns or cooperative norms, might play

a role in this case.

Similar to the GS treatment, we examine the helping behaviour under hetero-

geneous cost conditions for the IS treatment both for high and low costs.

Heterogeneous Cost in IS Treatment - Low cost players

Table 2.14 presents the helping percentages for low-cost active players in the IS

treatment.

Table 2.14: Helping percentages in IS treatment in heterogeneous cost games for
low cost players

Active Non-active player Proportion of
player 0 1 2 3 4 5 active players

0 0% 100% NA 0% 0% NA 3.33%
1 50.00% 100% 0% 100% 0% 66.67% 2.62%
2 66.67% 100% 0% 62.50% 83.33% NA 4.76%
3 61.54% 87.50% 71.43% 81.82% 94.44% 94.74% 22.38%
4 58.33% 11.11% 57.89% 81.08% 89.47% 90.24% 37.14%
5 76.92% 75.00% 66.67% 82.61% 92.68% 92.11% 29.76%

Proportion of 10.71% 5.71% 10.24% 23.57% 25.71% 24.05%
non-active players

Actual 62.22% 58.33% 58.14% 73.74% 87.04% 91.09%
helped

observed
Experienced 62.81% 56.66% 57.33% 67.67% 85.92% 81.20%
experience

Active players with higher scores tend to help frequently, and the net gains, as

shown in Table 2.15, remain positive across all scores. For low-cost players, the total

cost per period is lower (e.g., £2). The cost calculations are adjusted accordingly.

In this case, the highest net gain is achieved with a score of 4 (£6.99). This is in

line with the score that players keep as outlined previously. For low cost players it

is a self-interest rational choice keeping a score of 4 and helping most of the time.

Heterogeneous Cost in IS Treatment - High cost players

Table 2.16 shows the helping behaviour for high-cost active players in the IS

treatment.
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Table 2.15: Cost–benefit analysis in heterogeneous cost games for IS treatment,
low cost players

Active Player’s Score Cost Expected Benefit Net Gain
0 £0 £6.28 £6.28
1 £0.40 £5.67 £5.27
2 £0.80 £5.73 £4.93
3 £1.20 £6.68 £5.48
4 £1.60 £8.59 £6.99
5 £2.00 £8.12 £6.12

Table 2.16: Helping percentages in IS treatment in heterogeneous cost games for
high cost players

Active Non-active player Proportion of
player 0 1 2 3 4 5 active players

0 0% 0% 0% 5.00% 0% 0% 15.76%
1 0% NA NA 42.86% 42.86% 25.00% 6.08%
2 15.38% NA 100% 76.92% 75.00% 13.29% 12.30%
3 11.11% 100% 45.45% 46.67% 73.33% 63.64% 20.05%
4 0% 50.00% 50.00% 66.67% 62.50% 85.71% 21.40%
5 NA 66.67% 100% 82.35% 86.49% 92.86% 23.42%

Proportion of 9.01% 3.60% 6.98% 18.24% 31.53% 30.63%
non-active players

Actual 7.50% 31.25% 48.39% 50.62% 67.14% 68.38%
helped

observed
Experienced 4.12% 46.36% 55.53% 55.77% 60.16% 56.00%
experience

The net gains for these players, presented in Table 2.17, are reduced and become

negative for the highest score of 5, reflecting the higher costs.

Table 2.17: Cost–benefit analysis in heterogeneous cost games for IS treatment,
high cost players

Active Player’s Score Cost Expected Benefit Net Gain
0 £0 £0.41 £0.41
1 £1.20 £4.64 £3.44
2 £2.40 £5.55 £3.15
3 £3.60 £5.58 £1.98
4 £4.80 £6.02 £1.22
5 £6.00 £5.60 -£0.40

In this case, the highest net gain is achieved with a score of 1 (£3.44). For

high cost players it is a self-interest rational choice keeping a low score and helping

rarely. This is not in line with that we observed in previous sections.

In general, the IS treatment shows a pattern of helping behaviour that is sensitive

to costs, much like the GS treatment. However, helping remains more prevalent than

one would predict from purely cost–benefit calculations: even when the net gains

from maintaining a higher score are small or negative, participants continue to help
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at relatively high rates. This suggests that participants are not guided solely by

short-term monetary returns. Indeed, as discussed in Section 2.6.2.1, participants in

the IS treatment maintain higher scores by helping even under high-cost conditions,

indicating that reputational concerns or social preferences may play a key role.

The observed differences between GS and IS are significant for understanding

reciprocity and cooperation. In the GS treatment, helping behaviour closely aligns

with the mechanism’s incentives: participants adjust their actions in ways consistent

with rational self-interest, striving to maximise net gains. The strong correlation

between standing and being helped reflects how effectively the GS rule fosters reci-

procity rooted in direct, tit-for-tat exchanges.

By contrast, the IS treatment seems to induce a form of reciprocity that goes be-

yond strict self-interest. Participants frequently help in situations where cost–benefit

analyses alone would predict lower cooperation, and they even help individuals who

themselves have not been helping. This pattern points to a sense of generalised

reciprocity or cooperative norms that encourage helping regardless of immediate

personal gains. Consequently, the higher levels of helping in the IS treatment under-

score the potential influence of social preferences—such as fairness or altruism—in

economic decision-making.

Overall, these results highlight the distinctive ways in which GS and IS mecha-

nisms shape reciprocity and cooperation. While GS consistently incentivises recip-

rocal cooperation in line with individual cost–benefit reasoning, IS fosters cooper-

ation that exceeds what self-interest would suggest, hinting at a broader range of

social motives. Our comparative analysis thus shows that GS elicits higher levels of

reciprocal cooperation (as indicated by stronger correlations between standing and

helping), whereas IS promotes cooperation beyond immediate self-interest, likely

driven by social norms and other-regarding preferences.

2.6.2.4 Analysis of control questions data

Finally, we examine the data pertaining to participants’ comprehension of the game

and the two distinct treatment modalities. To assess players’ cognitive grasp, an

analysis of response times and errors in the control questions for each treatment was

conducted. The Image Scoring treatment comprised 13 questions, while the Good
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Standing treatment consisted of 12 questions, with 8 questions common to both

treatments, 5 specifically testing Image Scoring, and 4 specifically probing Good

Standing.

Figure 2.13 try to provide a comparison of participants’ comprehension between

the two treatments, as reflected through response times and the number of errors

made during control questions. The left panel 2.13a displays density plots represent-

ing the distribution of time taken to complete the instructions for each treatment.

The Image Scoring (IS) treatment is shown in grey, while the Good Standing (GS)

treatment is depicted in black. Notably, both density curves exhibit a peak around

the 200-second mark, indicating that participants in both treatments generally re-

quired a similar amount of time to complete the instructions. However, the IS

treatment’s curve has a sharper peak and a more abrupt decline post-peak, sug-

gesting that participants’ engagement with the instructions might have been more

uniform and concise compared to the GS treatment.

(a) Time in answering control questions
by treatment

(b) Number of wrong answer to control
questions by treatment

Figure 2.13: Analysis of control questions

The right panel 2.13b consists of histograms showing the distribution of errors

made by participants in answering control questions across the two treatments. The

top histogram represents the GS treatment, where the majority of participants made

between 0 and 3 errors, with a noticeable concentration peaking around 2 errors.

Conversely, the bottom histogram illustrates the distribution for the IS treatment,

where a broader spread is observed. While many participants also made between

0 and 3 errors, the IS treatment features outliers with significantly higher numbers
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of errors, indicating a more varied level of comprehension.

These plots collectively suggest that although the time taken to process the

instructions was similar between the two treatments, it would be useful to look at

the time spent to answer the same questions between the two groups and the time

spent to answer to the different questions. This would help to provide a better

comparison and understanding of people’s comprehension of the instructions.

2.7 Conclusion

In this chapter, we experimentally investigate the interplay between reputation

mechanisms and helping behaviour, offering insights with potential applications

to diverse economic challenges such as crowdsourcing systems, e-commerce, and

knowledge-sharing networks. Our helping game establishes a novel experimental

platform where helping incurs costs for the active player but gives benefit to the non-

active player, aligning with scenarios involving non-monetary costs and benefits, as

exemplified by forums where answering questions entails a temporal cost and an

intrinsic pleasure from helping others.

Employing a between-subject design, we manipulate reputational mechanisms

to create exogenous variation and assess their causal impact on helping behaviour.

Our laboratory experiment shows that cooperation increases substantially under

the Image Scoring (IS) mechanism, which proves empirically effective in sustaining

higher levels of cooperation. Conversely, the Good Standing (GS) mechanism is

effective in fostering reciprocal behaviour in this setting.

Our findings contribute to the literature on indirect reciprocity and reputation

systems by providing empirical evidence on how different reputational mechanisms

influence cooperative behaviour. Specifically, we replicate and extend the results of

Engelmann and Fischbacher (2009), demonstrating that the average helping rates in

our IS treatment with homogeneous costs closely align with their findings in treat-

ments where both participants maintain public scores. This replication strengthens

the external validity of our experimental design and supports the robustness of the

IS mechanism in promoting cooperation.

Contrary to our initial belief related with Conjecture 1, which posited that the

GS mechanism would induce higher levels of cooperation, our results indicate that
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the IS mechanism consistently generates higher average helping rates across both

homogeneous and heterogeneous cost conditions. Statistical analysis at the cohort

level reveals that the mean helping rates are significantly higher under IS than

GS, with the difference being more pronounced in the homogeneous cost condition.

These findings suggest that the simplicity and transparency of the IS mechanism

make it more effective in sustaining cooperative behaviour among participants.

However, when examining reciprocity patterns, we find support for our antici-

pation regarding Conjecture 2. The GS mechanism induces stronger reciprocity in

helping behaviour compared to the IS mechanism. Regression analyses show that

in the GS treatment, the likelihood of an active player helping is strongly influenced

by the non-active player’s standing and the potential to improve one’s own stand-

ing. The large and significant coefficients on these variables highlight the central

role of reputational incentives within the GS mechanism. In contrast, while the IS

mechanism also shows that the non-active player’s image score influences helping

decisions, the effect is less pronounced. Participants in the IS treatment exhibit

helping behaviour that is influenced by a combination of reputational concerns and

individual dispositions towards cooperation, as indicated by the significant impact

of lagged helping behaviour.

Our cost–benefit analysis further reveals interesting contrasts between the two

mechanisms. In the GS treatment, participants’ helping behaviour aligns closely

with the incentives provided by the mechanism itself. Active players adjust their

actions in a manner consistent with rational self-interest, favouring choices that

maximise their net gains. The strong correlation between standing and the fre-

quency of being helped reinforces the effectiveness of the GS mechanism in promot-

ing reciprocity based on direct exchanges.

In the IS treatment, however, we observe that participants help more than what

would be predicted by immediate monetary returns. Even when the net gains from

maintaining higher image scores are modest or negative, participants continue to

help at relatively high rates. This suggests that factors beyond immediate self-

interest, such as social preferences, altruism, or a desire to maintain a cooperative

environment, influence decision-making in the IS treatment. The IS mechanism

appears to foster a sense of generalised reciprocity or cooperative norms that en-

courage helping behaviour regardless of immediate personal gain.
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Despite the insights gained, our study also raises intriguing questions that war-

rant further investigation. One such question is why the IS mechanism induces a

high degree of cooperation or non-reciprocal help within our experimental helping

game. Understanding the underlying motives driving this behaviour could provide

valuable insights into how reputation systems influence social dynamics.

To unravel this phenomenon, we propose four potential directions for future

research: (i) Providing players with more information: furnishing players with ad-

ditional information about the helping rates associated with each image score could

help them make more informed decisions. This might involve displaying statistical

summaries or trends that highlight how helping behaviour correlates with different

scores. (ii) Eliciting players’ beliefs: gathering data on players’ beliefs about the

behaviour of others could shed light on how expectations influence cooperation. By

understanding how players perceive the likelihood of being helped based on their

own and others’ scores, we can better comprehend the decision-making processes

underpinning their actions. (iii) Conducting repeated dictator games: implement-

ing repeated dictator games with fixed player roles could help isolate the effects

of reputation mechanisms when the possibility of receiving help is not directly im-

pacted by one’s own score. This approach would allow us to assess how scoring

dynamics evolve when the incentive structure is altered, providing insights into the

role of self-interest and non-self-interest motives in cooperative settings. Finally,

(iv) employing multiple sequences (supergames) may help us to observe behaviour

across diverse repeated interactions and capture how learning unfolds over time.

These avenues promise to clarify motives behind image scoring, revealing dy-

namics of self-interest and non-self-interest in cooperative environments. Exploring

variations in helping games, such as altering cost-benefit ratios or introducing uncer-

tainty, could further illuminate how reputation mechanisms operate across diverse

conditions.

In conclusion, our study demonstrates strengths and limitations of different

reputation mechanisms and how they significantly influences cooperative and re-

ciprocal behaviour. The GS mechanism promotes strong reciprocity by aligning

reputational incentives with justified defection, while the IS mechanism achieves

higher overall cooperation levels, potentially due to the influence of social norms

and other-regarding preferences.
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2.A Appendix
2.A.1 Additional Analysis and Figures

Figure 2.14: Non-active player’s screen in IS treatment

107



CHAPTER 2

Table 2.18: Summary Statistics

%

Gender:
Female 50.69
Male 47.22
Other 1.40
Prefer not to say 0.69

Age:
≥27 14.08
26 2.11
25 7.04
24 3.52
23 14.08
22 13.38
21 12.68
20 15.49
19 14.79
18 2.83

Degree:
Bachelor 59.03
Master 31.94
PhD 2.78
Other degree course or affiliation 2.78
Prefer not to say 2.09
INTO 0.69
Staff 0.69

Year(s) at UEA:
1st year 34.72
2nd year 29.17
3rd year 17.36
4th year 9.03
More than 4 years 7.64
Prefer not to say 2.08

Faculty:
Social Sciences 63.89
Sciences 22.22
Humanities 10.42
Others 3.47

Notes: The percentages are based on the to-
tal number of responses for each category. The
category “Other” under Gender includes non-
binary and other gender identities not speci-
fied. The age categories are divided to high-
light different age groups. As per faculty, Social
Sciences: NBS, ECO, DEV, LAW, EDU, PSY;
Sciences: CMP, BIO, ENV, PHA, MED, HSC,
MTH; Humanities: PPL, HIS, LDC, AMA,
HUM.
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Figure 2.15: Correlation average helping rates GS vs IS
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2.A.2 Experimental Instructions

Welcome

Welcome to today’s experiment and thanks for coming. This is an experiment
in the economics of decision-making. If you follow the instructions, complete the
experiment, and make appropriate choices, you can earn an appreciable amount of
money. This will be paid to you in private, in cash, at the end of the session, before
you leave the laboratory.
It is important that you remain silent and do not look at other people’s work. If
you have any questions, or need assistance of any kind, please raise your hand and
an experimenter will come to you. If you talk, laugh, exclaim out loud, etc., you
will be asked to leave and you will not be paid. We expect and appreciate your
cooperation.
All choices in today’s experiment and any information you choose to give are
recorded anonymously and will only be used in the analysis of the data from this
experiment.
We will now describe the nature of the experiment in more detail.

Introduction

In this experiment, you will be assigned to a group of six people. The other people
in your group will be five other people in this room. You will never find out which
other people are the ones who are in your group.

The experiment has two parts. We will now describe Part 1. We will describe
Part 2 after everyone has finished Part 1.
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Part 1

The interaction

There will be a series of at least 40 rounds. At the beginning of each round, the
computer will match you at random with another person in your group. You will
interact with that person in that round. Because the computer will create a new
matching at the beginning of each round, in different rounds you may interact with
different members of your group. You will not find out which other person in your
group you are matched with, nor whether or when you have been matched with
them previously.

In each match, one of you will be randomly assigned the role of the active player.
The other one will be assigned the role of the non-active player.

If you are the active player, you have an opportunity to help the non-active player.
Helping is an action that has a monetary cost of helping for the active player
and gives a monetary benefit to the non-active player.

You will find out your cost of helping for Part 1 before Round 1 begins. Your cost of
helping will stay the same throughout Part 1. The cost of helping may be different
for different members of your group. However, the cost of helping is no more than
£6.00 for anyone.

In every round, you have an account. This account is separate for each round. At
the start of each round, your account for that round will have an endowment of
£7.00. The final value of the accounts of the active player and the non-active player
depends on the choice the active player makes:

• If the active player chooses to help, the active player’s cost of helping will
be deducted from their account, and a benefit of £10.00 will be added to the
non-active player’s account.

• If the active player chooses not to help, no deduction will be made from
the active player’s account and no addition made to the non-active player’s
account.

After the active player makes their choice, any deductions or additions are made to
the player’s accounts for that round. The round then ends. When the next round
begins, all players have a new account, with an endowment of £7.00.
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Your earnings from Part 1

Only one of the rounds will be for real. The computer will randomly select which
round this is, but you will not know which round was selected until the end of the
experiment. Which round this is will be the same for all members of the group. For
everyone in the group, their earnings from Part 1 will be equal to the final value of
their account for the selected round.

Good Standing17

Scores

Through this part of the experiment, you will have a score. Your score summarises
whether, in previous rounds, you chose to help or not to help. Your score can be 0
or 1.
In each round, you will see your own current score. In each round in which you
are the non-active player, the active player will also see your current score. In
each round in which you are the active player, you will see the current score of the
non-active player.
At the start of Round 1, everyone has a score of 1.

The computer keeps a record of everyone’s current score. At the end of each round
in which you are the active player, your score is updated based on your choice and
the score of the non-active player.

• If you choose to help, then your score at the start of the next round will be 1.

• If you choose not to help, and the non-active player’s score was 1, then your
score at the start of the next round will be 0.

• If you choose not to help, and the non-active player’s score was 0, then your
score at the start of the next round will be the same as your current score.

However, if this is your first round as the active player, your record will be filled in
as if you had chosen to help in the previous round. So, your score in the first round
of this part will be 1.

At the end of each round in which you are the active player, your score will be
updated based on the choice you make in that round. In rounds in which you are

17This was not shown to the participants and it is displayed for differentiate the two versions
of the instructions.
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the non-active player, your score does not change.

For example, suppose in Round 11 you are the active player. The explanation of
your score at the start of the round might be

This record shows that in the last round in which you were the active player, your
score was 1 and the non-active player’s score was 0. You chose to help, and therefore
your score at the start of Round 11 is 1.
Suppose you are the active player in Round 11, and you are considering choosing
not to help. The explanation of how this would affect your score would be

Because the non-active player’s score is 0, your score does not change. Therefore,
your score at the start of Round 12 would be 1.

