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Abstract

This thesis covers topics related to automatic generation of co-speech gesture animation.

This vast field traditionally employs automatic rule-based, statistical, and machine learning

approaches. This thesis expands on machine learning approaches, applying new methods

to co-speech gesture generation. Initially, one of the most extensive co-speech gesture

datasets is examined to provide insight into gesture production and lateral symmetry in

gestures. The thesis then focuses on the application of four machine learning generative

modelling approaches. Each proposed method answers a specific research question while

simultaneously striving for the best performance in automatic gesture animation.

First, the common data augmentation technique of lateral mirroring is shown to be

problematic through dataset analysis, which also introduces new gesture analysis methods

and statistically derived gesture spaces. The effect of using multiple, body-part-specific

decoders is compared to a single decoder that predicts the whole body. This experiment

finds that leg motion is negatively impacted while the arms and hands benefit. A novel

style-controlled diffusion model focusing on the impact of long-term historical knowledge is

introduced. This sheds light on the importance of historical memory, finding performance

improved when extended, producing smooth, contextually correct animation with emotive

style control. Conversational speech often occurs in a dyadic setting, where the other person’s

response influences communication, such as through back-channel communication. A model

including the second speaker’s speech as a feature shows minor improvements, particularly in

head nods and gesture turn-taking. An experiment using Large-Language Models (LLMs) as



a feature extractor is performed and evaluated to determine their effectiveness in isolation and

combination with audio features. Using LLAMA2 features enables well-timed, contextually

rich gestures without an audio embedding demonstrating that Large-Language Model (LLM)

features contribute more to the perceived quality of the results than audio features. These

findings offer valuable insights for improving automatic co-speech gesture generation.
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Chapter 1

Introduction

1.1 Motivation

Digital humans are virtually embodied human agents with a vast number of applications regu-

larly associated with computer games and animated television and film productions. However,

digital human solutions are now becoming common in several newer areas, including digital

assistants, healthcare, and telecommunications, where human-computer interaction is pivotal

to their application. Within these areas, the current level of realism and appropriateness of

motion is inconsistent with varying effects and impacts in the end use case. For example,

some computer games or television and film productions make a stylistic choice to use certain

animation styles that are less human-like than is possible with current technology. These

forms of media are still considered engaging and well-received. Despite the stylistic option,

many computer games, television, and film productions strive for true realism. Current

approaches will often rely on motion capture which is expensive and slow. This thesis aims to

improve science in the realism of speech-driven gesture methods for digital humans making

the generation of digital humans cheap, easy, automated and quick.

This chapter introduces the thesis topic of automated co-speech gesture generation. First,

co-speech gesture is defined and described. This provides a baseline knowledge of how

1



gesture and speech coincide to produce effective communication. Then, a broad overview

of automatic gesture generation is described to provide background for where this research

fits in. The aims of the research presented in this thesis are then defined, including research

questions that should be answered during later chapters. The key academic contributions are

then described before discussing the limitations and explicitly stating what the research is

not aiming to address. Lastly, an outline of the thesis structure is provided.

1.2 Co-Speech Gesture

Co-speech gesture refers to body movements that occur alongside speech. This thesis focuses

on co-speech animation and gesture generation from audio and text speech representations.

Gesturing complements speech, playing a pivotal role in human communication and can

form both communicative and non-communicative roles. Communicative gestures provide

semantic content of utterances, emotion, and emphasis on what’s being said. Around 90% of

gestures occur during speech articulation [92, 105]. Humans often use arms and hands to

represent literal and metaphorical objects, for example, a steep hill or changing hands from

one side to the other to represent ‘before’ and ‘after’. These are examples of gestures that

rely on semantic context and are directly related to the lexical understanding of the speech.

Another common human trait is using ‘beats’, which are gestures used to emphasise spoken

words. These gestures are less related to lexical understanding but commonly coincide

with speech timing and intensity. Conversely, non-communicative gestures are self- and

object-touching, such as scratching or holding a glass of water. While these do not play a

direct communicative role, they are common in communicative settings such as conversation.

Co-speech gestures are greatly important in communication. Iverson et al. [59] found that

gesture had a tight relation to childrens’ lexical and syntactic development, and children often

use gestures to communicate before they use words. While gestures alone may not be an

effective method of communication, when paired with speech, they enhance communicative

2



understanding. Further, removing natural speech gestures reduces the communicative extent

of conversational agents, and perceived realism is reduced [34]. Given the importance of

gesture in communication and the perceived realism of embodied conversational agents, this

serves as motivation to improve the field of automatic co-speech gesture generation.