What you will see on the screen

We will now show you what you will see on your screen during a round.
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Scores will be displayed on the screen using badges, which are coloured circles
showing the score. Your score will always be shown using a green badge like this

Any time you see a green badge representing your score, you can click on it to pop
up a display which explains how your record was used to determine your score.

When you are the active player, you will see the score of the non-active player. The
non-active player’s score will be shown using a grey badge like this

You will only be able to see the current score of the non-active player, and not their
record; therefore, clicking on a grey badge has no effect.
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When you are the active player, you will see a screen like the one below

The screen shows the round number, your score, the non-active player’s score, and
your endowment in this round.

The two boxes represent the two choices you can make: to help or not to help.
Each box summarises the consequences for you and for the non-active player of the
corresponding choice.

To choose to help, click on the button labelled Choose to help. To choose not to
help, click on the button labelled Choose not to help. When you click on one of
those buttons, the background will change from grey to green. If you change your
mind, you can change your choice simply by clicking on the button corresponding to
the other choice. When you are satisfied with your choice, click the button labelled
Confirm choice.

How Part 1 ends

Exactly how many rounds will be played is not fixed in advance. There will be at
least 40 rounds. At the end of Round 40, the computer will simulate the roll of
a six-sided die. If the roll is 1 or 2, then Part 1 will end; otherwise, Part 1 will
continue to Round 41. This process will be repeated after each subsequent round,
until the simulated die roll results in a 1 or 2. In other words, in each round starting
from Round 40, there is a 1 in 3 chance that Part 1 will end after that round.
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Image Scoring

Scores

Through this part of the experiment, you will have a score. Your score summarises
whether, in previous rounds, you chose to help or not to help. Your score can be 0,
1, 2, 3, 4 or 5.
In each round, you will see your own current score. In each round in which you
are the non-active player, the active player will also see your current score. In
each round in which you are the active player, you will see the current score of the
non-active player.
At the start of Round 1, everyone has a score of 5.
The computer keeps a record of your choices for the most recent five rounds in
which you were the active player. Your score is the number of rounds out of those
five rounds in which you had chosen to help.
However, if there are fewer than five previous rounds in which you were an active
player, your record will be filled in as if you chose to help in the missing rounds.
So, your score in the first round of this part will be 5.
At the end of each round in which you are the active player, your score is updated
based on your choice and the score of the non-active player. In rounds in which you
are the non-active player, your score does not change.
For example, suppose in Round 11 you are the active player. The explanation of
your score at the start of the round might be

This record shows that you chose not to help (N) in the most recent round in which
you were the active player. You chose to help (H) in each of the four rounds previ-
ous to that. So, your score at the start of the round is 4.
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When you make your choice for Round 11, your choice in the earliest round in your
record will be removed, and your choice in Round 11 will be added.

For example, suppose you are the active player in Round 11, and you are consid-
ering choosing not to help. The explanation of how this would affect your score
would be

There would now be only three rounds in your record in which you chose to help.
So, your score at the start of Round 12 would be 3.

What you will see on the screen

We will now show you what you will see on your screen during a round. Scores will
be displayed on the screen using badges, which are coloured circles showing the
score.

Your score will always be shown using a green badge like this
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Any time you see a green badge representing your score, you can click on it to pop
up a display which explains how your record was used to determine your score.

When you are the active player, you will see the score of the non-active player. The
non-active player’s score will be shown using a grey badge like this

You will only be able to see the current score of the non-active player, and not their
record; therefore, clicking on a grey badge has no effect.
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When you are the active player, you will see a screen like the one below

The screen shows the round number, your score, the non-active player’s score, and
your endowment in this round.
The two boxes represent the two choices you can make: to help or not to help.
Each box summarises the consequences for you and for the non-active player of the
corresponding choice.
To choose to help, click on the button labelled Choose to Help. To choose not to
help, click on the button labelled Choose not to help. When you click on one of
those buttons, the background will change from grey to green. If you change your
mind, you can change your choice simply by clicking on the button corresponding to
the other choice. When you are satisfied with your choice, click the button labelled
Confirm choice.

How Part 1 ends

Exactly how many rounds will be played is not fixed in advance. There will be at
least 40 rounds. At the end of Round 40, the computer will simulate the roll of
a six-sided die. If the roll is 1 or 2, then Part 1 will end; otherwise, Part 1 will
continue to Round 41. This process will be repeated after each subsequent round,
until the simulated die roll results in a 1 or 2. In other words, in each round starting
from Round 40, there is a 1 in 3 chance that Part 1 will end after that round.
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Part 2

In Part 2, you will be in the same group of six participants as in Part 1.

Part 2 has the same structure as Part 1. The only difference between Part 1 and
Part 2 is that your cost of helping may not be the same as in Part 1. Likewise,
for each of the other people in your group, the cost of helping may not be the
same as in Part 1. However, as in Part 1, the cost of helping will be no more than
£6.00 for anyone. You will be told your cost of helping for Part 2 before the first
round begins. You will not find out the cost of helping for anyone else in your group.

As in Part 1, there will be a series of at least 40 rounds. At the beginning of each
round, you will be matched at random with another person in your group. One of
you will be randomly assigned the role of the active player. The other person will
be the non-active player. The accounts of both players initially have an endow-
ment of £7.00. The active player will have the opportunity to help the non-active
player. If the active player chooses to help, the active player’s cost of helping will
be deducted from their account, and £10.00 will be added to the account of the
non-active player. If the active player chooses not to help, no deduction or addition
will be made to either player’s account.

One of the rounds will be for real. The computer will select at random which round
is for real, but you will not know which round that is until the end of the experiment.
This round will be the same for all members of the group. For everyone in the group,
their earnings from Part 2 will be equal to the final value of their account for the
selected round. These will be added to your earnings from Part 1 to determine your
earnings for the experiment as a whole.

Good Standing

As in Part 1, at the start of every round, you will have a score of 0 or 1 which
summarises whether, in previous rounds, you chose to help or not to help. Scores
will be computed and updated exactly as they were in Part 1.

Image Scoring

As in Part 1, at the start of every round, you will have a score of 0, 1, 2, 3, 4 or
5 which summarises whether, in previous rounds, you chose to help or not to help.
Scores will be computed and updated exactly as they were in Part 1.
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Exactly how many rounds will be played is not fixed in advance. There will be at
least 40 rounds. At the end of Round 40, the computer will simulate the roll of
a six-sided die. If the roll is 1 or 2, then Part 2 will end; otherwise, Part 2 will
continue to Round 41. This process will be repeated after each subsequent round,
until the simulated die roll results in a 1 or 2. In other words, in each round starting
from Round 40, there is a 1 in 3 chance that Part 2 will end after that round. The
number of rounds in Part 2 may not be the same as in Part 1 depending on the
outcomes of the simulated die rolls.

Experimenter

[Read Instruction Part 1]
[After reading Instruction till the end of Part 1]

Please raise your hand if you have any questions.

Before starting to make choices, we ask you to answer some questions in the next
several screens. The purpose of these questions is to check whether you have un-
derstood these instructions. Any mistake you may make will not affect your final
monetary earnings.

Click on “Advance slowest players” button on monitor

[After everyone completed control questions]

Everyone has now completed the questions. We will now start Part 1.

On your screen you will see your cost for Part 1. Your cost will remain the same
throughout this part.

Wait approximately 10 seconds, and then click “Advance slowest players”
button on monitor.

[At the end of Part 1]

Part 1 has now ended. The instructions for Part 2 are now being circulated.

[Wait for all participants to have copy of Part 2 instructions]
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[Read Part 2 instruction]

[After reading Part 2 instruction]

Please raise your hand if you have any questions.

We will now start Part 2.

On your screen you will see your cost for Part 2. Your cost will remain the same
throughout this part.

Wait approximately 10 seconds, and then click “Advance slowest players”
button on monitor.

[At the end of Part 2; wait for all participants to be on “SurveyWelcome” screen.]

Part 2 has now ended.

We now have a short survey which we invite you to complete.

Your answers to this survey are recorded anonymously, and will be used only in the
analysis of the data from this experiment.

Click “advance slowest players” on monitor.

[Wait for all participants to reach Earnings page in final app]

(Read standard outro text)

This bring today’s experiment to an end. All that remains is for us to take care of
paying you your earnings from the session.

We will soon call you one by one to the payment station to receive your earnings
from today’s session. The payment station is at the back of the laboratory.

When you receive your payment, we have a receipt for you yo sign. On the receipt
you should please fill in your name, your UEA IT login (three letters-two digits-two
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letters), and sign where indicated.

Recall that we promised that all payments will be done privately. You can help us
to ensure everyone’s privacy by waiting at your desk until you are called to go to
the payment station. Please listen for your desk number to be called.

When you leave your desk, please make sure to take any personal belongings you
have with you. You can leave any experiment materials at the desk; we will tidy
these up.

Thank you again for participating in today’s experiment, and we hope to see you
again at a future session here at LEDR!

Comprehension Quiz18

1. In each round, there is an active and a non-active player.
Select which of the following statements is true:
The active player has a decision to make.
The non-active player has a decision to make.
Both players have a decision to make.

2. In each round, there is an active and a non-active player.
Select which of the following statements is true:
Whether you play as the active or non-active player will be determined ran-
domly.
You will definitely play as the active player.
You will definitely play as the non-active player.

3. In each round, the active player can incur a cost to help the non-active player.
Select which of the following statements is true:
The non-active player′s benefit is always greater than the active player′s cost.
The active player’s cost is always greater than the non-active player’s benefit.
Sometimes the non-active player’s benefit is greater than the active player’s
cost, other times the active player’s cost is greater than the non-active player’s
benefit.

4. Recall that the endowment for all players is £7. Assume that the active player
has a cost of £5, and the non-active player has a benefit of £10. If the active

18To ask before Part 1 starts. The numerated ones are for all. IS only for “Image Scoring”
treatment. GS only for “Good Standing” treatment. The underlined answer is the correct one.
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player helped in a particular round, what are the payoffs for this round?
Select which of the following statements is true:
The active player′s payoff is £2, and the non-active player′s payoff is £17.
The active player’s payoff is £17, and the non-active player’s payoff is £2.
Both players’ payoff are £7.

5. Recall that the endowment for all players is £7. Assume that the active player
has a cost of £5, and the non-active player has a benefit of £10. If the active
player did not help in a particular round, what are the payoffs for this round?
Select which of the following statements is true:
Both players′ payoff are £7.
The active player’s payoff is £2, and the non-active player’s payoff is £17.
The active player’s payoff is £17, and the non-active player’s payoff is £2.

6. Your earnings from Part 1 depend on your payoffs for the rounds.
Select which of the following statements is true:
Your earnings from Part 1 are equal to your payoff from one randomly selected
round.
Your earnings from Part 1 are equal to the sum of your payoffs from all the
rounds.
Your earnings from Part 1 are equal to the sum of your payoffs from 5 ran-
domly selected rounds.

7. Suppose that in round 16 you were the active player and chose to help, and
that round 16 is the one selected to be for real for you.
Select which of the following statements is true:
Round 16 is definitely the round selected to be real for the non-active player
you helped.
Round 16 is definitely not the round selected to be real for the non-active
player you helped.
Round 16 may or may not be the round selected to be real for the non-active
player you helped.

8. Recall that in each round, every player has a score which summarises his/her
previous helping behaviour, and scores are updated at the end of the round.
Select which of the following statements is true:
The active player′s score may change, but the non-active player′s score will
stay the same.
The non-active player’s score may change, but the active player’s score will
stay the same.
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Both players’ scores may change.
Neither player’s score may change.

IS Recall that a player’s score summarises his/her previous helping behaviour
and that it takes values from 0 to 5. Suppose that the record of a player’s
decisions in the last 5 rounds in which he/she was the active player is: Don’t
Help, Help, Don’t Help, Help, Help.
Select which of the following statements is true:
This player′s score is 3.
This player’s score is 1.
This player’s score is 4.
This player’s score does not depend on his/her record.

IS Recall that a player’s score summarises his/her previous helping behaviour
and that it takes values from 0 to 5. Suppose that the active player has a
record of Help, Help, Don’t Help, Help, Help, and therefore has a score of 4.
If the active player does not help in this round, what will this player’s score
be at the end of the round?
Select which of the following statements is true:
The active player′s score will be 3.
The active player’s score will be 4.
The active player’s score will be 2.
The active player’s score will depend on the score of the non-active player.

IS Recall that a player’s score summarises his/her previous helping behaviour
and that it takes values from 0 to 5. Consider a round in which both players
have scores of 5. If the active player helps in this round, what will this
player’s scores be at the end of the round?
Select which of the following statements is true:
The active player′s score will be 5.
The active player’s score will be 6.
The active player’s score will be 4.

IS Recall that a player’s score summarises his/her previous helping behaviour
and that it takes values from 0 to 5. Suppose that the active player has a
score of 3. Suppose that the record of the active player’s decisions in the
last 5 rounds in which where they were an active player is: Don’t Help, Help,
Don’t Help, Help, Help. If the active player helps in this round, what will
this player’s score be at the end of the round?
Select which of the following statements is true:
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The active player′s score will be 4.
The active player’s score will be 3.
The active player’s score will be 2.

GS Recall that a player’s score summarises his/her previous helping behaviour
and that it takes values 0 or 1. Suppose that the active player has a score of
1. If the active player helps in this round, what will the active player’ score
be at the end of the round?
Select which of the following statements is true:
The active player’s score will definitely be 1.
The active player’s score will be 1 if the non-active player’s score was 0, and
0 if the non-active player’s score was 1.
The active player’s score will definitely be 0.
The active player’s score will be 0 if the non-active player’s score was 0, and
1 if the non-active player’s score was 1.

GS Recall that a player’s score summarises his/her previous helping behaviour
and that it takes values 0 or 1. Suppose that the active player has a score
of 1. If the active player does not help in this round, what will the active
player’ score be at the end of the round?
Select which of the following statements is true:
The active player′s score will be 1 if the non-active player′s score was 0, and
0 if the non-active player′s score was 1.
The active player’s score will definitely be 0.
The active player’s score will definitely be 1.
The active player’s score will be 0 if the non-active player’s score was 0, and
1 if the non-active player’s score was 1.

GS Recall that a player’s score summarises his/her previous helping behaviour
and that it takes values 0 or 1. Suppose that the active player has a score of
0. If the active player helps in this round, what will the active player’ score
be at the end of the round?
Select which of the following statements is true:
The active player′s score will definitely be 1.
The active player’s score will be 1 if the non-active player’s score was 0, and
0 if the non-active player’s score was 1.
The active player’s score will definitely be 0.
The active player’s score will be 0 if the non-active player’s score was 0, and
1 if the non-active player’s score was 1.
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Final Questionnaire19

Please, answer the following questions.
When you have finished, please remain seated and wait patiently until you are paid.

Gender → “What gender do you identify as?”
Age → “How old are you?”
Ethnicity → “Which country (or countries) were you a citizen of when you were
born?”
Residence → “In which country is your current permanent residence? (If you are in
the UK on a student visa, this is the country where “home’ is.)”
School → “In which School are you currently enrolled/affiliated? (For example,
BIO, ECO, EDU. . . )”
Degree → “What type of degree course are you currently enrolled on?”
Years → “How long have you been at UEA?”

From “Global Evidence on Economic Preferences”, Falk et al. (2018):
Answer using the Likert Scale from 0 to 10, where 0 means you are “completely
unwilling to do so” and a 10 means you are “very willing to do so”.

1. Patience −→ How willing are you to give up something that is beneficial for
you today in order to benefit more from that in the future?

2. Risk taking −→ Please tell me, in general, how willing or unwilling are you
to take risks?

3. Altruism −→ How willing are you to give to good causes without expecting
anything in return?

Answer using the Likert Scale from 0 to 10, where 0 means “Does not describe me
at all” and a 10 means “Describe me perfectly”.

4. Positive reciprocity −→ When someone does me a favour, I am willing to
return it.

5. Negative reciprocity −→ If I am treated very unjustly, I will take revenge at
the first occasion, even if there is a cost to do so.

6. Trust −→ I assume that people have only the best intentions. How well do
the following statement describe you as a person?

19To add at the end of Part 2.
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Binary Mechanisms in the Helping

Game

This paper investigates the efficacy of different reputational mechanisms in promot-

ing cooperative behaviour in helping games. Building on theoretical foundations,

we focus on binary rating rules that encapsulate helpfulness, particularly Sugden’s

Good Standing (SGS) and Binary Image Scoring (BIS), alongside a baseline con-

dition without reputational incentives. Through controlled laboratory experiments

involving 216 participants under both homogeneous and heterogeneous cost condi-

tions, we examine how these mechanisms influence individuals’ propensity to help

others. Our findings reveal that the SGS mechanism significantly outperforms BIS

and the baseline in fostering cooperation. Participants under SGS consistently ex-

hibit higher helping rates, with cooperation being more stable and persistent over

time. The effectiveness of SGS is attributed to its structure, which considers both

the helper’s action and the recipient’s standing, thereby encouraging cooperation

within a network of trustworthy individuals.
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3.1 Introduction

Cooperation is a foundational element of human society, underpinning interactions

that range from everyday social exchanges to complex economic collaborations. Ex-

amples abound: neighbours sharing resources, colleagues assisting one another, and

nations engaging in trade agreements that foster global prosperity. Despite its cen-

trality, cooperation does not always emerge spontaneously, especially in contexts

where individual incentives conflict with collective welfare. Economists are thus

keen to understand the mechanisms that promote cooperative behaviour, particu-

larly in settings where direct reciprocity is insufficient due to infrequent repeated

interactions among the same individuals.

Indirect reciprocity has emerged as a key concept in explaining how cooper-

ation can be sustained in large populations where direct reciprocity is limited.

Reputation-based mechanisms play a crucial role in facilitating indirect reciprocity

by allowing individuals to condition their cooperative behaviour on the observed ac-

tions of others. Two prominent reputation systems are Image Scoring (IS) (Nowak

and Sigmund, 1998b) and Good Standing (GS) (Sugden, 1986; Leimar and Ham-

merstein, 2001). These mechanisms rely on publicly available information about

past behaviours to inform future interactions, thereby fostering cooperation even

among strangers.

In our previous work, we experimentally investigated the efficacy of the Image

Scoring (IS) mechanism and Leimar and Hammerstein’s (L&H) version of the Good

Standing (GS) mechanism within a helping game — a setting where individuals

decide whether to incur a cost to benefit another. We can divide all observations

into two groups based on the median score: individuals with scores of 0, 1, 2, or 3

are classified as the lower-score group, and those with scores of 4 or 5 as the higher-

score group. A two sample t-test between these two groups reveals a significant

difference in the propensity to help between these two groups, favouring recipients

with higher scores.

However, this difference is less pronounced than what we observe under the GS

mechanism and less than what would be expect from theories of reciprocity. Under

the IS mechanism, participants exhibits limited discrimination between recipients

with different scores. While they are more likely to help recipients with a score of
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4 compared to those with a score of 0, there are no significant difference in helping

behaviour toward recipients with scores close to the median, such as 3 or 5. This

suggests that participants reduce their help to those with very low scores but do not

proportionally increase their cooperation toward those with slightly higher scores.

Consequently, the numerical scores in IS did not fully encourage participants

to direct their cooperation according to the recipients’ past cooperative behaviour.

Both self-interested individuals and those with moral considerations — who tended

to have disproportionately high scores — did not adjust their helping behaviour as

strongly as predicted by reciprocity theories. Therefore, while IS facilitated some

level of cooperation, it did not enhance reciprocity to the extent observed under the

GS mechanism.

A potential explanation for this outcome lies in the asymmetry between the

IS and GS scoring systems employed in our previous experiment. The IS mecha-

nism utilised a six-level numerical score, whereas the GS mechanism was binary.

This disparity in the granularity of reputational information may have influenced

participants’ behaviour, complicating direct comparisons between the two mecha-

nisms. Furthermore, the six-level structure of Image Scoring, as implemented in

Engelmann and Fischbacher (2008), introduces significant theoretical complexities.

Their theoretical model necessitates specific assumptions regarding score updates,

such as randomly selecting actions to discard rather than removing the oldest ac-

tions, to simplify the analysis. Additionally, the effectiveness of IS inherently relies

on some degree of non-self-interest among participants. Such dependencies intro-

duce additional layers of complexity, as individuals’ willingness to cooperate may

be influenced by intrinsic motivations beyond mere reputation management. Under

IS, the broader range of scores might have prompted participants to aim for main-

taining a particular score level, focusing more on their own reputation rather than

reciprocating others’ cooperation. In contrast, the binary nature of GS may have

limited participants’ ability to adjust their behaviour based on subtle differences in

others’ reputations.

To address this issue, the present study introduces a binary image scoring mech-

anism, thereby eliminating the asymmetry between the IS and GS mechanisms. By

simplifying IS to a binary score — assigning a value of 1 if an individual helped in

their last opportunity and 0 if they did not — we align the IS mechanism with the
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binary structure of Sugden GS. This adjustment allows for a clearer and more di-

rect comparison of the two mechanisms’ effectiveness in promoting cooperation and

reciprocity. By examining both mechanisms under the same binary framework, we

aim to determine whether the differences observed previously were attributable to

the scoring asymmetry or to inherent differences in how the mechanisms influence

cooperative behaviour.

Furthermore, we introduce Sugden version of the Good Standing (GS) mecha-

nism, which aligns with L&H GS in the criteria for maintaining good standing when

an individual currently has it but differs in the criteria for getting it. Specifically,

under Sugden GS, an individual can get good standing only by helping someone

who is already in good standing, whereas L&H GS allows individuals to get good

standing by helping any other person, regardless of that person’s standing. This

distinction makes Sugden GS more stringent in how individuals are punished if

they do not help cooperative individuals and how they can obtain good standing.

Therefore, it heightens the incentive to help cooperative individuals — reinforcing

reciprocal behaviour consistent with notions of fairness and deservingness — while

simultaneously reducing the likelihood that individuals with a score of 0 will re-

ceive help. In contrast, L&H GS is more lenient, permitting individuals to gain

good standing more easily — even after failing to help — by simply helping in

any subsequent opportunity. This difference implies a trade-off between the two

mechanisms: Sugden GS may foster stronger incentives for reciprocity and deter

uncooperative behaviour more effectively, but it could also be less forgiving of oc-

casional mistakes or unintended defections. By implementing Sugden GS, we aim

to investigate whether this stricter mechanism can more effectively promote reci-

procity and sustain cooperative behaviour compared to both the traditional IS and

L&H GS.

To robustly evaluate the impact of these mechanisms, we also include a control

condition without any reputational information. This allows us to establish baseline

levels of cooperation and assess the extent to which reputation mechanisms influence

behaviour. By comparing the reputational treatments with the control condition,

we can isolate the effects of reputational cues on participants’ willingness to help.

The inclusion of a control condition is particularly pertinent for examining the

IS mechanism. In our previous study, we observed that participants often acted
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against their immediate self-interest by striving to maintain high scores, even when

this resulted in monetary losses. This suggests that reputational concerns can mo-

tivate cooperative behaviour beyond straightforward payoff maximisation. By in-

troducing a setting without reputational feedback, we aim to disentangle whether

such non-self-interested behaviour is driven by the reputation mechanism itself or

by intrinsic prosocial preferences. This approach also aligns with the methodology

of Engelmann and Fischbacher (2009), who examined cooperation in the absence of

reputational information. By incorporating a no-score condition, we can draw more

precise comparisons and deepen our understanding of how reputational mechanisms

influence cooperative dynamics.

An important aspect of our study is the elicitation of participants’ beliefs regard-

ing others’ cooperative behaviour. In experimental economics, belief elicitation is a

standard method for understanding how individuals form expectations about the ac-

tions of others, which in turn can significantly influences their own decision-making

processes. By capturing these beliefs, researchers try to disentangle the extent to

which observed behaviours are influenced by participants’ preferences versus their

expectations about others’ behaviour. This is particularly pertinent in studies of

cooperation and reciprocity, where an individual’s willingness to help often depends

not only on material payoffs but also on their perceptions of others’ propensity to

cooperate.

In our experiment, we implemented a new incentive-compatible belief elicitation

procedure to measure participants’ expectations about the frequency of helping

among their peers. This design choice was motivated by the findings from our

previous study, where we observed high overall levels of cooperation under the IS

mechanism but limited reciprocal helping. While participants did show a significant

difference in helping behaviour toward recipients with low scores compared to those

with high scores, they did not proportionally adjust their cooperation across the full

range of recipient scores. Participants tended to maintain high scores by helping

others but did not significantly discriminate between recipients based on differences

in scores. This behaviour could be interpreted in three ways.

First, it may reflect altruistic preferences. Participants might be helping others

to maintain a high score, even at a personal cost, because they derive utility from

being perceived as cooperative or because they value the act of helping itself. This
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aligns with models of prosocial behaviour such as that proposed by Levine (1998),

where individuals are motivated to help those they consider altruistic. In this

context, maintaining a high score becomes a means of signalling one’s own altruism,

and helping behaviour is less contingent on the recipient’s past actions.

Second, the issue of false or incorrect beliefs warrants attention. It is essential to

recognise that during the game, each player has access only to specific information:

their own actions and scores when they are active players, and whether they were

helped based on their score when they are non-active players. Therefore individuals

might have incorrect beliefs regarding which is the rational score to maintain.

Third, the lack of reciprocity might result from misunderstandings or mistakes

in interpreting the reputation mechanisms. Participants may not have fully grasped

how their own scores or those of others were calculated and updated, leading them

to make decisions that do not align with the intended strategic incentives of the

mechanism. If participants misinterpret how their actions affect their scores, or

how others’ scores reflect past behaviour, they may fail to condition their helping

on recipients’ cooperativeness, thereby undermining reciprocity.

By eliciting participants’ beliefs about others’ cooperative behaviour, we aim

to disentangle these possibilities. If participants accurately perceive high levels of

cooperation among others and still choose to help indiscriminately, this would sup-

port the altruism interpretation. Conversely, if participants have incorrect beliefs

about others’ behaviour or misunderstand how the reputation mechanisms work,

this could explain the lack of reciprocity observed due to mistakes or misperceptions.

Moreover, understanding participants’ beliefs allows us to assess whether mis-

understandings could be undermining the effectiveness of the reputation rules. If

participants do not respond appropriately to reputational cues because of misper-

ceptions, the mechanisms may fail to promote the desired cooperative and recipro-

cal behaviours. By rewarding accurate estimates in our belief elicitation task, we

encouraged participants to provide thoughtful and sincere beliefs about the coop-

erative behaviour of others. This approach enables us to analyse the relationship

between participants’ beliefs and their own helping behaviour, providing insights

into the cognitive processes underpinning cooperation.

For example, if participants who believe that others are generally cooperative

are more likely to help themselves, this suggests that positive expectations foster
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prosocial behaviour. Conversely, if there is a disconnect between beliefs and actions,

this may indicate that other factors, such as misunderstandings of the mechanisms

or intrinsic preferences, are at play. By incorporating belief elicitation into our

study, we aim to provide a more comprehensive understanding of the factors that

promote or hinder cooperation in economic interactions.

This not only enriches the analysis of our experimental results but also has

important implications for the design of institutions and mechanisms intended to

foster cooperation in real-world settings. Understanding participants’ beliefs helps

ensure that reputation rules are not only theoretically sound but also practically ef-

fective, as they align with how individuals perceive and interpret social information.

It also allows us to refine the mechanisms to address potential misunderstandings,

thereby enhancing their capacity to sustain cooperative and reciprocal behaviours.

Finally, we contribute to the theoretical literature by developing an axiomatic

framework that examines binary reputation mechanisms in helping games. This

framework provides a formal foundation for identifying which mechanisms are both

feasible and effective in promoting cooperation within the helping game. By intro-

ducing specific axioms that any viable binary mechanism should satisfy, we narrow

down the set of plausible mechanisms to those most likely to sustain cooperative

behaviour.

Our work builds upon the study of Camera and Gioffré (2022) who addressed the

existence of cooperative equilibria supporting efficient allocations in indefinitely re-

peated helping games under private monitoring. While they provided general proofs

and characterised efficient equilibria, there remained an open question regarding

which specific reputation mechanisms could facilitate cooperation to emerge. By

systematically analysing the properties of binary reputation mechanisms through

our axiomatic approach, we reduce the number of candidate mechanisms to those

that are theoretically sound and practically implementable. This reduction is im-

portant because it focuses both theoretical and experimental efforts on mechanisms

with the greatest potential to promote cooperation. By eliminating mechanisms

that do not satisfy essential criteria, we offer clearer guidance for designing reputa-

tion rules in economic environments where helping games are applicable.

Ohtsuki and Iwasa (2006) conducted a comprehensive analysis of reputation

dynamics in the context of indirect reciprocity. Using simulations, they identify
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the “leading eight” social norms capable of maintaining high levels of cooperation.

These norms share common characteristics: (i) cooperation is sustained within a

population adhering to the norm; (ii) defectors are immediately recognised and

labelled as “bad”; (iii) individuals with a “bad” reputation are denied cooperation,

and those who refuse to help them can be regarded as “good”; and (iv) accidental

defections due to errors can be rectified, allowing individuals to regain a “good”

reputation through appropriate actions. Their evolutionary approach find these

eight norms effectively promote cooperation, offering clear and intuitive reasons

based on the dynamics of reputation.

Building on their evolutionary insights, our axiomatic approach formalises these

common aspects into precise criteria for reputation mechanisms. While both Oht-

suki (2004) and Ohtsuki and Iwasa (2006) focused on evolutionary stability and

reputation dynamics, we extend their findings by translating these principles into

an axiomatic framework that identifies mechanisms which are both theoretically ro-

bust and practically implementable. Our axioms encapsulate the essential features

of the leading eight norms, replicating their key elements within a mathematical

structure. This allows us to systematically analyse and reduce the set of candidate

reputation mechanisms to those that align with these foundational principles.

Furthermore, our proposed axioms are closely linked to the ongoing work by

Fischbacher et al. (2024), who explore the social norms of peer punishment. They

identify four simple rules organizing punishment behaviour in the lab: (i) do not

punish cooperators; (ii) defectors should not punish; (iii) punish those who violate

(i) or (ii); and (iv) punishing defectors is generally considered a right of cooperators,

though some view it as a duty. These rules resonate with our axiomatic approach,

as they outline fundamental norms that govern cooperation and punishment. By

aligning our axioms with these experimentally observed social codes, we strengthen

the relevance and applicability of our theoretical framework.

By integrating these evolutionary and experimental perspectives into our ax-

iomatic approach, we not only refine the set of mechanisms to be considered but

also enhance our understanding of how specific reputation rules can effectively fos-

ter cooperation. Our mathematical analysis, based on prior findings, contributes to

a more comprehensive theoretical foundation, guiding both theoretical exploration

and practical implementation of reputation mechanisms in economic environments.
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This chapter aims to provide both theoretical and experimental answers on how

binary reputation mechanisms shape cooperation and reciprocity.

From a theoretical standpoint, we seek to determine whether there exist binary

rating rules beyond those currently established in the literature that effectively

encapsulate helpfulness. Additionally, we identify the underlying principles that

define such rating rules. This exploration attempts to create a theoretical framework

surrounding binary reputation systems and understand the conditions under which

such systems can sustain cooperative behaviour.

On the experimental front, our investigation is designed to address several ques-

tions. Primarily, within the scope of this chapter alone, we examine whether binary

image scoring leads to higher levels of cooperation and reciprocity compared to a

baseline condition without a reputation mechanism. Furthermore, we assess how

Sugden Good Standing (SGS) mechanism compares with binary image scoring in

promoting cooperation and sustaining reciprocal relationships. These questions are

symmetric to the ones presented in Chapter 2, providing a comprehensive empirical

evaluation of the tested mechanisms. Another critical aspect of our experiment

involves understanding how participants’ beliefs about reputation scores influence

their cooperative behaviour, particularly in scenarios where misunderstandings of

the scoring mechanisms may occur.

In addition to these experimental questions, this chapter also serves as a follow-

up to the experiment analysed in Chapter 2 by enabling further comparative analy-

ses. Specifically, we investigate how cooperation rates and reciprocity patterns differ

between L&H GS and SGS mechanisms. Moreover, we evaluate the differences in

cooperative behaviour between the control condition (without any reputation mech-

anism) and the reputational treatments, which include IS, binary image scoring, and

GS mechanisms. Lastly, we compare binary image scoring with non-binary image

scoring mechanism to discern their respective impacts on promoting cooperation

and reciprocity. These additional comparisons aim to elucidate the effects of dif-

ferent reputation systems, thereby providing deeper insights into their efficacy in

fostering and sustaining cooperative and reciprocal behaviour.

Our findings reveal that the SGS mechanism significantly outperforms BIS and

the baseline in fostering cooperation. Participants under SGS consistently exhibit

higher helping rates, with cooperation being more stable and persistent over time.

136



3.2. THEORY

The effectiveness of SGS is attributed to its structure, which considers both the

helper’s action and both players’ standing, thereby encouraging cooperation within

a network of trustworthy individuals.

The results suggest that reputational systems incorporating social context and

previous interactions, like SGS, are more successful in sustaining cooperative be-

haviour compared to mechanisms focusing solely on the most recent action. This

has important implications for the design of institutions and platforms aiming to

enhance cooperative interactions. By recognising the interplay between individual

actions and the reputations of others, policymakers and designers can better foster

environments where cooperation thrives.

The remainder of the chapter is organised as follows. Section 3.2 presents our

axiomatic approach of binary reputation mechanisms in helping games. Section

3.3 outlines the experimental design and procedures, including the treatments and

belief elicitation methods. Section 3.4 reports the experimental results, analysing

cooperation rates, reciprocity patterns, and the impact of participants’ beliefs. Sec-

tion 3.5 concludes.

3.2 Theory

3.2.1 Definition

There is a finite set of players N = {1, ..., n} , where n is an even number. The

game unfolds over a sequence of discrete time periods T .

There is a finite set of ratings R. At time t ∈ T , each player i has a rating

rti ∈ R. For the purpose of this analysis, we focus on binary ratings, so R = {0, 1}.

In every period t, players are randomly matched. Within each match, one player

is randomly assigned the role of the active player, and the other the role of the non-

active player. The assignment is independent and random for each match in every

period. The matching is anonymous: the active player knows only their rating and

the non-active player’s rating. After seeing the ratings, the active player makes a

decision: to help or not help the non-active player. Let A = {0, 1} denote the set

of such decisions, where 1 represents the action “help” and 0 represents “not help”.

Non-active players see only their own rating and do not make any decisions.
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Consider a given match at period t, let i denote the active player, and j ̸= i

denote the non-active player. Let ati ∈ A denote the action that active player makes

in period t. The evolution of the active player’s rating is governed by a rating rule

γ: R × R × A → R. This function is common knowledge among all players and

determines an active player’s rating in the next period according to

rt+1
i = γ(rti , r

t
j, a

t
i)

Table 3.1 presents a compact representation of the rating rule as a 2×2 matrix,

where the rows correspond to the active player’s current rating rti , and the columns

correspond to the non-active player’s current rating rtj. Each cell contains a pair of

values representing the active player’s next-period rating when a = 1 (help), and

when a = 0 (not help), respectively.

Table 3.1: Representation of the rating rule

Non-active player rating

rtj = 1 rtj = 0

Active player rti = 1 γ(1, 1, 1), γ(1, 1, 0) γ(1, 0, 1), γ(1, 0, 0)
rating rti = 0 γ(0, 1, 1), γ(0, 1, 0) γ(0, 0, 1), γ(0, 0, 0)

There are 2 × 2 × 2 = 8 possible combinations of (rti , rtj, a). Each combination

can be mapped to either 0 or 1 in R, leading to 28 = 256 possible rating rules.

Let Γ denote the set of all these possible rating rules.

3.2.2 Examples

In situations where individuals repeatedly interact, the history of past actions can

become remarkably complex. When faced with the decision of whether to help

another, one must consider this potentially intricate history to inform one’s choice.

Rating rules serve as a means to distil the most essential information from past

interactions, thereby simplifying the decision-making process.

In Figure 3.1 we present three such rating rules that have been studied in the

literature.
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(a) BIS

1 0
1 1, 0 1, 0
0 1, 0 1, 0

(b) SGS

1 0
1 1, 0 1, 1
0 1, 0 0, 0

(c) L&H GS

1 0
1 1, 0 1, 1
0 1, 0 1, 0

Figure 3.1: Examples of rating rules
BIS: Binary Image Scoring; L&H GS: Leimar and Hammerstein Good Standing; SGS:

Sugden Good Standing. Rows are active player’s ratings, columns are non-active player’s
ratings. Each entry summarises active player’s score in t+ 1 for both actions: if they

help, and if they don’t help at t.