1.3 Automatic Gesture Generation

Automatic gesture generation involves computationally deriving co-speech gestures from

a speech source, typically audio. This work will focus on using deep learning methods to

produce smooth, human-like, and appropriate gesture motion that should coincide with a

speech signal to make it appear natural and timely.

There are many approaches for automatic gesture generation. Most follow a similar

generation pipeline shown in Figure 1.1, which overviews a typical speech-to-gesture ani-

mation pipeline. In each case, the method and feature extraction portions are where most

contributions lie and provide the most significant impact on performance.

Speech

Audio Feature
Extraction

(e.g. MFCCs, PASE+)

Text Feature
Extraction

(e.g. FastText, LLaMa2)

Method Visualisation

Conditioning
Style

Speaker

Fig. 1.1 Overview pipeline of automatic gesture generation. This shows the steps involved in
going from a speech signal to rendered animation.
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Initially, a speech signal is provided. Ideally, this signal will be a high quality, recorded

human voice; however, this may also be generated from a Text-To-Speech (TTS) method.

Given this speech signal, speech features are extracted. Most commonly, audio features such

as Mel-frequency Cepstral Coefficients (MFCCs) or Problem Agnostic Speech Encoding

(PASE+) [120] features are extracted from the raw audio signal. Increasingly, text-based

features are extracted to incorporate semantic understanding. A text transcript with timings

may be manually generated from the speech audio, or automated tools may be used to

generate these automatically. Using this transcript, text features such as FastText [16] or

LLAMA2 [136] features can be extracted. A conditioning variable, such as the speaker’s

identity or speech style, may also be provided to influence style control. A method may

use audio, text, or a combination of both and optionally a conditioning variable to generate

parameters, often joint rotations, to represent human motion. These parameters are then

visualised depending on the use case for deployment or evaluation.

1.4 Research Aims and Objectives

This thesis aims to develop generative Artificial Intelligence (AI) methods for co-speech

gesture generation. This work will focus on data analysis and generative modelling methods,

each with a subset of research questions to answer. Data analysis aims to clarify data formats

and data augmentation methods. To determine the validity of data augmentation methods, it

is first essential to analyse the current literature regarding the relationship between speech

and gesture. The main aim is to develop generative AI models which should strive to perform

best and simultaneously answer a particular research question. The work in this thesis should

specifically answer the following for co-speech gesture:

• Is lateral mirroring a valid data augmentation technique?

• Is a single decoder or a group of body part-specific decoders preferable?
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• Does the amount of historical context of generated gestures influence generative

performance?

• Does introducing a second, dyadic speaker influence the gestures generated?

• Can Large-Language Models (LLMs) be used as effective speech feature extractors,

and how do they compare to audio features?

.

1.5 Research Contributions

This thesis strives to advance the field of automatic speech-to-gesture generation for 3D

character animation. There are five key contributions described throughout this thesis.

Arm Motion Symmetry Analysis: An analysis is performed on a large dyadic co-speech

gesture dataset and is published in the Speech Communication journal 2022 [147]. This

analysis focuses on arm motion symmetry to determine whether lateral mirroring of a pose

is a valid data augmentation technique. Analysis is performed to investigate per-frame and

temporal symmetry of motion, and information theory is used to examine the information

gain by mirroring the data. This contribution also introduces statistically derived gesture

spaces and provides suggestions for including mirrored data in gesture generation methods.

Single vs. Multiple Decoder Comparison: A comparison between using a single decoder

to predict the full body and the use of a number of body-part-specific decoders is performed

and published in the International Conference on Multimodal Interaction 2022 [145]. Per-

formance was analysed using both objective and subjective measures in the Generation and

Evaluation of Non-verbal Behaviour for Embodied Agent (GENEA) Challenge 2022 [154],

producing a competitive solution.
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Gesture Diffusion Network: A novel diffusion model architecture is introduced for speech-

to-gesture currently submitted for peer review. This Gesture Diffusion Network is defined

as a diffusion model using an underlying Transformer-XL architecture, which can generate

smoothly varying animations for any given input size. The model is conditioned on speech

as well as speaker style, enabling controllable style animation at inference time. Results are

compared to state-of-the-art methods using both objective and subjective measures.

Dyadic Cross-Attention Model: A model that adapts the Transformer-XL architecture for

a dyadic setting is introduced and published in the International Conference on Multimodal

Interaction 2023 [146]. This contribution alters the underlying Transformer-XL self-attention

mechanism to introduce cross-attention. This cross-attention includes the second speaker,

known as the interlocutor, during prediction to provide dyadic influence to the prediction.