One approach is to focus solely on the history of an individual’s actions. This is

exemplified in the concept of Image Scoring (IS) introduced by Nowak and Sigmund

(1998a). We propose a simplified approach, Binary Image Scoring (BIS), where

only the most recent decision matters, reducing the rating set to two levels: R =

{0, 1}. Individuals receive a rating of 1 if they helped in their last interaction, and

0 otherwise (see Figure 3.1a). This method emphasises the immediacy of recent

behaviour, capturing the extreme limit of recency by prioritising the latest action

as the most informative indicator of future cooperation, disregarding other decisions.

While IS and BIS focus on the history of an individual’s own actions, they

may overlook significant aspects of the social context. In his seminal work, Sugden

(1986) introduces the concept of Good Standing (GS), which adds an element of

reputation to the mechanism. In Sugden’s model, an individual’s rating depends

not only on their own actions but also on both their rating and the rating of the

recipient. Specifically, an individual gains a good rating only if they help someone

who has also a good rating (refer to Figure 3.1b). This introduces a layer of condi-

tionality based on the recipient’s reputation, thereby fostering cooperation within a

circle of individuals who have themselves demonstrated cooperative behaviour. The

mechanism is recurrent in nature; the long history of interactions is encapsulated

within the ongoing reputational status of individuals.

Building upon this concept, Leimar and Hammerstein (2001) offer a modification

to the conditions under which an individual’s rating changes. In their version of

GS, an individual can gain or maintain a good rating by helping, regardless of the

recipient’s rating (refer to Figure 3.1c). The key difference lies in the conditions

for maintaining or improving one’s own rating: their model is less stringent than
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Sugden one. In fact, it does not require the recipient to have a particular rating for

the helper to gain good standing. This adjustment broadens the scope of potential

cooperation, as it lowers the barriers to improving one’s reputation within the group.

At the same time, it diminishes the strategic urgency to maintain a good rating,

since players can restore their rating in the next period as active player and may

still receive help even with a score of bad rating.

These varying approaches to rating rules highlight the balance between sim-

plicity and the richness of information considered. While BIS offers a minimalist

summary of an individual’s recent behaviour, Sugden and Leimar and Hammerstein

GS models incorporate additional layers of social information, potentially leading

to different dynamics of cooperation within the population.

The examples in Figure 3.1 illustrate a subset of all the possible binary rating

rules (Γ). Looking at these examples, we can see how the specific rating rules

update the ratings differently. However, a common feature among these examples

is the ordering of ratings, where 1 indicates “helpful” or “worthy” individuals, and 0

indicates the opposite. This ordering implies that a rating of 1 is considered “good”

and a rating of 0 is considered “bad”.

Examining these examples raises important questions: are there other binary

rating rules that effectively encapsulate helpfulness? What principles define such

rating rules? To address these questions, we introduce a set of axioms that encap-

sulates desirable properties for rating rules.

3.2.3 Axiomatic Approach

The axiomatic approach provides a foundation for designing rating rules that en-

courage cooperative behaviour in the helping game. Below, we outline four key

axioms that any effective rating rule should satisfy, along with the intuition and

principles motivating them.

Building upon the insights from evolutionary and experimental studies — such as

those by Ohtsuki (2004) and Fischbacher et al. (2024) — we formalise the principles

underlying effective reputation mechanisms through an axiomatic framework. This

approach allows us to rigorously identify the essential properties that any desirable

rating rule should possess in the context of the helping game.
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The first axiom ensures that helping behaviour is not penalised. If a player’s rating

of 1 reflects their helpfulness, then helping others should not diminish it. This

principle captures the idea that the rating system should align with their observable

helpfulness of a player.

Axiom 3.1. “Helping Monotonicity”

A rating rule γ satisfies “Helping Monotonicity” if and only if

∀(ri, rj) ∈ R×R, γ(ri, rj, 0) = 1 ⇒ γ(ri, rj, 1) = 1 (3.1)

The second axiom provides consistency in how the active player’s decision not to

help is evaluated, irrespective of the non-active player’s rating.

Axiom 3.2. “Worthiness”

A rating rule γ satisfies “Worthiness” if and only if

∀ri ∈ R, γ(ri, 1, 0) = 1 ⇒ γ(ri, 0, 0) = 1 (3.2)

For example, a social norms that permit not helping in some situations without

unfairly penalising the active player is consistent with this axiom.

The third axiom ensures that a rating rule must meaningfully reflect player be-

haviour. This axiom rules out trivial rating mechanisms that fail to distinguish

between helpful and unhelpful actions.

Axiom 3.3. “Reputation Responsiveness”

A rating rule γ satisfies “Reputation Responsiveness” if and only if

∀ri ∈ R, ∃rj ∈ R, a1, a2 ∈ A, a1 ̸= a2 : γ(ri, rj, a1) = 0 ∧ γ(ri, rj, a2) = 1. (3.3)

The forth axiom provides consistency in how the active player’s decision of helping

is evaluated, irrespective of the non-active player’s rating. This is the “mirror”

version of “Worthiness”.
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Axiom 3.4. “Worthiness 2”

A rating rule γ satisfies “Worthiness 2” if and only if

∀ri ∈ R, γ(ri, 0, 1) = 1 ⇒ γ(ri, 1, 1) = 1 (3.4)

Having established the axioms that desirable rating rules should satisfy, we now

characterise the set of rating rules that meet these criteria. Our goal is to identify all

rating rules γ ∈ Γ that satisfy Axioms 3.1 (Helping Monotonicity), 3.2 (Worthiness),

3.3 (Reputation Responsiveness), and 3.4 (Worthiness 2).

Theorem 3.1. Let Γ⋆ ⊆ Γ denote the set of rating rules that satisfy all four axioms.

Γ⋆ contains exactly six rating rules represented in Figure 3.2.

(a) Leimar and Hammerstein (L&H GS)

1 0
1 1, 0 1, 1
0 1, 0 1, 0

(b) Sugden (SGS)

1 0
1 1, 0 1, 1
0 1, 0 0, 0

(c) Binary Image Scoring (BIS)

1 0
1 1, 0 1, 0
0 1, 0 1, 0

(d) “Modified” Binary Image Scoring

1 0
1 1, 0 1, 0
0 1, 0 0, 0

(e) Group Lenient

1 0
1 1, 0 0, 0
0 1, 0 1, 0

(f) Group Harsh

1 0
1 1, 0 0, 0
0 1, 0 0, 0

Figure 3.2: Γ⋆: set of ratings that satisfy axioms A1, A2, A3, A4

To prove Theorem 3.1, we first establish two lemmas that will help in the char-

acterisation of Γ⋆.

Lemma 3.1. For each active player’s current rating, there is at least one scenario

where choosing not to help ensures the active player’s rating is (or becomes) 0.

Formally,

∀ri ∈ R, γ(ri, 1, 0) = 0 ∨ γ(ri, 0, 0) = 0 (3.5)
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Proof. This proof is by contradiction. Suppose that for some ri ∈ R, both γ(ri, 1, 0) =

1 and γ(ri, 0, 0) = 1.

Step 1. Since γ(ri, 1, 0) = 1, Axiom 2 implies γ(ri, 0, 0) = 1, which is consistent

with our assumption.

Step 2. For both rj = 0 and rj = 1, since γ(ri, rj, 0) = 1, Axiom 1 requires

γ(ri, rj, 1) = 1. Therefore, for all rj ∈ R: γ(ri, rj, 0) = 1 and γ(ri, rj, 1) = 1.

Step 3. Since γ(ri, rj, 1) = 1 for all a ∈ 0, 1 and rj ∈ R, there is no such rj and

a1 ̸= a2 where γ(ri, rj, a1) = 0. This contradicts Axiom 3.

Lemma 3.2. For each active player’s current rating, there is at least one scenario

where choosing to help ensures the active player’s rating is (or becomes) 1.

∀ri ∈ R, γ(ri, 1, 1) = 1 ∨ γ(ri, 0, 1) = 1. (3.6)

Proof. This proof is by contradiction. Suppose that for some ri ∈ R, both γ(ri, 1, 1) =

0 and γ(ri, 0, 1) = 0.

Step 1. If γ(ri, rj, 1) = 0, then there is no requirement on γ(ri, rj, 0). However,

since γ(ri, rj, 1) = 0 for both rj = 0 and rj = 1, the active player’s rating remains

0 regardless of whom they help.

Step 2. Axiom 3 requires that there exists some rj ∈ R and actions a1 ̸= a2

such that γ(ri, rj, a1) = 0 and γ(ri, rj, a2) = 1. Since γ(ri, rj, 1) = 0 for all rj, the

only way ro satisfy axiom 3 is if γ(ri, rj, 0) = 1 for some rj.

Step 3. If γ(ri, rj, 0) = 1 and γ(ri, rj, 1) = 0, this directly violates axiom 1

because you cannot reward “not helping” with a 1 but then punish “helping” with

a 0 in the same (ri, rj).

Having established the two lemmas, we now prove Theorem 3.1.

Proof of Theorem 3.1. Necessary condition

Γ⋆ entails rating rules that that satisfy the following conditions:

For all ri ∈ R:

1. γ(ri, 1, 1) = 1 and γ(ri, 1, 0) = 0.

2. If γ(ri, 0, 0) = 0, then γ(ri, 0, a) = {0, 1}, for all a.

3. If γ(ri, 0, 0) = 1, then γ(ri, 0, 1) = 1.
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To characterize Γ⋆, we systematically eliminate rating rules that violate the

axioms. The proof proceeds in five steps.

Step 1: Show that γ(ri, 1, 0) = 0 for all ri.

Suppose by contradiction that γ(ri, 1, 0) = 1 for some ri. Then, by Axiom 2,

it must be that γ(ri, 0, 0) = 1. By Axiom 1, since γ(ri, 1, 0) = 1, it follows that

γ(ri, 1, 1) = 1. Similarly, since γ(ri, 0, 0) = 1, Axiom 1 implies γ(ri, 0, 1) = 1.

Therefore, under this supposition, γ(ri, rj, a) = 1 for all rj ∈ R and a ∈ A. This

would mean that the active player’s rating is always 1, regardless of their action,

violating Axiom 3, which requires the action to affect the rating in some scenario.

Therefore, our supposition must be false, and thus:

γ(ri, 1, 0) = 0 for all ri ∈ R (3.7)

Note: Axiom 4 excludes as well the possibility γ(1, 0, 1) = 1.

Step 2: Determine possible values for γ(ri, 1, 1) = 1 for all ri.

Given that γ(ri, 1, 0) = 0 from Step 1, Lemma 1 requires that either γ(ri, 0, 0) =

0 or γ(ri, 0, 0) = 1. If γ(ri, 0, 0) = 1, then by Axiom 1, γ(ri, 0, 1) = 1. However,

this does not violate any axioms, so γ(ri, 0, 0) can be either 0 or 1, provided that if

γ(ri, 0, 0) = 1, then γ(ri, 0, 1) = 1.

From Lemma 2, since γ(ri, 1, 1) = 1 or γ(ri, 0, 1) = 1 must hold, and given that

γ(ri, 1, 1) = 1 provides a clear compliance with Axiom 3, we have:

γ(ri, 1, 1) = 1 for all ri ∈ R. (3.8)

Note: Also Axiom 4 forbids the scenario where γ(ri, 0, 1) = 1 but γ(ri, 1, 1) = 0.

Step 3: Determine possible values for γ(ri, 0, a) for all ri ∈ R and a ∈ A

We analyse the pairs (γ(ri, 0, 1), γ(ri, 0, 0)) for all ri ∈ R:

(
γ(ri, 0, 1), γ(ri, 0, 0)

)
for ri ∈ {0, 1}.

In principle, there are four ways to assign the pair
[
γ(ri, 0, 1), γ(ri, 0, 0)

]
:

(1, 1), (1, 0), (0, 0), (0, 1).
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However, by “Helping Monotonicity” (Axiom 3.1), the combination (0, 1) is impos-

sible. Indeed, having γ(ri, 0, 1) = 0 but γ(ri, 0, 0) = 1 would reward not helping a

“bad” opponent while punishing helping the same opponent. Hence the only possible

pairs are:

•
(
γ(ri, 0, 1), γ(ri, 0, 0)

)
= (1, 1).

•
(
γ(ri, 0, 1), γ(ri, 0, 0)

)
= (1, 0).

•
(
γ(ri, 0, 1), γ(ri, 0, 0)

)
= (0, 0).

Step 4: Eliminate impossible pairs due to Axiom 3.1.

From the discussion above, the only forbidden outcome pair is

(
γ(ri, rj, 1), γ(ri, rj, 0)

)
= (0, 1), ∀(ri, rj) (3.9)

Indeed, “Helping Monotonicity” (Axiom 3.1) states that if γ(ri, rj, 0) = 1, then

γ(ri, rj, 1) = 1. Thus (0, 1) would violate Axiom 3.1. This rules out any rule that

punishes helping while rewarding not helping in the exact same (ri, rj) circumstance.

Step 5: Enumerate possible rating rules consistent with the axioms

Using the constraints established in Steps 1–4, we enumerate all valid combina-

tions:

• The left column (for rj = 1) is fixed as (1, 0) for both ri = 1 and ri = 0: this

takes us down from 256 possibilities to 16.

• The right column (for rj = 0) can take one of three pairs: (1, 1), (1, 0), or

(0, 0): this takes us down from 16 possibilities to 9.

• Eliminating combinations that fail Axiom 3.3, we are left with 6 valid rating

rules, as shown in Figure 3.2.

Therefore, the necessary conditions are established.

Sufficient condition

The sufficiency of these conditions is straightforward by inspection.
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While all six rating rules satisfy Axioms 3.1—3.4, not all are equally effective in

promoting cooperation. Specifically, the “Group Lenient” (3.2e) and “Group Harsh”

(3.2f) rules may undermine the effectiveness of the reputation system by allowing

situations where helping leads to a decrease in the helper’s rating. This contradicts

the principle that cooperative behaviour should not be penalised.

We think that an additional axiom would be helpful in strengthening the notion

that the rating system should promote and reward cooperative behaviour.

Axiom 3.5. “No penalty for helping”

A rating rule γ satisfies “No penalty for helping” if and only if

∀ri ∈ R, ∀rj ∈ R, γ(ri, rj, 1) ≥ ri (3.10)

Axiom 3.5 can be interpreted as helping another player should not decrease the

active player’s rating.

Theorem 3.2. Let Γ⋆⋆ ⊆ Γ denote the set of rating rules that satisfy all five axioms.

Γ⋆⋆ contains exactly four rating rules. These are the top four (3.2a, 3.2b, 3.2c, 3.2d)

represented in Figure 3.2.

This refined set of rating rules Γ⋆⋆ captures the essential features of the “lead-

ing eight” norms identified by Ohtsuki and Iwasa (2006), which emphasise that

cooperation should be sustained within the population, defectors are recognised

and penalised, and cooperators maintain favourable reputations. Our axiomatic

approach formalises these principles, providing a rigorous mathematical foundation

for designing and analysing reputation systems.

Moreover, our framework resonates with the findings of Fischbacher et al. (2024),

who identify fundamental norms governing acceptable punishment in experimental

settings. By aligning our axioms with these experimentally observed social codes,

we enhance the relevance and applicability of our theoretical model.

In conclusion, our axiomatic approach has identified four binary rating rules

that both theoretically and practically encapsulate helpfulness. Between Chapter 2

and 3 we test three of these rules in lab experiments thinking that they effectively

capture the essence of helpfulness without introducing any undesirable properties.
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3.2.4 Analysis of BIS Equilibrium

In the preceding analysis of this section, we developed a theoretical framework

centred on reputation mechanisms and we introduced the Binary Image Scoring

(BIS) mechanism, which simplifies reputations to a binary scale based solely on

an individual’s most recent action. While this represents a significant shift from

the standing strategies examined in Chapter 1, we still have to analyse whether

equilibria can emerge within this simplified framework and how these equilibria

might compare to those previously identified.

To maintain consistency and facilitate comparison, we adopt the same analytical

framework used in Chapter 1. We examine the incentives of self-interested players

and derive equilibrium conditions within this modified game structure, focusing on

whether helping behaviour can be sustained under BIS.

The helping game retains its structure as a repeated asymmetric interaction,

where players alternate roles in random matches. In each period, one player (the

active player) decides whether to incur a cost c to provide a benefit b to the other

player (the non-active player), under the condition b > c > 0. Players are drawn

from a finite set N of agents, and matches occur in discrete time t = 1, 2, . . . ,∞,

continuing with probability δ in each period. Matches are random, and here we

assume everyone is matched (ω = 1). The random pairing ensures that every player

has a probability of 1
2

of being chosen as a helper in each round. Importantly, we

assume perfect recall of previous interactions, allowing strategies to depend on the

history of play.

In Chapter 1, we demonstrated that a good standing equilibrium can exist un-

der certain conditions in the helping game. Players sustain helping behaviour by

adhering to the Sugden good standing strategy, which rewards helpers with a good

reputation and penalises those who fail to help. The conditions for equilibrium were

derived following the following steps.

Consider the case in which all other players follow the good standing strategy.

Let UG denote the expected payoff from adhering to the good standing strategy

indefinitely, given that one is the active player in the current period. While the
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game continues, the series of expected payoffs is:

−c,
b− c

2
,

b− c

2
, . . .

The probability that the game will end in any period reduces the expected value of

future payoffs. Thus, the total expected payoff from the good standing strategy is:

UG = −c+
(b− c)

2
· δ

1− δ
. (3.11)

Now consider the alternative strategy of following myopic self-interest (the “bad

standing” strategy), which we label UB. Under this strategy, the player never incurs

the cost of helping and therefore receives an expected payoff of UB = 0.

The good standing strategy is sustainable as an equilibrium if UG > UB, which

simplifies to:

−c+
(b− c)

2
· δ

1− δ
> 0. (3.12)

Rearranging, we find:

δ >
2c

b+ c
. (3.13)

Thus, there is a good standing equilibrium with 100% helping if and only if

δ > 2c
b+c

(same as formula 1.10 in Chapter 1). It is worth noting that this is not the

only equilibrium: there also exists an equilibrium in which no player ever helps.

This method of comparing “good standing forever” with “bad standing forever”

is legitimate because the model assumes stationarity. If the good standing strategy

is better than the bad standing strategy in the current period, it will remain the

better choice whenever there is an opportunity to help. Consequently, players have

no incentive to deviate from the equilibrium path.