This method was evaluated as part of the Generation and Evaluation of Non-verbal Behaviour

for Embodied Agent (GENEA) Challenge 2023 [76] and performs competitively when

compared to other methods.

LLAniMAtion : Large-Language Model (LLM) driven model: A method of generating

gestures using LLAMA2 [136] LLM features is introduced and will be published in the

Computer Graphics Forum as part of the Symposium on Computer Graphics [2]. This method

compares the use of LLM features and audio features both in isolation and in combination to

determine the impact of semantic and prosodic elements on gesture generation. Results are

compared to state-of-the-art methods using both objective and subjective measures.

1.6 Limitations

While it is helpful to highlight the contributions and aim of the thesis, it is also valuable

to highlight research areas that are not expected to be covered. This thesis covers only
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co-speech gesturing. The data used includes conversation while standing; therefore, the

leg motion is included. While the conversational agent can walk or sway, this is typically

limited to mimicking the context of a standing conversation rather than conversation during

an activity such as walking. Activity generation is a separate research area to co-speech

gesture generation. For example, activity generation may generate explicit activities such

as jumping or strafing. This work focuses on generating the natural motion of co-speech

gestures. Some work includes a style aspect regarding age and affective state; however, the

focus remains on co-speech gesture generation in these stylistic settings. For example, if

scared, the speaker may mimic crouching to hide while speaking. However, the goal is not

necessarily to generate crouching explicitly.

While facial motion is an essential aspect of a digital human, the work in this thesis will

include head motion, e.g., nodding and shaking. Still, it will not include the animation of

facial features such as frowning or lip-syncing.

1.7 Thesis Structure

The following two chapters introduce the gesture generation problem. Chapter 2 introduces

the gesture generation landscape, defining the types of gestures and methods of gesture

generation and evaluating gesture generation methods. Chapter 3 describes gesture datasets,

introducing the modalities involved, data capture methods, and also describing the relevant

dataset releases. Each subsequent chapter is then focused on each contribution described

in Section 1.5. Chapter 4 performs arm motion symmetry analysis, Chapter 5 performs

comparison of single and multiple decoders, Chapter 6 introduces the novel Gesture Diffusion

Network, Chapter 7 explores the introduction of the dyadic interlocutor into a model and

Chapter 8 explores the use of LLM features for gesture generation. Finally, Chapter 9

concludes the thesis and outlines further work that has been identified from this work.
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Chapter 2

Gesture Generation Landscape

2.1 Introduction

This chapter reviews the related work regarding gesture generation literature, focusing on

co-speech body gestures. Given the array of gesture types, it’s crucial first to understand

when each type is performed and whether their production is related to speech prosody or

semantic understanding. This chapter defines gesture types and discusses their relationship

to speech. This provides context for which gestures are appropriate based on speech content

and introduces the variety of co-speech gestures that much of this work aims to predict.

As a large portion of this thesis’s contributions involves generative modelling, it’s useful

to understand the current landscape of generative modelling for gesture generation. An

overview of current methods is described with a small introduction to each technique. These

methods introduce the trends and improvements of gesture generation over time and provide

the context for where the contributions of this work expand from historically and why they

should be considered in the future.

The Generation and Evaluation of Non-verbal Behaviour for Embodied Agent (GENEA)

workshops [74, 154, 76] and challenges are a key driving factor in some of this work. There-

fore, this workshop is introduced in this chapter and described to provide context for how and
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why two contributions in this thesis are driven and evaluated by these GENEA challenges.

The challenge aims to overcome some difficulties in assessing gesture generation meth-

ods. This chapter also introduces common subjective and objective methods of evaluation,

highlighting the benefits and problems of each.

2.2 Co-Speech Gesture Types

Given the importance of co-speech gestures in communication, understanding how these

gestures play that role is critical to examining co-speech data. For this thesis, although

gesture, as a generic definition, refers to any body motion, the focus is on co-speech body

motion, with a particular focus on arm and hand motion.

Gestures can form both communicative and non-communicative roles. Non-communicative

gestures are referred to as adaptor movements while communicative gestures can be classified

under five definitions from McNeill [94]: emblematic, deictic, iconic, metaphoric and beat.

To ensure realism, an automatic speech-to-gesture method should produce a natural and

appropriate mix of all communicative and non-communicative motions.

2.2.1 Adaptor

The only non-communicative gesture definition is adaptor motions. These motions are

touches with objects or oneself, such as holding a glass or scratching. Figure 2.1 shows

an example adaptor gesture where a person scratches their head while thinking. While

these gestures bear no meaning in the conversation, these movements can portray helpful

information regarding the speaker.