Returning now to the Binary Image Scoring mechanism, we apply the same

reasoning. Under BIS, the scoring rule is that if a player helped in the last round

in which they were the active player, they have a score of 1; if they did not help,

they have a score of 0. In any round t, what it is rational for a self-interested active

player to do is independent of the non-active player’s score – because the active

player’s score at the end of round t depends only on whether he helped or not (this
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is true of the Engelmann and Fischbacher (2008)’s IS game too1).

However, there may be an equilibrium in which each active player is indifferent

between helping and not helping but is more likely to help a non-active player

if their score is 1 rather than 0 (this approach is similar to the Engelmann and

Fischbacher’s game).

Consider the strategy: if the non-active player has a score of 0, help with prob-

ability p; if the non-active player has a score of 1, help with probability q, with

0 ≤ p < q ≤ 1.

Suppose that your co-players always follow this strategy.

Let UG be the expected payoff from following this strategy forever, given that

you are the active player in the current period.

As long as the game continues, this will give you the series of expected payoffs:

−c, qb−c
2

, qb−c
2

, . . .. Because of the probability that the game will end,

UG = −c+

(
qb− c

2

)
· δ

1− δ
(3.14)

Let UB be the expected payoff from following myopic self-interest (the B for

bad standing strategy) forever, given that you are the active player in the current

period.

As long as the game continues, this will give you the series of expected payoffs:

0, pb
2
, pb

2
, . . .. Because of the probability that the game will end,

UB =

(
pb

2

)
· δ

1− δ
(3.15)

So, UG > UB if:

−c+

(
qb− c

2

)
· δ

1− δ
>

(
pb

2

)
· δ

1− δ
(3.16)

δ >
2c

c+ b(q − p)
(3.17)

What are the implications this inequality (3.17)? There can not be a self-interest

equilibrium with UG > UB, in which helping is uniquely optimal, because the best

reply to such a strategy is not to help at all (since one would receive help regardless
1See Appendix 1 of their Working Paper, page 32.
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of one’s own actions). Conversely, there can be a self-interest equilibrium with

UG < UB, but that would be one in which no one helps.

Hence, the only type of self-interest equilibrium in which there is helping is one

with UG = UB. Thus, for any given values of c, b and δ, (q − p) must be such that:

δ =
2c

c+ b(q − p)
(3.18)

q − p =
c(2− δ)

δb
(3.19)

This result indicates that the probability difference (q− p) is determined by the

parameters of the game (c, b) and the continuation probability δ. Moreover, helping

behaviour would sustained not because it is uniquely optimal but because players

are indifferent between helping and not helping, with their choices influenced by

the scores of their co-players.

Compared with results of Chapter 1, we observe that the standing strategy

creates stronger incentives for cooperation through a more robust reputation system.

The requirement for δ > 2c
b+c

under the standing strategy ensures that players

value future interactions sufficiently to maintain helping at 100%. Under BIS, the

equilibrium condition δ = 2c
c+b(q−p)

depends on the difference q − p, reflecting the

degree to which players discriminate based on scores.

The binary IS game has similar properties to the Engelmann and Fischbacher’s

game, i.e., helping behaviour is induced by a combination of self-interest and, for

tie-breaking, non-selfish preferences for reciprocity. Therefore, by using a binary

scale rather than a six-point scale, we are not changing the fundamental structure

of the game. But the binary game is much easier to analyse.

3.3 Experimental Design

Our experiment builds upon the framework of our previous study, introducing key

modifications to examine the effects of two different reputational mechanisms and

belief elicitation on cooperative behaviour. Specifically, we implement three treat-

ments — Binary Image Scoring (BIS), Sugden Good Standing (SGS), and a control

condition with no reputational information — to investigate their efficacy in fos-
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tering cooperation and reciprocity within a helping game context. Additionally,

we incorporate a belief elicitation task at the end of the second sequence to assess

participants’ perceptions of others’ cooperative behaviour.

3.3.1 The Game

In each session, participants are randomly assigned to one of the three treatments

in a between-subjects design. They engage in two sequences of an indefinitely

repeated helping game, encountering first a homogeneous cost condition and then

a heterogeneous cost condition, or vice versa. The order of these sequences is

counterbalanced across sessions to control for any potential order effects.

Participants are organised into cohorts of six players, interacting anonymously

and being randomly matched into pairs in each round. Within each pair, one par-

ticipant is randomly assigned the role of the active player, while the other assumes

the role of the non-active player. Roles are reassigned randomly in each round,

ensuring that all participants had equal opportunities to act as active or non-active

players throughout the experiment.

Active and non-active players receive an account endowed with £7 at the start

of each round. The active player then decides whether to help the non-active player

at a personal cost, providing a benefit to the recipient. The non-active player does

not make any decisions during the round. Only one round for each sequence is paid.

In the homogeneous cost condition, the cost of helping is the same for all active

players: choosing to help incurred a cost of £4, deducted from the active player’s

account, while the non-active player receives a benefit of £10, added to their ac-

count. If the active player chooses not to help, both players retain their £7. In the

heterogeneous cost condition, active players are randomly assigned either a high

cost (£6) or a low cost (£2) at the beginning of the sequence, with this assignment

remaining constant throughout that sequence. The benefit to the non-active player

remains £10 in all cases.

Participants are informed of their own cost of helping and that the benefit of

being helped is £10, consistent across all sessions. They are also told that others

might have different costs, not exceeding £6, but are not informed of the specific

costs of other players. This maintained some uncertainty about others’ incentives,
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reflecting realistic social environments where individuals may not fully know others’

circumstances.

We utilise the terms “active player” and “non-active player” to describe the roles

to keep the same terminology of the previous experiment.

In the BIS treatment, participants’ reputations are represented by binary scores:

a score of 1 if they have helped in their last opportunity as an active player, and 0

if they have not. All participants begin with a score of 1. The active player can see

their own score and that of the non-active player before making their decision. The

non-active player see only their own score. This simplified reputation mechanism

focused on the most recent behaviour, potentially making reputational cues more

salient and easier to interpret.

In the SGS treatment, participants’ reputations are also represented by binary

scores, but the updating rule differed. Everyone starts with a score of 1. In every

round, the score updates according to the following rule: if the active player helps,

their score depends on the non-active player’s score: it becomes 1 if the non-active

player had a score of 1, or remains unchanged if the non-active player had a score

of 0. If they do not help, their score again depends on the non-active player’s score:

it becomes 0 if the non-active player had s core of 1, or remains unchanged if the

non-active player had a score of 0.

In the control treatment, participants receive no reputational information; the

active player does not see any scores before making their decision. The screens are

otherwise identical across treatments, ensuring that any differences in behaviour

can be attributed to the presence or absence of reputational cues.

At the end of each round, participants receive a summary of their role, decisions,

earnings, and, where applicable, any changes to their scores. This feedback aims

to keep participants informed about their progress and the consequences of their

actions.

Within each cohort, subjects were randomly re-matched into pairs at the start

of each round, resulting in a 1
5

probability of meeting the same participant in two

consecutive rounds. Subjects did not know with whom they were paired, nor did

they know who was in their matching cohort in any sequence. Each round, the

computer randomly assigned one subject to the non-active role and the other to the

active role, with equal probability. Hence, in every round, half the subjects were
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non-active players and half were active players.

A random continuation rule determined the duration of each sequence (Roth and

Murnighan, 1978). Each sequence had 40 fixed rounds, after which the sequence

continued with a probability of 0.67. This design ensures a finite but indeterminate

duration of interaction; beginning with round 40, the sequence is expected to con-

tinue for three further rounds. In the experiment, a computer simulated the roll of a

six-sided die. If the roll was 1 or 2, the sequence would end; otherwise, the sequence

continued to round 41. At the end of each round, all subjects observed the number

drawn, which informed them about the end or continuation of the sequence and

also served as a public coordination device. Sequences terminated simultaneously

for both cohorts in every session.

3.3.2 Belief Elicitation

Following the second sequence of the helping game, we implemented a belief elici-

tation task to measure participants’ expectations about helping behaviour among

their peers. Specifically, for each participant, the computer randomly selected 10

games from the second sequence, excluding any interactions involving that partic-

ipant (both as active and non-active player). In the treatments where scores were

assigned (i.e., the IS and GS treatments), these selected games specifically included

interactions where non-active players had scores of 0 or 1.

We asked each participant to guess in how many of those 10 games the non-

active players with a particular score were helped by active players. This approach

made the question and the incentive more concrete and easier for participants to

understand. For example, in the IS and GS treatments, participants were presented

with the prompt shown in Figure 3.3.

In the baseline treatment, participants were still asked to estimate the number

of times non-active players were helped out of the 10 randomly drawn interactions

as described above, without reference to scores2.

To incentivise accurate reporting, we employed a novel incentive-compatible

mechanism where participants received additional payments based on the accuracy

of their estimates. Specifically, participants were paid according to the actual out-
2See Figure 3.18 in the Appendix 3.A
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Figure 3.3: Belief elicitation for non-active players with score of 1

comes in those 10 randomly selected games for their belief elicitation task, not

according to behaviour in the experiment as a whole.

Participants reported an integer k ∈ {0, 1, . . . , N} representing their estimate,

and their loss was given by L(k, i) = |k − i|, where i is the actual number of times

non-active players were helped.

Under this loss function, a risk-neutral participant minimises their expected

loss by reporting the median of their subjective belief distribution over possible

outcomes. The intuition behind this result is that the expected loss L(k) is min-

imised only if the cumulative probability of outcomes less than or equal to k is

at least one-half. If a participant reports a value lower than the median, there is

a greater probability that the actual outcome will be higher than their estimate,

leading to an increased expected loss due to underestimation. Conversely, reporting

a value higher than the median increases the expected loss due to overestimation,

since there is a higher chance the actual outcome will be lower than their estimate.

By reporting the median, participants balance these risks, minimising the expected

absolute deviation from the actual outcome.

Our method differs from commonly used belief elicitation mechanisms, such

as the quadratic scoring rule (Brier, 1950), which typically require participants

to report probabilities for single events. The quadratic scoring rule is incentive-

compatible and theoretically sound but can be cognitively demanding, as it asks

participants to assign precise probabilities to uncertain events — a task that can

be abstract and unintuitive. Psychological research suggests that individuals find it
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easier to reason about frequencies with a common base than about abstract prob-

abilities (Gigerenzer and Hoffrage, 1995; Cosmides and Tooby, 1996). By asking

participants to estimate frequencies rather than probabilities, we align the elicita-

tion task more closely with natural cognitive processes, potentially leading to more

accurate and reliable data.

While a single probability is a unique summary of a belief about a binary event,

summarising a distribution over multiple outcomes with a single number is inher-

ently less precise. However, our loss function leverages this by making the median

the optimal report for a rational, risk-neutral participant. This provides participants

with a clear and psychologically intuitive reporting strategy. Even if participants

are not fully rational, the simplicity and naturalness of reporting a frequency make

the task more accessible, reducing cognitive load and potential biases.

By structuring the incentives in this manner, we ensure that participants have

a clear financial motivation to report their true (median) belief, thereby eliciting

accurate representations of their expectations about others’ cooperative behaviour.

The simplicity of reporting a frequency, combined with the directness of the loss

function, enhances the psychological plausibility of truthful reporting. The formal

proof demonstrating that reporting the median minimises the expected loss is pro-

vided in the Appendix. This proof establishes the theoretical foundation for our

belief elicitation method and justifies its application within our experimental design.

Furthermore, by comparing each participant’s elicited belief to the session-wide

median, we assess the accuracy of their perceptions. This comparison is in line

with our proposed incentive mechanisms, which are designed to encourage truthful

reporting of beliefs relative to the median.

Our approach thus offers a psychologically grounded and methodologically sound

alternative to traditional probability-based elicitation methods. By focusing on

frequencies and utilising a loss function that aligns with natural reasoning processes,

we aim at obtaining more reliable data on participants’ beliefs, which in turn allows

for a deeper analysis of how these beliefs correlate with cooperative behaviour in

strategic settings.
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3.3.3 Implementation

Participants were recruited using SONA Systems from the student population at the

University of East Anglia (UEA), consistent with the recruitment method employed

in our previous experiment. To maintain comparability between studies, the only

eligibility criterion was that participants had not taken part in the prior experiment,

ensuring the underlying population remained the same.

Each session included twelve participants, divided into two cohorts of six. Par-

ticipants remained in the same cohort throughout the session but were randomly

rematched within their cohort in each round. We conducted a total of eighteen

sessions, with an equal number assigned to each treatment: six sessions (twelve

cohorts) each for the Binary Image Scoring (BIS), Sugden Good Standing (SGS),

and control treatments. The order of the homogeneous and heterogeneous cost con-

ditions was counterbalanced across sessions to mitigate potential order effects. This

counterbalancing ensured that any systematic effects due to the order of cost con-

ditions were evenly distributed across treatments, enhancing the internal validity

of our findings.

To ensure anonymity and reduce potential biases, participants interacted via

computer terminals, and communication was prohibited during the experiment.

Instructions were provided in neutral language, informing participants about the

structure of the game, their potential decisions, and how their earnings would be

calculated. This standardised approach minimised the influence of extraneous vari-

ables and allowed us to attribute observed differences in behaviour to the experi-

mental manipulations.

Prior to conducting the experiment, we preregistered our experimental design

and analysis plan, which included a stopping rule for the control treatment based on

statistical power considerations. We hypothesised that the presence of a reputation

mechanism — either BIS or SGS — would increase helping behaviour compared to

the baseline control condition without a reputation mechanism.

Initially, we planned to run three sessions per condition (control, BIS, SGS),

resulting in a total of nine sessions and eighteen independent cohorts (since each

session comprised two cohorts). After these initial sessions, we intended to assess

whether the control condition exhibited significantly lower helping rates compared
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to the reputation mechanisms. Specifically, our stopping rule stipulated that if five

or more of the bottom six cohorts (ranked by average helping rate) belonged to the

control condition, we would discontinue the control treatment.

The intuition behind this stopping rule is rooted in statistical significance and

power. By requiring that at least five of the bottom six cohorts are from the con-

trol group, we set a stringent criterion that would be unlikely to occur by chance

under the null hypothesis of no difference between treatments. Under the null hy-

pothesis, the probability of this event is approximately 8.3% (see Appendix 3.A.2

for detailed calculations and a comparison with a stricter hypergeometric calcula-

tion.). This threshold balances the risk of Type I and Type II errors, ensuring that

we have sufficient power to detect a meaningful effect while avoiding unnecessary

continuation of the control condition if it is indeed inferior.

If the stopping rule was met, we would proceed to conduct additional sessions

only for the reputation mechanisms, aiming for a total of six sessions (twelve co-

horts) per reputation mechanism and three sessions (six cohorts) for the control.

This would result in 180 participants: 72 assigned to BIS, 72 to SGS, and 36 to the

control group. Conversely, if the stopping criterion was not satisfied, we planned

to conduct three additional sessions per condition, leading to a total of eighteen

sessions (thirty-six cohorts), with six sessions (twelve cohorts) per condition and

216 participants overall.

In practice, the stopping criterion was not satisfied after the initial nine sessions,

as the control cohorts did not consistently rank among the lowest in terms of helping

rates. For instance, while some control cohorts exhibited lower helping rates, they

did not constitute five of the bottom six cohorts. Consequently, we proceeded to

conduct the full set of eighteen sessions, with six sessions (twelve cohorts) allocated

to each condition: BIS, SGS, and the control.

This experimental design allows us to rigorously assess the impact of simplified

reputation mechanisms on cooperation and reciprocity within helping games. By

comparing behaviour across the BIS, SGS, and control treatments, and by analysing

the relationship between participants’ beliefs and their actions, we aim to provide

insights into the effectiveness of these mechanisms in promoting prosocial behaviour.
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3.4 Results

We begin our presentation of results by examining whether the preregistered stop-

ping rule was met. The stopping rule stipulated that if five or more of the bottom

six cohorts, ranked by average helping rates, were from the baseline treatment,

we would discontinue this condition. Table 3.2 displays the ranked average help-

ing rates for both homogeneous and heterogeneous cost conditions. The rankings

indicate that this criterion was not satisfied.

Table 3.2: Ranked average helping rates for homogeneous and heterogeneous
cohorts

from lowest to highest

Rank Homogeneous Cost Heterogeneous Cost

Cohort Treatment Avg. Help Cohort Treatment Avg. Help

1 1 B 0.0078 2 B 0.2417
2 2 B 0.0620 13 IS 0.2602
3 5 IS 0.1163 8 GS 0.3500
4 13 IS 0.2302 1 B 0.3667
5 15 B 0.2460 15 B 0.3739
6 10 B 0.2778 9 B 0.3833
7 9 B 0.3492 12 IS 0.3917
8 8 GS 0.3651 10 B 0.4083
9 12 IS 0.4286 7 GS 0.4500
10 6 IS 0.5349 6 IS 0.5000
11 7 GS 0.5556 5 IS 0.6250
12 4 GS 0.5891 3 GS 0.6333
13 16 B 0.6269 16 B 0.6422
14 11 IS 0.6269 4 GS 0.6750
15 18 B 0.6349 11 IS 0.7750
16 14 IS 0.7539 18 GS 0.8049
17 17 GS 0.9286 14 IS 0.8537
18 3 GS 1.0000 17 GS 0.9106

In the homogeneous cost condition, only four of the six lowest-ranked cohorts

(Cohorts 1, 2, 15, and 10) belonged to the baseline treatment, with the remaining

two cohorts from the IS and GS treatments. Similarly, in the heterogeneous cost

condition, four of the bottom six cohorts (Cohorts 2, 1, 15, and 9) were associated

with the baseline treatment. This confirms that the baseline treatment did not

occupy the lowest 5 out of 6 ranks in helping behaviour. Consequently, we pro-
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ceeded to conduct six sessions for each treatment condition, ensuring a balanced

experimental design and sufficient data for robust comparisons.

Our study comprises a total of 216 participants3, evenly allocated across three

treatments: Sugden Good Standing (SGS), Binary Image Scoring (BIS), and a

baseline condition without reputational mechanisms. Each treatment involved a

consistent group of 36 active players in each round, ensuring comparability across

conditions.

Figure 3.4 illustrates the average helping rates per round across the three treat-

ments: SGS (3.4a), BIS (3.4b), and the baseline condition (3.4c). Different line

styles distinguish the cost conditions.