Adaptors may indicate a speaker’s state. Freedman [39] suggests that self-adaptors can

signal the speaker’s need to focus and concentrate. Waxer [142] found that individuals with

low emotional stability, i.e. anxiety and depression, produced more self-adaptor movements
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Fig. 2.1 Example adaptor gesture - scratching head while in thought. Illustration inspired by
McNeill [92]

during speech. Neuroticism was found to be associated with self-touching, pausing during a

conversation, and an absence of expressive gesture [19]. Neff et al. [102] provide guidance

on embodied conversation agent design, indicating that it is essential for particular personality

types to produce non-communicative gestures, such as self-adaptors.

Given the relationship between adaptor motion and personality, particularly neuroticism,

these motions are valuable studies in gesture generation, mainly when the speaker’s speech

style or emotion is to be preserved.

2.2.2 Emblematic

Gestures that can replace speech and bear conversational meaning are considered emblematic

gestures. These gestures are commonly associated with exact words or phrases uttered during

speech and provide semantic meaning. Each emblematic gesture may convey a different

meaning depending on context or some pre-defined rules.

Figure 2.2 shows three examples. The finger ring shown in Figure 2.2a is often used

to denote “O.K” or “affirmative”. A thumbs up shown in Figure 2.2b can typically denote

“good” or “yes’. Emblematic gestures can also be culture-specific; for example, Figure 2.2c
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(a) Finger Ring - “O.K.”, “Af-
firmative”

(b) Thumbs up - “Yes”,
“Good”

(c) Purse Hand - “Che vuoi?”
“What do you want?”

Fig. 2.2 Example emblematic gestures. Each sub-caption contains the format gesture descrip-
tion - A list of examples of associated words or phrases. Illustrations inspired by Morris [99]

shows a purse hand or finger pinch gesture. This is a gesture commonly found in Italian

culture [63] that is used to denote the phrase “Che vuoi?” and translates to “What do you

want?”.

Emblematic gestures are not particularly common during conversation and are often

invoked when channels of vocal communication are limited. Vocal channels may be restricted

due to noise, distance, or external factors, such as a building site or during a deep sea dive.

The thumbs-up gesture shown in Figure 2.2b is an example of an emblem with multiple

meanings in situations. In most situations, this means “good” or “yes”; however, when diving,

this gesture indicates that a diver is about to ascend and should not be used to suggest the

conventional “good” sentiment.

These types of gestures are rare during unimpaired speech conversations. They are not

typically used as semantic, communicative gestures but have a more pragmatic function.

Therefore, these emblematic gestures can be re-categorised during co-speech gestures to be

metaphoric [143].

2.2.3 Iconic and Metaphoric

Gestures that resemble a particular physical aspect of the conveyed information are known

as iconic gestures. These aim to illustrate some properties of the speech and relate to the

semantics of the speech. For example, when describing the shape or size of an object,
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(a) Iconic Gesture - Mimic the use of an um-
brella

(b) Metaphoric Gesture - Circling arms to
mimic time passing

Fig. 2.3 Example Iconic and Metaphoric gestures. Illustrations inspired by McNeill [92]

a speaker may use their hands to resemble this. Figure 2.3a shows an example speaker

mimicking the use of an umbrella during the speech; while no umbrella is present, the gesture

shows the use of one. These are common in co-speech gestures and enhance understanding

by illustrating the act or object being discussed for additional context.

Like iconic gestures, metaphoric gestures illustrate speech content; however, rather than

directly illustrating the object/act, the gesture illustrates this through a metaphoric third

element. McNeill [92] gives an example of a metaphoric gesture as when moving their

arms in a circular motion to resemble a speaker saying “And now we get into the story

proper”. Figure 2.3b shows an example of a speaker moving their arms in a circular motion

to represent time passing.

2.2.4 Deictic

Gestures often involve pointing movements, which are known as deictic gestures. These

pointing motions may indicate a tangible person or object, a physical location or direction,

but they may also be used metaphorically for abstract or imaginary things. These gestures
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are particularly important when shifting focus; for example, a person may point at a specific

area of an object and wish to shift attention to another, in which case the pointing gesture

moves. Each hand may perform its own pointing gesture, where two points of focus relate to

each other. For example, when describing the layout of a building, each hand may be used to

indicate landmarks in relation to each other. Figure 2.4 illustrates an example Deictic gesture.

This person is seen pointing to an object above their head while uttering the words “If you

look at this up here” as a means to shift focus to a particular object.

Fig. 2.4 Example deictic gesture - Person pointing up at an object uttering “If you look at
this up here”.

2.2.5 Beat

Beat gestures are common in co-speech gestures. These gestures are rhythmic motions

commonly synchronised with prosodic events in speech [114]. These movements are simple,

typically small and repetitive motions that do not relate to the semantic information of the

speech. Figure 2.5 shows an example beat gesture where the right arm takes two positions.

Each position would represent a motion beat, i.e. a sharp change in velocity of arm motion

that is in time with an audio beat. Beat gestures are commonly associated with lexically

stressed syllables in words and are often used to emphasise certain areas of speech.

13



Fig. 2.5 Example beat gesture - small repetitive motion with the right arm, each illustrated
right arm position represents a motion beat that would be synchronised with an audio beat.

2.3 Automated Co-Speech Gesture Generation

There are many existing approaches to automated co-speech gesture generation. Early

techniques employed rule-based generation and statistical methods. Most modern techniques

use a learning-based approach, which will be the focus of this thesis. This section describes

the earlier rule-based and statistical approaches before reviewing deterministic and stochastic

learning-based approaches.

2.3.1 Rule-based Approaches

Research first approached the automated speech-to-gesture generation problem through the

use of rule-based approaches [50, 23, 21, 90, 69, 110, 127, 22, 68, 111, 79, 135]. Rule-based

techniques mainly dealt with semantic aspects of human gesturing, using carefully designed

heuristics to select an appropriate gesture for speech. In 2001, Cassell et al. [23] introduced

the Behavior Expression Animation Toolkit. This toolkit allowed animators to produce

nonverbal behaviours assigned based on actual linguistic and contextual analysis of the

typed text. While rule-based methods have scarcely been developed in recent years, they
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are still occasionally released as in 2022, Zhou et al. [158] presented a graph system that

embeds style and rhythmic information for an audio clip and selects the closest matching

sequences from a database of gestures. Chiu et al. [27] used Deep Conditional Neural Fields

for estimating a gestural sign from the utterance, parts-of-speech tags and prosodic features.

However, rule-based approaches typically lack diversity in the generated motions and are

limited in capturing the nuances and variations of natural human gestures.

2.3.2 Statistical Approaches

Early data-driven approaches were based on probabilistic modelling. For example, in 2008,

Neff et al. [101] computed the probability that a body gesture from a fixed library of gestures

is to be generated, conditioned on context. In 2014, Chiu and Marsella [26] used Gaussian

process latent variable models to learn a mapping from speech to hand gestures through an

intermediate representation of gesture annotation. Yang et al. [151] constructed a motion

graph that preserves the statistics of a database of recorded conversations. This graph is then

searched for a motion sequence that closely respects coordination to the phonemic clause,

listener response, and partner’s hesitation pause. As early as 2005, Kipp [66] proposed a

statistical system that models an individual’s gesture profile, such as handedness, timing

and communicative function, by analysing an annotated co-speech gesture dataset. Gesture

profiles were then modelled using statistical models from speech recognition and dialogue

act recognition [122]. Levine et al. [81] trained a hidden Markov model on prosody features.

This idea was later integrated into a reinforcement learning framework [80]. Exposing the

underlying probability distribution of body motion conditioned on speech is desirable as it

allows for non-deterministic sampling. However, the Gaussian assumptions of these prior

works are somewhat limiting.
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2.3.3 Learning Approaches

As motion capture data became more available and deep learning techniques developed, the

focus shifted to learned data-driven approaches. These approaches vary drastically and can

be both deterministic and stochastic in generation.

2.3.3.1 Deterministic Approaches

Autoregressive Methods: Autoregressive methods are popular generative deep learning

models. These models continually predict the next element in a sequence using historic con-

text from previous inputs and outputs. These models tend to allow for generative sequences

of non-fixed length.

Yoon et al. [153] developed a text-driven system based on a recurrent encoder-decoder

network for robot co-speech gesture generation. Kucherenko et al. [73] instead regressed

pose from text and audio features using an autoregressive, sliding window feed-forward

neural network architecture.