(a) SGS treatment (b) BIS treatment (c) Baseline treatment

Figure 3.4: Trends average helping per round
Dashed lines display homogeneous cost. Thick and dotted lines display heterogeneous

costs.

A salient feature across all treatments is the substantial variability in helping

rates among high-cost individuals within the heterogeneous cost condition. These

participants consistently exhibit lower helping rates compared to other cost condi-

tions. In contrast, the homogeneous cost condition demonstrates greater stability,

with helping rates levelling off after an initial decline—a pattern reminiscent of that

observed in public goods games (e.g., Herrmann et al., 2008).

Notably, low-cost individuals in the heterogeneous cost condition achieve the

highest average helping rates across all treatments. This divergence between high-

cost and low-cost participants aligns with our theoretical expectation that the SGS

mechanism would create a bifurcation in cooperative behaviour, widening the dif-

ference as the game progresses.

The SGS mechanism appears to foster higher average helping rates compared to
3See Table 3.3 in the Appendix.
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the BIS and baseline treatments. This suggests that the SGS rule, by facilitating

discrimination based on standing, allows individuals to form cooperative clusters

or clubs — a phenomenon consistent with the formation of cooperative norms and

selective reciprocity observed in previous studies (e.g., Fehr et al., 2002).

Figure 3.5 presents data on players’ scores under the SGS and BIS treatments;

scoring trends are not applicable for the baseline condition.

(a) SGS treatment (b) BIS treatment

Figure 3.5: Trends average score per round
Dashed lines display homogeneous cost. Thick and dotted lines display heterogeneous

costs.

In the SGS treatment (3.5a), both the homogeneous and heterogeneous cost

conditions demonstrate a clear pattern of stabilisation after an initial decline in

the first few rounds. This stabilisation suggests that players’ standings settle as

they adapt to the game’s structure, reflecting consistent strategies. The mechanism

itself, being recursive and updating automatically, may facilitate an adjustment

process leading to a more stable cooperative environment.

In contrast, the BIS treatment (3.5b) exhibits stabilisation of scores slightly

later, possibly reflecting differences in the learning dynamics or behavioural adjust-

ments required under this system. The average scores under the SGS treatment are

higher overall compared to the BIS treatment, particularly in the homogeneous cost

condition. This difference implies that the SGS mechanism may better incentivise

helping behaviour or more effectively encompass the information about who is forth

of being helped.

Moreover, the contrast in behaviour between high-cost (full line) and low-cost

players (dotted line) within the heterogeneous cost condition is striking. High-cost
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players tend to exhibit consistently lower average scores compared to their low-cost

counterparts, highlighting the influence of cost structure on individual performance

and cooperative dynamics across treatments.

The observed stabilisation of scores in both treatments provides a strong ratio-

nale for focusing our main analysis on rounds 5 to 35. By round 5, players have

likely moved past the initial adjustment phase, and their scores reflect consistent

and meaningful strategies. Analysing rounds beyond round 35 may introduce end-

game biases, where participants alter their behaviour in anticipation of the game’s

conclusion (Andreoni, 1988). Focusing on rounds 5 to 35 allows us to examine

participants’ steady-state behaviour, minimising the confounding effects of early

learning and late-game strategic shifts4.

We proceed with a cohort-level analysis, as this method offers independent data

points that enable a transparent and reliable examination of overall helping be-

haviour. We analyse the average helping rates across cohorts for each treatment

in Section 3.4.1. Subsequently, we delve into detailed behavioural patterns us-

ing individual-level data in Section 3.4.2, allowing for a thorough examination of

decision-making processes in the helping game. In Section 3.4.3, we analyse the

beliefs data collected at the end of each session.

3.4.1 Cohort-level Analysis

In this section, we evaluate rounds 5 to 35 of each game, using the average choices

of each cohort as the unit of observation. By excluding rounds characterised by

initial learning and potential end-game effects, we obtain 36 independent data points

corresponding to the 36 cohorts in our experiment5.

3.4.1.1 Cooperation rates between SGS, BIS, and B in helping games

A preliminary examination of the data reveals substantial differences in helping rates

across cohorts. Figure 3.5 presents box plots and dot plots of the average helping

rates for each cohort in the homogeneous cost helping games. Each dot represents

a cohort, and the box encompasses the interquartile range (IQR), representing the
4This analysis is similar if we follow the specification used in Chapter 2: rounds 10 to 35.
5Results are similar if we use the full dataset or the specification used in the previous chapter:

rounds 10 to 35.
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middle 50% of the data. Figure 3.6 provides the corresponding information for the

heterogeneous cost helping games.

Figure 3.6: Average helping rate in homogeneous cost helping games
Each dot represents one cohort. Each cross represents the average for each treatment.

In the homogeneous cost condition (Figure 3.6), the SGS mechanism exhibits a

median helping rate of 0.747, the BIS mechanism shows a lower median of 0.517,

and the baseline condition displays an even lower median of 0.316. This order-

ing suggests that the SGS mechanism is most effective at sustaining cooperation,

consistent with our initial expectations.

In the heterogeneous cost condition (Figure 3.7), the SGS mechanism has a

median helping rate of 0.638, the BIS mechanism a median of 0.534, and the baseline

treatment a median of 0.374. The reduction in median helping rates compared to

the homogeneous condition reflects the impact of cost heterogeneity on cooperation.

Figure 3.7: Average helping rate in heterogeneous cost helping games
Each dot represents one cohort. Each cross represents the average for each treatment.

Importantly, the variances in helping rates are similar across treatments in both

conditions. Specifically, in the homogeneous cost condition, the variance for SGS

(0.039) is similar to BIS (0.040) (χ̃2 = 0.227, p = 0.634), SGS is similar to the

baseline (0.044) (χ̃2 = 0.196, p = 0.658), and BIS is similar to the baseline (χ̃2 =

0.101, p = 0.750).

In the heterogeneous cost condition, the variance for SGS (0.026) i similar to BIS

(0.031)(χ̃2 = 0.025, p = 0.874), SGS is similar to the baseline (0.013) (χ̃2 = 1.999,
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p = 0.157), and BIS and the baseline also have comparable variances (χ̃2 = 1.268,

p = 0.260).

This suggests that the SGS mechanism increases average cooperation without

necessarily increasing variability in behaviour.

Result 1: The Sugden Good Standing mechanism induces higher levels of coopera-

tion compared to both Binary Image Scoring and a baseline treatment.

The mean helping rates differ significantly between the treatments in the ho-

mogeneous cost condition. Specifically, the mean helping rate for SGS is 0.739,

compared to 0.496 for BIS and 0.324 for the baseline. Pairwise comparisons reveal

significant differences: SGS exhibits higher mean helping rates than BIS (Z = 2.583,

p = 0.007) and baseline (Z = −3.494, p < 0.001), while BIS and baseline show

marginally different mean helping rates (Z = −1.926, p = 0.054).

In the heterogeneous cost condition, the mean helping rates are 0.647 for SGS,

0.553 for BIS, and 0.383 for the baseline. SGS has significantly higher rates com-

pared to the baseline. Pairwise comparisons indicate that SGS and BIS have similar

helping rates (Z = 1.336, p = 0.192), while SGS has significantly higher rates com-

pared to the baseline (Z = −3.358, p < 0.001). BIS also demonstrates higher mean

helping rates than the baseline (Z = −2.453, p = 0.011).

These findings suggest overall that the SGS mechanism generally promotes

greater cooperation than both the BIS and baseline treatments. The effective-

ness of the SGS rule may stem from its capacity to facilitate selective helping based

on standing, thereby reinforcing cooperative norms and mitigating free-riding—a

mechanism absent in the baseline condition and less pronounced in the BIS treat-

ment.

3.4.1.2 High cost and low cost players in heterogeneous game

We further analyse helping behaviour under heterogeneous cost conditions to ex-

plore how cost differences affect cooperation within each treatment.

For the low-cost players (Figure 3.8), the average helping rate is highest in the

SGS treatment (0.786), followed by BIS (0.712) and the baseline (0.539). Pairwise

comparisons show a little difference between SGS and BIS (Z = 1.136, p = 0.262),

163



CHAPTER 3

while SGS exhibited higher helping rates than the baseline (Z = −2.699, p = 0.005).

BIS exhibits as well higher helping rates than the baseline (Z = −1.876, p = 0.060).

Figure 3.8: Average helping rate in heterogeneous cost helping games for player
with a low cost

Each dot represents one cohort. Each cross represents the average for each treatment.

The variance in helping rates was lowest in SGS (0.016), followed by BIS (0.034)

and the baseline (0.056). Pairwise comparisons of variances indicate no significant

differences between SGS and BIS (χ̃2 = 1.725, p = 0.189), SGS and the baseline

(χ̃2 = 1.137, p = 0.286), or BIS and the baseline (χ̃2 = 0.012, p = 0.914).

For the high-cost players (Figure 3.9), the average helping rate was highest

in the SGS treatment (0.502), followed by BIS (0.397) and the baseline (0.243).

Pairwise comparisons show that the mean helping rate for SGS is comparable to

BIS (Z = 1.052, p = 0.301), while SGS has a higher mean helping rate compared

to the baseline (Z = −2.754, p = 0.003). The difference in mean helping rates

between BIS and the baseline is less pronounced (Z = −1.687, p = 0.092).

Figure 3.9: Average helping rate in heterogeneous cost helping games for player
with a high cost

Each dot represents one cohort. Each cross represents the average for each treatment.

The variance in helping rates for high-cost players was 0.032 for SGS, 0.068 for

BIS, and 0.023 for the baseline. Pairwise variance comparisons indicate no notable

differences between SGS and BIS (χ̃2 = 0.767, p = 0.381), SGS and the baseline

(χ̃2 = 1.187, p = 0.276), or BIS and the baseline (χ̃2 = 3.223, p = 0.073).
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These findings support the overall trend reported in the homogenous cost con-

dition, where the Sugden GS mechanism leads to higher helping rates than both

the binary image scoring mechanism and the baseline treatment. This tendency

remains across different cost conditions, particularly among low-cost participants,

implying that SGS may be more successful at inducing helping.

3.4.1.3 Correlation between average helping rates within IS and GS

Figure 2.10 present three scatter plots comparing average helping rates under ho-

mogenous and heterogeneous cost situations for the SGS and BIS mechanisms, as

well as the baseline treatment. We compute Pearson correlation coefficients for each

treatment to assess the persistence of helping behaviour across cost structures.

(a) SGS treatment (b) BIS treatment (c) Baseline treatment

Figure 3.10: Correlation between average helping rates in homogeneous and
heterogeneous cost condition

Each dot correspond to a cohort.

For the SGS mechanism, there is a moderately positive correlation between

helping rates in the two cost conditions (Pearson correlation,r(12) = 0.550, p =

0.064) This suggests that cohorts with higher cooperation in one cost condition

tend to maintain higher cooperation in the other, indicating a consistent pattern of

cooperative behaviour facilitated by the SGS mechanism.

In contrast, the BIS mechanism (Pearson correlation, r(12) = 0.371, p = 0.235)

and the baseline treatment (Pearson correlation, r(12) = 0.400, p = 0.197) show

weaker and statistically insignificant correlations. This implies that helping be-

haviour in these treatments is more context-dependent and less persistent across

different cost structures.

The positive correlation within SGS cohorts may reflect the influence of par-

ticipants’ prior experiences and expectations brought from outside the laboratory.
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Individuals come with varying degrees of reciprocity and beliefs about others’ be-

haviour, leading to different mixes of types within a cohort. The SGS mechanism,

by providing a clear rule for good standing, may reinforce these tendencies and cre-

ate a positive correlation between cohorts—a phenomenon observed in public goods

experiments with conditional cooperators (Fischbacher et al. (2001)).

3.4.2 Individual-level Analysis

We now shift our focus to individual-level data to further explore the dynamics of

helping behaviour. Our analysis includes 1,044 individual helping decisions for each

treatment condition, corresponding to 36 active players over 29 rounds.

3.4.2.1 Analysis of frequency of being helped

Figures 3.11 and 3.12 analyse how a non-active player’s standing (in the SGS mech-

anism) and image score (in the BIS mechanism) influence their likelihood of being

helped under homogeneous and heterogeneous cost structures.

Figure 3.11: Homogeneous cost, frequency of being helped by score
Left panel: Sugden Good Standing. Right panel: Binary Image Scoring.

In the SGS mechanism (Figure 3.11, left panel), there is a strong positive rela-

tionship between a player’s standing and the frequency of being helped. Non-active

players in good standing are helped 83.9% of the time, compared to 24.3% for those

in bad standing. The Pearson correlation between standing and being helped is

high (r(1044) = 0.51, p < 0.001).
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In contrast, the BIS mechanism (Figure 3.11, right panel) shows a weaker rela-

tionship. Players with a high image score are helped 61.3% of the time, compared

to 38.5% for those with a low score. The correlation is moderate (r(1044) = 0.228,

p < 0.001).

Under heterogeneous costs, the pattern is similar. In the SGS mechanism (Figure

3.12, left panel), players in good standing are helped 77.7% of the time, compared to

24.9% for those in bad standing (r(1044) = 0.478, p < 0.001). The BIS mechanism

(Figure 3.12, right panel) again shows a weaker relationship, with high-score players

helped 61.7% of the time versus 47.3% for low-score players (r(1044) = 0.144,

p < 0.001).

Figure 3.12: Heterogeneous cost, frequency of being helped by score
Left panel: Sugden Good Standing. Right panel: Binary Image Scoring.

These results highlight the effectiveness of the SGS mechanism in fostering coop-

erative behaviour through reputational incentives. The strong correlation between

standing and being helped suggests that participants are discriminating in their

helping decisions based on the clear rule provided by the SGS system. In contrast,

the BIS mechanism, providing the information of the last action, may lead to less

pronounced discrimination and, consequently, lower overall cooperation.

In the baseline condition (Figure 3.13), the average helping rates are similar

across cost conditions, with a slightly higher rate under the heterogeneous cost con-

dition (38.3%) compared to the homogeneous cost condition (32.4%). This indicates

that, in the absence of reputational mechanisms, cost conditions alone do not lead
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to substantial differences in helping rates. The presence of a reputational system,

particularly one with clear behavioural prescriptions and an equilibrium with 100%

helping like SGS, appears crucial in enhancing cooperation.

Figure 3.13: Frequency of being helped by cost condition in baseline treatment

3.4.3 Beliefs

In this subsection, we analyse the beliefs data collected from participants across dif-

ferent treatments: Baseline, Binary Image Scoring (BIS), and (SGS). Our primary

aim is to assess whether our belief elicitation method effectively captures partic-

ipants’ perceptions of others’ helping behaviour and how these perceptions differ

under various scoring mechanisms.

We begin with the Baseline treatment, where participants were asked to predict

the overall helping rate without any score-based conditioning. Figure 3.14 presents a

scatter plot where each dot represents one of the 72 participants in this treatment.

The horizontal axis denotes the actual average helping rate in the participant’s

cohort, while the vertical axis indicates the participant’s prediction (belief) of this

rate.

The strong positive correlation observed in Figure 3.14 suggests that participants

have a reasonably accurate sense of the overall helping behaviour in their cohort.

This alignment between predictions and actual helping rates indicates that our

belief elicitation method is effective in capturing participants’ perceptions in the

absence of scoring mechanism.

We next examine the BIS and SGS treatments, where participants’ beliefs were

elicited conditional on the non-active player’s score—either 0 or 1. Figures 3.15 and

3.16 illustrate the scatter plots for these treatments, with separate panels for score
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Figure 3.14: Correlation between player’s prediction (belief) and average help in
Baseline treatment

0 (left) and score 1 (right).

The scatter plots illustrate the relationship between participants’ predictions of

helping behaviour and the actual average helping behaviour observed within their

cohorts. Each point in the plots corresponds to a participant, with the horizontal

axis representing the predicted helping rate and the vertical axis representing the

average observed helping rate. The dashed 45-degree line indicates perfect accuracy,

where predictions align exactly with observed outcomes.

(a) BIS, score 0 (b) BIS, score 1

Figure 3.15: Correlation between player’s prediction (belief) and average help in
IS treatment

In the SGS treatment, this positive correlation persists but varies across score

169



CHAPTER 3

(a) SGS, score 0 (b) SGS, score 1

Figure 3.16: Correlation between player’s prediction (belief) and average help in
GS treatment

conditions. When the non-active player has a score of 1, participants’ predictions

are notably accurate, clustering tightly around the line of perfect accuracy. This

suggests that participants recognise the influence of a higher score on encouraging

helping behaviour. However, in the score 0 condition, predictions are less aligned

with actual helping rates, indicating some uncertainty or variability in anticipating

others’ actions when the score is low.

The BIS treatment displays a weaker correlation between predictions and helping

rates. The scatter plots reveal significant dispersion around the 45-degree line,

especially in the score 0 condition. This suggests that participants’ predictions

in the BIS treatment are less sensitive to the actual helping behaviour observed,

potentially reflecting confusion or misperceptions about how scores affect others’

decisions in this context.

Assessing the responsiveness of participants’ predictions involves we examining

the slope of the regression line between predictions and helping rates. Baseline and

SGS treatments, particularly in the SGS score 1 condition, the slope approaches 1.

This indicates that participants adjust their predictions proportionally with changes

in observed helping behaviour.

In contrast, the BIS treatment has a flatter regression slope, with a value less

than 1. This flatter slope reflects a lower sensitivity of participants’ predictions to
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variations in actual helping rates, suggesting that participants in the BIS condition

may not fully appreciate the impact of score differences on helping behaviour.

Moreover, in the BIS treatment, there is a tendency to over-predict helping when

the score is 0 and under-predict when the score is 1. This is evidenced by predictions

lying predominantly above the 45-degree line in the score 0 condition and below it

in the score 1 condition. Such patterns indicate that participants underestimate

the benefit of having a higher score in the BIS setting.

The SGS treatment exhibits a more balanced pattern. While there is slight over-

prediction in the score 0 condition, it is less pronounced than in BIS. In the score 1

condition, participants’ predictions align closely with actual helping rates, with no

systematic bias towards over- or under-prediction. This suggests that participants

in the SGS treatment have a more accurate understanding of how scores influence

helping behaviour.

Finally, Figure 3.17 reveals some noteworthy patterns. Both panels depict the

relationship between the predicted and actual effects of holding a higher score on the

likelihood of receiving help, as observed under the Sugden good standing (3.17a) and

the binary image scoring (3.17b). The x-axis represents the predicted difference in

the belief of being helped between individuals with a score of 1 compared to those

with a score of 0, referred to as the effect of having a higher score on belief. In

contrast, the y-axis represents the actual observed difference in the frequency of

help received between individuals with a score of 1 versus those with a score of 0,

capturing the effect of a higher score on action. The data points are categorised into

two conditions: filled circles indicate the high cost condition, while open triangles

represent the low cost condition. A dashed diagonal line represents a perfect 1:1

correlation, where predicted and actual values would be in complete agreement.

Under the binary image scoring model (Figure 3.17b), all data points are po-

sitioned above the horizontal line at zero. This indicates that every participant

received more help when they had a score of 1 compared to when they had a score

of 0. In contrast, this is not universally true under the Sugden good standing model

(Figure 3.17a), although only a few participants experienced the opposite. When

examining the data to the left of the vertical line at zero, these points correspond to

participants who predicted they would receive less help with a score of 1 than with

a score of 0. This aligns with previous findings in the literature, which suggest that
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(a) Sugden Good Standing (b) Binary Image Scoring

Figure 3.17: Correlation between difference in predictions (1 - 0) and difference in
actions (1 - 0)

self-reported beliefs can seldom differ to a small extent from actual experiences.

Figure 3.17 ultimately suggests that participants under the binary image scoring

model tend to underestimate the true frequency of help they receive. Conversely,

this tendency appears to be less pronounced under the Sugden good standing model,

where the data points are more dispersed.

3.5 Conclusion

This study set out to examine the efficacy of binary reputational mechanisms in

fostering cooperative behaviour within helping games. Our theoretical framework

identified four binary rating rules that satisfy key axioms intended to encapsulate

helpfulness — Leimar and Hammerstein Good Standing (L&H GS), Sugden Good

Standing (SGS), Binary Image Scoring (BIS), and Modified Binary Image Scoring.

While these mechanisms align theoretically with principles of indirect reciprocity,

we experimentally test the most interesting three and our experimental findings

reveal significant differences in their practical effectiveness.

The SGS mechanism emerged as particularly effective in promoting coopera-

tion. Across both homogeneous and heterogeneous cost conditions, SGS consis-

tently elicited higher levels of helping behaviour compared to BIS and the baseline

condition devoid of reputational incentives. This superiority was evident not only in

higher average helping rates but also in the stability and persistence of cooperative
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behaviour over time.

The superior performance of SGS can be attributed to its structural properties.

Unlike BIS, which updates an individual’s reputation based solely on their most re-

cent action, SGS incorporates both the action and the standing of the players. An

individual gains good standing only by helping someone who is also in good stand-

ing. This mechanism fosters a club-like structure where cooperation is selectively

directed towards those who have themselves demonstrated cooperative behaviour.

Philosophically, this distinction underscores important considerations about how

reputations are formed and maintained. Scoring mechanisms that focus exclusively

on recent actions, such as BIS, effectively erase the influence of past behaviours.

While this simplicity may reduce cognitive demands, it disregards the accumulation

of consistent cooperative or uncooperative actions over time. Such an approach can

lead to reputations that are fragile and easily swayed by singular events, undermin-

ing the stability of cooperative relationships. In contrast, SGS acknowledges that

reputations are built through a history of interactions, promoting a more robust

and enduring form of cooperation.

Our findings are further reinforced when considering our previous experiment

conducted with the same underlying population, as detailed in Chapter 2. In these

studies, each subject encountered only one mechanism. Aggregating the data from

these experiments, SGS still outperforms all other mechanisms tested. This consis-

tency suggests that SGS not only excels in isolated scenarios but also maintains its

effectiveness across different experimental conditions.

One key difference between SGS and Leimar and Hammerstein’s Good Standing

(L&H GS) lies in the potential for cooperative recovery. In SGS mechanism, there

exists an absorbing state where, if both players are in bad standing, they cannot

escape this condition—cooperation becomes unsustainable . L&H GS avoids this

pitfall by allowing individuals to regain good standing by helping. They argue this

feature should prevent the permanent breakdown of cooperation and sustains the

viability of the cooperative club.

However, mechanisms like L&H GS or even BIS permit individuals to postpone

cooperative behaviour, knowing they can “rehabilitate” their reputation with a sin-

gle future act. This flexibility can undermine immediate cooperation, as individuals

may choose to defect now and repair their reputation later. SGS eliminates this
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loophole, thereby reinforcing immediate cooperative incentives.

From a methodological perspective, our beliefs’ elicitation method proved ef-

fective in capturing people understanding of the surrounding cooperation in their

cohort.

To draw more substantial conclusions from our research, it is imperative to

conduct further statistical analyses that encompass all the data presented in both

Chapter 2 and Chapter 3. This should involve a detailed examination of the datasets

specific to Chapter 3, as well as an integrated analysis of the combined data from

both chapters. By thoroughly analysing these datasets individually and collectively,

we can identify overarching patterns that may not be apparent at the current stage

of this chapter or looking at each chapter in isolation. Such comprehensive analysis

will enhance the validity of our findings and contribute to a deeper understanding

of the subject matter.

Overall, our study highlights the critical role of reputational mechanisms in sus-

taining cooperative behaviour. Sugden Good Standing mechanism, by integrating

both an individual’s actions and the reputations of others, effectively fosters stable

and enduring cooperation. These insights have significant implications for under-

standing indirect reciprocity and designing systems—whether in economic markets,

organisational structures, or social networks—that aim to promote cooperative in-

teractions. By recognising the importance of both individual behaviour and social

context in shaping reputations, we can better cultivate environments where coop-

eration thrives.
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3.A Appendix
3.A.1 Incentive Compatibility of Belief Elicitation6

We elicit beliefs about an outcome which is an integer 0 ≤ i ≤ N . Suppose the

Decision Maker (DM) has beliefs πi that state i will occur. We ask the DM to

report a single value of k. If the DM reports k and outcome i actually happens,

their loss function is |k − i|.

Given their beliefs (and assuming risk-neutrality) the expected loss function is

L(k) =
k−1∑
i=0

(k − i)πi +
N∑

i=k+1

(i− k)πi, (3.20)

where we interpret sums with ending index less than starting index as being equal

to zero. The DM wants to minimise (3.20); we aim to characterise K⋆, the set of

reports which minimise the loss.

Proposition 3.1. For all 0 < k < N ,

∆(k) ≡ L(k + 1)− L(k) =
k∑

i=0

πi −
N∑

i=k+1

πi. (3.21)

Proof. By straightforward algebra we have

L(k + 1) =
k∑

i=0

(k + 1− i)πi +
N∑

i=k+2

(i− k − 1)πi, (3.22)

=
k−1∑
i=0

(k − i)πi + (k − k)πk +
k∑

i=0

πi

+
N∑

i=k+1

(i− k)πi − πk+1 −
N∑

i=k+2

πi, (3.23)

=
k−1∑
i=0

(k − i)πi +
N∑

i=k+1

(i− k)πi +
k∑

i=0

πi −
N∑

i=k+1

πi, (3.24)

= L(k) +
k∑

i=0

πi −
N∑

i=k+1

πi. (3.25)

6This proof has been done by Theodore T. Turocy.
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Observe that ∆(k) is non-decreasing in k. This implies the following:

Proposition 3.2. If for some k,
∑k

i=0 πi >
1
2
, then L(k′) > L(k) for all k′ > k.

Proof. We write

L(k′)− L(k) =
k′−1∑
j=k

L(j + 1)− L(j) =
k′−1∑
j=k

∆(j). (3.26)

Because
∑k

i=0 πi >
1
2
, the first term in the sum is positive. Because ∆(j) is non-

decreasing in j, all further terms in the sum are likewise positive. Therefore the

sum is positive, and L(k′) > L(k) as claimed.

Proposition 3.3. If for some k,
∑N

i=k πi >
1
2
, then L(k′) > L(k) for all k′ < k.

Proof. Analogous to previous Proposition.

These results motivate the definition of two quantities,

k ≡ argmin

{
k :

k∑
i=0

πi >
1

2

}
(3.27)

k ≡ argmax

{
k :

N∑
i=k

πi >
1

2

}
(3.28)

It is immediate that k ≤ k, and it must be the case that for any k⋆ ∈ K⋆, k ≤ k⋆ ≤ k.

There are a few possibilities:

If there exists some i such that πi >
1
2
, then k = k ≡ k̂, and therefore K⋆ = {k̂}.

This implies that the median of the distribution occurs at this outcome.

If k = k + 1, then k ∈ K⋆ if and only if
∑N

i=k πi ≥
∑k

i=0 πi, and k ∈ K⋆ if and

only if
∑N

i=k πi ≤
∑k

i=0 πi. That is, which is the optimal response can be determined

by comparing the “captive” tail probabilities. The element(s) of K⋆ are at an end

of the interval which brackets the median.

If k − k > 1, then it must be the case that
∑N

i=k πi =
∑k

i=0 πi =
1
2
. In this

case, again the median must be in the interval, but the best response is not unique:

K⋆ = {k, ..., k}.

Observe that we can rule out the last (somewhat pathological) case if the distribu-

tion is unimodal.
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In terms of the proposed experiment, if the value i is realised by drawing several ob-

servations from a population, it is (probably) reasonable to rule out this pathological

case. Because it is a sampling process, the only way to get a bimodal distribution

would be if the participant held beliefs that there are two states of the world. In

one state, non-active players are helped fewer than N/2 times; in another state,

non-active players are not helped fewer than N/2 times. Further, both of these

states are exactly equally likely. Then, you can create a situation where there is

a zero-probability region at the median. Any relaxation of those beliefs, combined

with the belief that sampling is done as we state it is, would lead to there being

probability mass around the median, pinning down the report (to within ±1).

3.A.2 Statistical Rationale and Calculations for the Stopping

Rule

We provide the formal proof and detailed statistical calculations underlying the

stopping rule employed in our experimental design.

Our stopping rule was designed to ensure that we would have sufficient statis-

tical power to detect a significant difference between the control and reputation

treatments. The criterion of having five or more control cohorts among the bottom

six cohorts (ranked by average helping rate) was chosen based on the probabilities

associated with such an outcome under the null hypothesis of no treatment effect.

Under the null hypothesis, the ranks of the cohorts are randomly assigned with

respect to the treatment conditions. We calculated the probability of observing five

or more control cohorts in the bottom six purely by chance, which would be unlikely

if there were truly no difference between the treatments.

3.A.2.1 Calculation of the Probability for the Stopping Rule

This appendix shows how we arrive at an approximate probability of 8.3% for

observing at least five control cohorts among the bottom six, under the null hy-

pothesis of “no difference” between treatments. We also contrast it with a simpler

hypergeometric approach that yields ≈ 0.39% for a strict bottom-six event. The dis-

crepancy arises from different ways of counting borderline/tied ranks and defining

“worst-case” placements.
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Hypergeometric Calculation (Strict Cutoff)

We consider a total of N = 18 cohorts: nC = 6 control cohorts (denoted by C)

and nS = 12 cohorts with reputation mechanisms (denoted by S). The cohorts are

ranked from highest to lowest based on their average helping rates.

Our stopping rule specifies that if k ≥ 5 of the bottom b = 6 cohorts are

control cohorts, we will discontinue the control treatment. We aim to calculate the

probability P of this event occurring under the null hypothesis H0 that there is no

difference in helping rates between the control and reputation treatments.

Under H0, the assignment of cohorts to ranks is random with respect to the

treatment conditions. The number of control cohorts X in the bottom b cohorts

follows a hypergeometric distribution with parameters:

• Population size: N = 18

• Number of control cohorts in the population: nC = 6

• Sample size (number of bottom cohorts): b = 6

• Number of control cohorts in the sample: X

The probability mass function (pmf) of the hypergeometric distribution is:

P (X = k) =

(
nC

k

)(
nS

b− k

)
(
N

b

) ,

where
(
n

k

)
is the binomial coefficient “n choose k.”

We calculate the probability of observing k = 5 or k = 6 control cohorts in the

bottom b = 6 cohorts:

P (X ≥ 5) = P (X = 5) + P (X = 6).

Calculating P (X = 5):

P (X = 5) =

(
6

5

)(
12

1

)
(
18

6

) =
6× 12

18564
=

72

18564
≈ 0.003879.
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Calculating P (X = 6):

P (X = 6) =

(
6

6

)(
12

0

)
(
18

6

) =
1× 1

18564
=

1

18564
≈ 0.000054.

Total Probability:

P (X ≥ 5) = P (X = 5) + P (X = 6) =
72 + 1

18564
=

73

18564
≈ 0.003933.

Thus, the probability of observing five or more control cohorts in the bottom

six purely by chance is approximately 0.3933%.

Interpretation. This ≈ 0.39% figure is for a strict cutoff in which exactly ranks

1, 2, 3, 4, 5, 6 are counted as the “bottom 6,” with no allowance for ties or borderline

cases. In many practical designs, however, rank ties or “near ties” might group

multiple cohorts into or out of those bottom positions, effectively increasing the

chance of seeing “at least 5 Control cohorts near the bottom.”

Rank-Sum Perspective and 8.3% Probability

In our actual stopping rule, we use a version of the Mann–Whitney approach

to account for situations where the 6th Control cohort might be only marginally

above the rank-6 threshold, or where some cohorts tie. We treat any arrangement

that places ≥ 5 Control cohorts at or near the bottom as a “worst-case” scenario

for continuing the Control treatment.

The U statistic for the control group is calculated as:

UC = RC − nC(nC + 1)

2
, (3.29)

where RC is the sum of the ranks for the control cohorts, and nC = 6 is the

number of control cohorts.

Under H0, the expected value of UC is:

E(UC) =
nCnS

2
=

6× 12

2
= 36. (3.30)
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The standard deviation of UC is:

σUC
=

√
nCnS(nC + nS + 1)

12
=

√
6× 12× 19

12
≈ 8.485. (3.31)

Suppose in the worst-case scenario for our stopping rule, the control cohorts

occupy the ranks such that five control cohorts are in the bottom six ranks, and

one control cohort is in a higher rank. The sum of the ranks for the control cohorts,

RC , can be calculated accordingly.

Assuming the five control cohorts are ranked r = 1, 2, 3, 4, 5 (with rank 1 being

the lowest helping rate), and the sixth control cohort is ranked somewhere among

the top ranks, the sum RC would be at least:

RC = 1 + 2 + 3 + 4 + 5 + rtop, (3.32)

where rtop is the rank of the sixth control cohort.

The minimum possible sum RC in this scenario would be:

RC = 1 + 2 + 3 + 4 + 5 + 6 = 21, (3.33)

if the sixth control cohort is ranked 6th.

Using

UC = RC − nC(nC + 1)

2
= 21− 6× 7

2
= 21− 21 = 0. (3.34)

This is the minimum possible U statistic for the control group.

We can calculate the z-score:

z =
UC − E(UC)

σUC

=
0− 36

8.485
≈ −4.243. (3.35)

The corresponding p-value (one-tailed test) is extremely small.

However, in our stopping rule, we consider the worst-case p-value when five of

the bottom six cohorts are control cohorts. The actual p-value in this scenario,

considering possible rank arrangements and using the Mann–Whitney U test, is

approximately 8.3%.

This estimation accounts for the fact that the sixth control cohort may not

182



3.A. APPENDIX

necessarily be at the very top rank, and there may be ties or variations in ranks.

Thus the final figure 8.3% matches our stated stopping condition more precisely

than the hypergeometric ≈ 0.39% does. In the main text, we therefore report the

≈ 8.3% probability as the more relevant measure for our design.
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3.A.3 Additional Tables and Figures

3.A.3.1 Baseline Belief Elicitation

Figure 3.18: Baseline beliefs’ elicitation
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3.A.3.2 Summary Statistics
Table 3.3: Summary statistics

%

Gender:
Female 49.91
Male 47.50
Other 1.72
Prefer not to say 0.87

Age:
≥27 14.23
26 2.01
25 7.17
24 3.64
23 14.06
22 13.54
21 12.50
20 15.33
19 14.70
18 2.92

Degree:
Bachelor 59.59
Master 31.53
PhD 2.92
Other degree course or affiliation 2.63
Prefer not to say 2.30
INTO 0.61
Staff 0.72

Year(s) at UEA:
1st year 34.93
2nd year 29.05
3rd year 17.29
4th year 8.91
More than 4 years 7.51
Prefer not to say 2.41

Faculty:
Social Sciences 65.81
Sciences 19.33
Humanities 11.06
Others 3.80

Notes: The percentages are based on the to-
tal number of responses for each category. The
category “Other” under Gender includes non-
binary and other gender identities not speci-
fied. The age categories are divided to high-
light different age groups. As per faculty, Social
Sciences: NBS, ECO, DEV, LAW, EDU, PSY;
Sciences: CMP, BIO, ENV, PHA, MED, HSC,
MTH; Humanities: PPL, HIS, LDC, AMA,
HUM.
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3.A.4 Experimental Instructions

Welcome

Welcome to today’s experiment and thanks for coming. This is an experiment

in the economics of decision-making. If you follow the instructions, complete the

experiment, and make appropriate choices, you can earn an appreciable amount of

money. This will be paid to you in private, in cash, at the end of the session, before

you leave the laboratory.

It is important that you remain silent and do not look at other people’s work. If

you have any questions, or need assistance of any kind, please raise your hand and

an experimenter will come to you. If you talk, laugh, exclaim out loud, etc., you

will be asked to leave and you will not be paid. We expect and appreciate your

cooperation.

All choices in today’s experiment and any information you choose to give are

recorded anonymously and will only be used in the analysis of the data from this

experiment.

We will now describe the nature of the experiment in more detail.

Introduction

In this experiment, you will be assigned to a group of six people. The other people

in your group will be five other people in this room. You will never find out which

other people are the ones who are in your group.

The experiment has two parts. We will now describe Part 1. We will describe

Part 2 after everyone has finished Part 1.
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Part 1

The interaction

There will be a series of at least 40 rounds. At the beginning of each round, the

computer will match you at random with another person in your group. You will

interact with that person in that round. Because the computer will create a new

matching at the beginning of each round, in different rounds you may interact with

different members of your group. You will not find out which other person in your

group you are matched with, nor whether or when you have been matched with

them previously.

In each match, one of you will be randomly assigned the role of the active player.

The other one will be assigned the role of the non-active player.

If you are the active player, you have an opportunity to help the non-active player.

Helping is an action that has a monetary cost of helping for the active player

and gives a monetary benefit to the non-active player.