Bi-Directional Long Short Term Memory (BLSTM): BLSTM models are a popular

technique found in gesture generation [131, 51]. Long Short Term Memory (LSTM) models

are a form of Recurrent Neural Network (RNN) capable of learning long-term dependencies

introduced by Hochreiter et al. [56]. An LSTM [56] comprises a chain of repeating cells,

each producing an output and hidden state. It is these hidden states that provide long-term

dependencies through the use of three gates. The first, forget gate determines whether the

information from the previous timestep should be kept. The second, input gate, is used to

quantify the importance of the new information. The final, output gate is the output from the

LSTM cell. A BLSTM [44] contains two cells that process the data in both the forward and

backward directions.
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Takeuchi et al. [131] used phonemic features from speech audio data as input to output

time sequence data of rotations of bone joints. Hasegawa et al. [51] used a BLSTM to

learn the speech-gesture relationships with both backward and forward consistencies over

a long period of time. This model used perceptual features extracted from audio using

Mel-frequency Cepstral Coefficients (MFCCs).

Gated Recurrent Unit (GRU): GRU models have also been used [37, 72, 152]. GRUs are

similar to LSTMs but contain only two gates. The update gate determines how much of the

past information is preserved, and the reset gate decides how much of the past information to

forget.

Ferstl et al. [37] use a GRU-based network with an encoder-decoder structure that takes

in prosodic speech features and generates a short sequence of gesture motion. Kucherenko et

al. [72] utilised GRU networks to form a motion encoder MotionE and a motion decoder

MotionD, as well as a speech to corresponding motion representation encoder SpeechE. At

inference time, SpeechE predicts the latent motion representations based on a given speech

signal, and MotionD then decodes these representations to produce motion sequences.

2.3.3.2 Probabilistic Approaches

Recently, probabilistic models such as Generative Adversarial Networks (GANs) [48, 152,

47], Variational Autoencoders (VAEs) [9, 41, 42, 82] and Flow-based models [133, 6, 53]

have gained popularity for gesture generation since they better model the ambiguities between

speech and human motion over deterministic approaches.

Generative Adversarial Network (GAN): A GAN consists of two key components, a

generator and discriminator. The generator aims to produce samples that closely resemble

the ground truth data, and the discriminator reinforces the generator by categorising the

output as real or fake.
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Yoon et al. [152] incorporate the multimodal context of speech text, audio, and speaker

identity as input to the model, trained as a GAN. Habibie et al. [48] utilised a Convolutional

Neural Network (CNN) architecture within a GAN to produce gestures from MFCCs ex-

tracted from speech. Habibie et al. [47] passed the nearest neighbour from a gesture database

to a conditional Generative Adversarial Network to refine the motion.

Variational Autoencoders (VAEs): Autoencoders are encoder-decoder models that learn

a parametrised mapping from data through a lower-dimensional latent space and predict

it back to be the same data. The encoder encodes data to the lower dimension, and the

decoder performs the mapping from latent space to data space. Variational Autoencoders

(VAEs) instead describe an observation in latent space in a probabilistic manner. The encoder,

qφ (h|x), learns the parameters of a Gaussian distribution that is used to approximate the

posterior distribution p(h|x); where φ are the encoder network parameters, x is the input and

h is the latent space. The decoder, dθ (x|h), maps samples from the variational distributions

back to the input domain, with network parameters θ . VAEs are trained by maximising the

Evidence Lower Bound (ELBO), which consists of two terms; a reconstruction error and

the Kullback–Leibler Divergence (DKL) between the approximate posterior and the prior

distribution [15].

Li et al. [82] utilised a conditional VAE to model speech-to-gesture. Ghorbani et al.

[41, 42] used a VAE to learn a style embedding, making it easy to modify style through latent

space manipulation. Using this latent style embedding and a separate audio embedding, the

two latent vectors were used as condition variables to generate stylised gestures. Ao et al.

[9] use a Vector Quantised (VQ)-VAE to map rhythm and semantic information to gesture.

VQ-VAEs adapt the standard VAE model to use a discrete codebook of latent embeddings.

Flow-based: Flow-based models are also popular [133, 6, 53]. Normalising flows provide

a highly flexible method for transforming a simple distribution (E.g. Gaussian) to a more
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complex distribution through a series of invertible and differentiable transformations [123].

These transformations can be considered as expansions or contractions of the initial density.

Alexanderson et al. [6] adapted a flow-based locomotion model [53] to produce gestures

from MFCC speech encodings. This method produced upper-body motion only and could

be conditioned on both speech and arbitrary style parameters such as average hand height,

gesture speed and gesture radius.

Diffusion: Diffusion models [55, 104] are currently considered state of the art in proba-

bilistic generative modelling due to their impressive ability to produce realistic and diverse

output, particularly in text-to-image generation [32, 124, 119, 126]. Recent research has

shown that diffusion models can also handle time-series or sequence-based data, such as

generating 3D motion from text [65, 134, 157] or dancing and speech gestures from au-

dio [28, 8, 156]. Sequence-based diffusion models have used Transformer architectures

[134, 65] to effectively model temporal information. The diffusion process consists of two

steps, noising and denoising. The noising process consists of a Markov Chain q(xk|xk−1)

for k ∈ {1, ...,K} where K denotes the number of diffusion steps. During training, given a

ground truth sequence of poses x0, the Markov Chain adds noise progressively until q(xK|x0)

approximates a standard normal distribution and no longer resembles x0. The denoising

process is a parameterised backwards process p(x0|xk) which gradually reduces the noisy

data point xk to the original data point x0. This parameterised denoising step may include

additional conditioning information, such as speech audio.

Alexanderson et al. [8] used a Conformer-based diffusion process with control over

motion style. This method uses MFCC features to generate realistic, stylised gestures. Ao

et al. [10] use a Contrastive Language-Image Pre-Training (CLIP) model that extracts style

representations from multiple modalities such as text, motion clip or video. The approach

uses a latent diffusion model that utilises the CLIP embeddings, audio acoustic features, and

text, T5 [149] embeddings.
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Fig. 2.6 Overview of Generation and Evaluation of Non-verbal Behaviour for Embodied
Agent (GENEA) Challenge pipeline. Red box defines a standardised and fixed stage,
Green box defines a differing stage between each participant submission.

2.4 Generation and Evaluation of Non-verbal Behaviour

for Embodied Agent (GENEA)

A particular motivation for this thesis is driven by the Generation and Evaluation of Non-

verbal Behaviour for Embodied Agent (GENEA) Workshop. This workshop aims to bring

together researchers working on generating and evaluating nonverbal behaviour for social

robots, virtual agents or the like. This workshop plays an essential role in the literature on

co-speech gesture generation, particularly in attempting to standardise comparisons between

methods.

The GENEA Challenge is a significant part of this workshop. This is a recurring challenge,

taking place in 2020, 2022, and 2023, and it aims to serve as a means of qualitatively analysing

co-speech gesture generation performance over time. For this challenge, organisers release a

dataset, and participating teams create a speech-to-gesture method and submit synthesised

motion for a test set where only the speech information is available at inference time. These

synthesised motions are then compared and evaluated in a large-scale evaluation of gesture

generation models.

The GENEA Challenge follows the same structure each year and provides standardisation

for certain parts of the challenge pipeline. Figure 2.6 gives an overview of this pipeline,

showing each stage. The Dataset stage is standardised so that each participating team is

provided with precisely the same data at the same time. This data has varied across each
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recurring year and is explained further in Section 3.4.2. Each year, a dataset of speech, audio

and text transcripts and corresponding 3D co-speech gesture motion is provided. The pipeline

differs between submissions in the following Method stage. This is where participating teams

create their methods of gesture synthesis. There are no limits on the techniques participants

can use except the synthesis process must be automated, i.e. motion cannot be manually edited

after synthesis, but automatic processing such as smoothing is valid. Each participating team

provides synthesised output for the test set, where the ground truth motion is not provided.

Natural motion and baseline methods are also provided by organisers to aid evaluation and

to monitor the performance of gesture generation over time across multiple Challenges.

This synthesised motion is then passed to the next step, Visualisation. The visualisation is

standardised across all methods to ensure fair and standardised evaluation between methods.

Once visualised, the Evaluation stage is performed. This is again standardised for all methods

and consists of a large-scale subjective evaluation utilising a user study.

The GENEA Challenge evolves as the gesture generation literature changes over time.

The first challenge in 2020 focused on predicting the upper body only and no hand motion.

The second challenge in 2022 evolved to predict the full body and finger motion as discussed

in Chapter 5. The third challenge in 2023 encouraged using the second speaker in a dyadic

conversation as an additional data source available at inference time, as discussed in Chapter

7.

2.5 Embodied Conversational Agent Evaluation

Evaluating generated gesture quality is an inherently complex problem. This stems from the

one-to-many mapping of speech and gesture. Many gestures can be considered accurate and

appropriate for the same speech. Gestures are also spontaneous, highly idiosyncratic and

non- periodic, which adds further complexity to the evaluation.
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Three primary motion characteristics are essential to evaluate: human-likeness, appro-

priateness and stylistic accuracy. Human-likeness is regarding how natural and close the

generated motion is to ground-truth motion. Appropriateness pertains to whether the gen-

erated motion is appropriate to the speech utterance. Stylistic accuracy is an appropriate

measure only when there is a particular style conditioning, which is how well the predicted

motion fits the expected style. This section describes the standard evaluation techniques

for gesture generation, including subjective and objective measures that aim to evaluate the

primary motion characteristics.