You will find out your cost of helping for Part 1 before Round 1 begins. Your cost of

helping will stay the same throughout Part 1. The cost of helping may be different

for different members of your group. However, the cost of helping is no more than

£6.00 for anyone.

In every round, you have an account. This account is separate for each round. At

the start of each round, your account for that round will have an endowment of

£7.00. The final value of the accounts of the active player and the non-active player

depends on the choice the active player makes:

• If the active player chooses to help, the active player’s cost of helping will

be deducted from their account, and a benefit of £10.00 will be added to the

non-active player’s account.

• If the active player chooses not to help, no deduction will be made from

the active player’s account and no addition made to the non-active player’s
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account.

After the active player makes their choice, any deductions or additions are made to

the player’s accounts for that round. The round then ends. When the next round

begins, all players have a new account, with an endowment of £7.00.

Your earnings from Part 1

Only one of the rounds will be for real. The computer will randomly select which

round this is, but you will not know which round was selected until the end of the

experiment. Which round this is will be the same for all members of the group. For

everyone in the group, their earnings from Part 1 will be equal to the final value of

their account for the selected round.

Baseline7

No additional text for this part.

Sugden Good Standing

Scores

Through this part of the experiment, you will have a score. Your score summarises

whether, in previous rounds, you chose to help or not to help. Your score can be 0

or 1.

In each round, you will see your own current score. In each round in which you

are the non-active player, the active player will also see your current score. In

each round in which you are the active player, you will see the current score of the

non-active player.

At the start of Round 1, everyone has a score of 1.

The computer keeps a record of everyone’s current score. At the end of each round

in which you are the active player, your score is updated based on your choice and

the score of the non-active player.

• If you choose to help:
7This was not shown to the participants and it is displayed for differentiate the three versions

of the instructions.
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– If the non-active player’s score was 1, then your score at the start of the

next round will be 1.

– If the non-active player’s score was 0, then your score at the start of the

next round will be the same as your current score.

• If you choose not to help:

– If the non-active player’s score was 1, then your score at the start of the

next round will be 0.

– If the non-active player’s score was 0, then your score at the start of the

next round will be the same as your current score.

However, if this is your first round as the active player, your record will be filled in

as if you had chosen to help in the previous round. So, your score in the first round

of this part will be 1.

At the end of each round in which you are the active player, your score will be

updated based on the choice you make in that round. In rounds in which you are

the non-active player, your score does not change.

For example, suppose in Round 11 you are the active player. The explanation of

your score at the start of the round might be

This record shows that in the last round in which you were the active player, your

score was 1 and the non-active player’s score was 0. You chose to help, and therefore

your score at the start of Round 11 is 1.
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Suppose you are the active player in Round 11, and you are considering choosing

not to help. The explanation of how this would affect your score would be

Because the non-active player’s score is 0, your score does not change. Therefore,

your score at the start of Round 12 would be 1.

What you will see on the screen

We will now show you what you will see on your screen during a round.

Scores will be displayed on the screen using badges, which are coloured circles

showing the score. Your score will always be shown using a green badge like this

Any time you see a green badge representing your score, you can click on it to pop

up a display which explains how your record was used to determine your score.

When you are the active player, you will see the score of the non-active player. The

non-active player’s score will be shown using a grey badge like this
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You will only be able to see the current score of the non-active player, and not their

record; therefore, clicking on a grey badge has no effect.

When you are the active player, you will see a screen like the one below

The screen shows the round number, your score, the non-active player’s score, and

your endowment in this round.

The two boxes represent the two choices you can make: to help or not to help.

Each box summarises the consequences for you and for the non-active player of the

corresponding choice.

To choose to help, click on the button labelled Choose to help. To choose not to

help, click on the button labelled Choose not to help. When you click on one of

those buttons, the background will change from grey to green. If you change your

mind, you can change your choice simply by clicking on the button corresponding to
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the other choice. When you are satisfied with your choice, click the button labelled

Confirm choice.

How Part 1 ends

Exactly how many rounds will be played is not fixed in advance. There will be at

least 40 rounds. At the end of Round 40, the computer will simulate the roll of

a six-sided die. If the roll is 1 or 2, then Part 1 will end; otherwise, Part 1 will

continue to Round 41. This process will be repeated after each subsequent round,

until the simulated die roll results in a 1 or 2. In other words, in each round starting

from Round 40, there is a 1 in 3 chance that Part 1 will end after that round.

Binary Image Scoring

Scores

Through this part of the experiment, you will have a score. Your score summarises

whether, in previous rounds, you chose to help or not to help. Your score can be 0

or 1.

In each round, you will see your own current score. In each round in which you

are the non-active player, the active player will also see your current score. In

each round in which you are the active player, you will see the current score of the

non-active player.

At the start of Round 1, everyone has a score of 1.

The computer keeps a record of everyone’s current score. At the end of each round

in which you are the active player, your score is updated based on your choice.

• If you choose to help, your score in the next round will be 1.

• If you choose not to help, your score in the next round will be 0.

However, if there are fewer than five previous rounds in which you were an active

player, your record will be filled in as if you chose to help in the missing rounds.

So, your score in the first round of this part will be 1.
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At the end of each round in which you are the active player, your score is updated

based on the choice you make in that round. In rounds in which you are the non-

active player, your score does not change.

For example, suppose in Round 11 you are the active player. The explanation of

your score at the start of the round might be

This record shows that in the last round in which you were the active player, your

score was 1 and the non-active player’s score was 0. You chose to help, and therefore

your score at the start of Round 11 is 1.

Suppose you are the active player in Round 11, and you are considering choosing

not to help. The explanation of how this would affect your score would be

If you choose not to help in this round, your score in the next round would be 0.
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What you will see on the screen

We will now show you what you will see on your screen during a round.

Scores will be displayed on the screen using badges, which are coloured circles

showing the score. Your score will always be shown using a green badge like this

Any time you see a green badge representing your score, you can click on it to pop

up a display which explains how your record was used to determine your score.

When you are the active player, you will see the score of the non-active player. The

non-active player’s score will be shown using a grey badge like this

You will only be able to see the current score of the non-active player, and not their

record; therefore, clicking on a grey badge has no effect.
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When you are the active player, you will see a screen like the one below

The screen shows the round number, your score, the non-active player’s score, and

your endowment in this round.

The two boxes represent the two choices you can make: to help or not to help.

Each box summarises the consequences for you and for the non-active player of the

corresponding choice.

To choose to help, click on the button labelled Choose to help. To choose not to

help, click on the button labelled Choose not to help. When you click on one of

those buttons, the background will change from grey to green. If you change your

mind, you can change your choice simply by clicking on the button corresponding to

the other choice. When you are satisfied with your choice, click the button labelled

Confirm choice.

How Part 1 ends

Exactly how many rounds will be played is not fixed in advance. There will be at

least 40 rounds. At the end of Round 40, the computer will simulate the roll of

a six-sided die. If the roll is 1 or 2, then Part 1 will end; otherwise, Part 1 will
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continue to Round 41. This process will be repeated after each subsequent round,

until the simulated die roll results in a 1 or 2. In other words, in each round starting

from Round 40, there is a 1 in 3 chance that Part 1 will end after that round.

Part 2

In Part 2, you will be in the same group of six participants as in Part 1.

Part 2 has the same structure as Part 1. The only difference between Part 1 and

Part 2 is that your cost of helping may not be the same as in Part 1. Likewise,

for each of the other people in your group, the cost of helping may not be the

same as in Part 1. However, as in Part 1, the cost of helping will be no more than

£6.00 for anyone. You will be told your cost of helping for Part 2 before the first

round begins. You will not find out the cost of helping for anyone else in your group.

As in Part 1, there will be a series of at least 40 rounds. At the beginning of each

round, you will be matched at random with another person in your group. One of

you will be randomly assigned the role of the active player. The other person will

be the non-active player. The accounts of both players initially have an endow-

ment of £7.00. The active player will have the opportunity to help the non-active

player. If the active player chooses to help, the active player’s cost of helping will

be deducted from their account, and £10.00 will be added to the account of the

non-active player. If the active player chooses not to help, no deduction or addition

will be made to either player’s account.

One of the rounds will be for real. The computer will select at random which round

is for real, but you will not know which round that is until the end of the experiment.

This round will be the same for all members of the group. For everyone in the group,

their earnings from Part 2 will be equal to the final value of their account for the

selected round. These will be added to your earnings from Part 1 to determine your

earnings for the experiment as a whole.
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Sugden Good Standing and Binary Image Scoring

As in Part 1, at the start of every round, you will have a score of 0 or 1 which

summarises whether, in previous rounds, you chose to help or not to help. Scores

will be computed and updated exactly as they were in Part 1.

Exactly how many rounds will be played is not fixed in advance. There will be at

least 40 rounds. At the end of Round 40, the computer will simulate the roll of

a six-sided die. If the roll is 1 or 2, then Part 2 will end; otherwise, Part 2 will

continue to Round 41. This process will be repeated after each subsequent round,

until the simulated die roll results in a 1 or 2. In other words, in each round starting

from Round 40, there is a 1 in 3 chance that Part 2 will end after that round. The

number of rounds in Part 2 may not be the same as in Part 1 depending on the

outcomes of the simulated die rolls.

Part 3

[In parenthesis Good Standing and Binary Image Scoring]

In this part, we have one [two] question[s] for you to answer. You have the oppor-

tunity to earn an additional amount from your answers to this [these] question[s],

over and above the amounts you have earned from Part 1 and Part 2.

Question [1]

Consider the interactions in Part 2 [in which the non-active player had a score of

1]. Think about how often players with this score were helped.

The computer has drawn at random 10 interactions involving other members of

your group from Part 2[, in which the non-active player had a score of 1]. That

is, these are interactions in which you were not involved either as the active or the

non-active player.

For this Question [1], we would like you to guess in how many of these 10 interactions

the non-active player was helped.

In this Question [1], if you guess exactly the number of times the non-active player

was helped in these 10 interactions, then you will earn an additional payment of
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£5.00. If your guess is off by one – that is, the actual number is one more or one

fewer than your guess – you will earn £4.50. If your guess is off by two, you will

earn £4.00, and so on.

Question 2

[This was present only in BIS and SGS.]

Now, still considering Part 2, consider the interactions in which the non-active

player had a score of 0. Think about how often players with this score were helped.

The computer has drawn at random 10 interactions involving other members of

your group from Part 2, in which the non-active player had a score of 0. That is,

these are interactions in which you were not involved either as the active or the

non-active player.

For Question 2, we would like you to guess in how many of these 10 interactions

the non-active player was helped.

In Question 2, If you guess exactly the number of times the non-active player was

helped in these 10 interactions, then you will earn an additional payment of £5.00.

If your guess is off by one – that is, the actual number is one more or one fewer

than your guess – you will earn £4.50. If your guess is off by two, you will earn

£4.00, and so on.
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1) Have any data been collected for this study already?

It's complicated. We have already collected some data but explain in Question 8 why readers may consider this a valid pre-registration nevertheless.

2) What's the main question being asked or hypothesis being tested in this study?

Reputation mechanisms have been proposed as effective tools to sustain indirect reciprocity in repeated games. These mechanisms are information

structures that encode and publicly display an individual's past behaviour. The general inquiry of this study is to understand which reputation mechanism,

Binary Image Scoring (BIS) (Nowak and Sigmund, 1998) or Sugden's concept of Good Standing (SGS) (Sugden, 1986), serves as a better explanatory

framework for indirect reciprocity within repeated helping games.

Specifically, we aim to answer three questions:

1)	Which mechanism, BIS or SGS, leads to higher helping rates?

2)	Does the efficacy of these mechanisms vary according to whether cost of helping is homogeneous or heterogeneous?

3)	In each mechanism, to what extent are subjects' beliefs regarding the chance of being helped correct?

While we hypothesise that reputational mechanisms outperform scenarios without any reputation (the baseline), we do not formulate explicit hypotheses

regarding the other mechanisms.

3) Describe the key dependent variable(s) specifying how they will be measured.

The experiment is divided in 3 parts. 

Parts 1 and 2 are the repeated helping games. In these parts, cohorts of six subjects are matched at random in couples every round (40 finite rounds + 2/3

chance a new round will occur after each subsequent round). In every couple, one subject is the non-active player and has no choices to make. The other is

the active player and has the choice whether to help the non-active player, paying a cost c that provides a benefit b to the non-active player (b>c>0), or not

to help. In one of the two parts, everyone will have the same cost. In the other part, a fixed half of the subjects will have a higher cost (ch) and the other

half a lower cost (cl), with b>ch >cl  >0). All subjects in BIS and SGS are endowed with a binary score after each round, the reputation mechanism, that

summarises their previous helping behaviour.

In part 3, subjects have to guess in how many interactions out of 10 randomly selected ones from their cohort in Part 2, the non-active player was helped,

conditional on their score (in the baseline, these beliefs are elicited just as chances of being helped). 

The dependent variables will be operationalized as follows:

Average helping rates:  For each subject, this rate is calculated as the proportion of rounds in which they chose to help their partners out of the total

number of rounds played as active players. We will also condition these variables on players' scores.

Beliefs about likelihood of being helped:  For each subject, this likelihood is their reported guess of the proportion of sampled interactions in which the

non-active player was helped. 

Proportion of correct beliefs: For each subject, this proportion is the ratio between their guess and the median rate of helping in their cohort. This would

tell us how far their beliefs are in line with the true value. We will compare aggregate proportions at the condition level.

4) How many and which conditions will participants be assigned to?

Each reputational mechanism is presented to subjects as a binary score (1 or 0) that summarises previous helping behaviour. Participants will be assigned

to three different conditions in a between-subjects design:

1. BIS Condition: The reputational mechanism is based on the subject's action in the most recent round in which they were an active player. The subject has

a score of 1 if they helped in that round and 0 if they did not. All subjects start with a score of 1.  

2. SGS Condition: The reputational mechanism is based on the subject's action in the most recent round in which they were an active player and in which

the non-active player had a score of 1. The subject has a score of 1 if they helped in that round and 0 if they did not. All subjects start with a score of 1.  

3. Control Condition: Subjects will not be endowed with any reputational mechanisms. This condition serves as a baseline to observe how individuals

behave without any reputation in the games. 

In each condition, we will conduct two scenarios in a within-subject design:

1. Homogeneous Cost Scenario: All subjects will have the same cost for helping the non-active player.

2. Heterogeneous Cost Scenario: Subjects will have two different costs for helping non-active players. Specifically, a fixed half of the population will have a

high cost (ch), and the other fixed half will have a low cost (cl).

Available at https://aspredicted.org/gzqq-kjsb.pdf
Version of AsPredicted Questions: 2.00



5) Specify exactly which analyses you will conduct to examine the main question/hypothesis.

To answer questions 1 and 2, we will use as dependent variable the average helping rates.

We will aggregate the data for all rounds, and, following Engelman & Fischbacher (2009), we will mainly use in our analysis data from rounds 10 to 35.

1. Comparison of Cooperation Levels: conduct a series of Fisher-Pitman test to compare the average levels of helping between the three conditions,

separately for both the homogeneous and heterogeneous costs scenarios.

2. Interaction Analysis: perform a 2x2 factorial ANOVA (or its non-parametric equivalent) with factors being the reputation mechanism (BIS vs. SGS) and the

cost scenario (homogeneous vs. heterogeneous).

3. Comparison with Control Condition: conduct independent samples Fisher-Pitman tests to compare the cooperation levels between each reputation

mechanism condition (BIS and SGS) and the control condition, separately for both the homogeneous and heterogeneous costs scenarios. 

For part 3, we will use beliefs about likelihood of being helped and proportion of correct beliefs:

First, we will explore beliefs about the mechanisms or participant characteristics, using OLS regressions to understand the underlying mechanisms driving

cooperation levels.

Second, we will analyse more carefully beliefs conditional on different scores. We will do that using descriptive statistics and Fisher-Pitman to determine if

there are significant differences in beliefs conditional on scores between the BIS and SGS conditions.

6) Describe exactly how outliers will be defined and handled, and your precise rule(s) for excluding observations.

All subjects will be required to complete all the experiment. We will include observations from all subjects who complete all the parts of the experiment.

7) How many observations will be collected or what will determine sample size? No need to justify decision, but be precise about exactly how the

number will be determined.

Subjects will be organised into distinct cohorts, each comprising six subjects. Within each session, 12 subjects will be assigned, forming two such cohorts.

Six sessions will be conducted for each reputation mechanism, totalling 12 independent cohorts, with 6 dedicated to each mechanism. Additional to these,

we will have some baseline sessions. We hypothesise that the presence of a reputation mechanism will increase helping behaviour. Consequently, we will

start running 3 sessions per condition at random (control, BIS, SGS), thereby ensuring 18 independent cohorts, evenly distributed across the conditions. If,

after these sessions, the bottom 6 cohorts (judged by average helping rate) encompass 5 or more cohorts from the control group, the control condition will

be discontinued. In such an event, only the remaining 6 sessions (3 per reputation mechanism) will proceed. Should the stopping rule not be met, an

additional 3 sessions per condition will be administered. Thus, in adherence to the stopping rule, 180 subjects will be recruited, with 72 assigned to Binary

Image Scoring (BIS), 72 to Sugden's Good Standing (SGS), and 36 to the control group. This entails 6 sessions allocated to each reputational mechanism and

3 to the control condition. Conversely, if the stopping criterion is not satisfied, recruitment will extend to 216 subjects, with 72 assigned to each condition,

amounting to 6 sessions per condition.

8) Anything else you would like to pre-register? (e.g., secondary analyses, variables collected for exploratory purposes, unusual analyses planned?)

We have already collected data from six sessions. I, Andrea Marietta Leina, forgot to press send on this preregistration, but I have not looked at the data,

and I have had this preregistration drafted on aspredicted.org since April 15, 2024.

In general, we aim to replicate and compare our analysis with two studies in the literature: Bolton & al. (2006) and Engelman & Fischbacher (2009).

Moreover, we will also compare the results with a previous experiment we have already conducted. The latter differs from this study on the reputation

mechanisms tested. We tested an "Image scoring" machanism, similar to Engelman & Fischbacher (2009) based on the definition of image scoring by

Nowak and Sigmund (1998), i.e. a score based on 5 previous histories, and Hammerstein's concept of Good Standing (Leimar & Hammerstein, 2001). The

only difference from SGS is that an active player with a score of 0 can gain a score of 1 by helping a non-active player with a score of 0.

Available at https://aspredicted.org/gzqq-kjsb.pdf
Version of AsPredicted Questions: 2.00
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