2.5.1 Subjective

Subjective measures through the use of human perception studies are widely considered the

most effective measure of gesture generation performance [106, 154, 76]. These methods

typically consist of pairwise or multiple clips being compared side-by-side [106, 154, 76]

and asked a corresponding question relating to the comparison of clips. Each question will

typically involve rating each clip on a pre-determined scale or a preference test, in which the

user indicates a preference between clips. To ensure the methods are compared fairly, each

condition should have results rendered in the same environment and using the same avatar.

This ensures the effect being measured is the desired question and there is no bias towards a

particular environment or avatar.

2.5.1.1 Example Questions

The benefit of human perception studies is the ability to ask questions regarding different as-

pects of motion. These questions often cover human-likeness of the motion, appropriateness

of the motion to the speech, and stylistic accuracy if the style is a feature.

Human-likeness can be evaluated with or without the speech signal, depending on the

study setup. Human-likeness is evaluated independently of the appropriateness in the 2022
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and 2023 Generation and Evaluation of Non-verbal Behaviour for Embodied Agent (GENEA)

Challenges [76, 154]. All clips are rendered using the same avatar and speech signal; however,

the speech signal is muted to participants on playback. This ensures the evaluation only

examines human-likeness independent of appropriateness. Human-likeness can also be

evaluated with appropriateness in mind in a combined comparison with a question such as

“Which character’s motion do you prefer, taking into account both how natural-looking the

motion is and how well it matches the speech rhythm and intonation?” as in Alexanderson et

al. [8].

Should a comparison be made to exclusively assess Appropriateness with differing human-

likeness qualities, the perceived appropriateness or style accuracy may be interfered with by

the differing quality of motion [74]. Therefore, the matched vs. mismatched paradigm has

been proposed to alleviate this effect [60, 154, 76, 121]. A matched sequence is the predicted

motion sequence for the particular speech, whereas the mismatched clip is motion generated

for a different speech sequence using the same method. This ensures the perceived human-

likeness independent of speech is equal. Users are asked to choose the most appropriate

clip for the speech and assess gesture appropriateness for speech, rhythm, and interlocutor

behaviour.

In Alexanderson et al. [8], Style Accuracy has been evaluated through a user study. The

question was posed as “Based on the body movements alone (disregarding the face), which of

the two clips looks most like {STYLE}?” where STYLE is a phrase that is representative of

the conditioning style label. Speech audio was not permitted for this study, as one modality

can affect the perception of the other [17, 8, 74, 60]. This allows the users to evaluate the

motion style independent of vocal style.
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2.5.1.2 Challenges with Subjective Evaluations

Although subjective evaluation is a particularly effective evaluation method in gesture gener-

ation, it has challenges. The main challenges are the time-intensive and expensive nature of

user studies. There are no particular suggestions on the number of participants; however, it is

essential to ensure a sufficient number of participants and questions being asked to reveal

any statistical significance.

2.5.2 Objective

Objective measures mitigate the time and expense of subjective user studies. A concern

regarding objective measure is due to the one-to-many mapping of speech and gesture, which

means that intuitive distance metrics such as Mean Per Joint Position Error (MPJPE) and

Percentage Correct Keypoints (PCK) [95] are inappropriate. Instead, a combination of

metrics can be used [8, 84, 152].

2.5.2.1 Frèchet Distance

Generative models in many domains are using Frèchet Distance metrics [54, 64, 85, 12, 137].

Namely, the Frèchet Inception Distance, which Heusel et al. [54] designed to evaluate the

quality of generated images and the performance of GANs.

Frèchet Gesture Distance (FGD) was introduced by Yoon et al. [152]. When comparing

two generation methods, the comparison can be done in feature or world space. For feature

space comparison, an autoencoder is trained on the ground-truth data. For each set of poses

to be compared, the pre-trained autoencoder aims to extract domain-specific features using

the encoder. Given a mean and variance to represent the Gaussian distribution of poses in

feature or world space, the FGD score is the Frèchet distance between the two multivariate

Gaussian distributions. The FGD between the ground truth gestures, X and the generated

gestures, X̂ , FGD(X , X̂) is defined in Yoon et al. [152] as:
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FGD(X , X̂) = ||µr −µg||2 +Tr(Σr +Σg −2(ΣrΣg)
1
2 (2.1)

where µr and Σr are the first and seconds moments of the latent feature distribution, Zr of

real human gestures, X and µg and Σg are the first and second moment of the latent feature

distribution Zg of generated gestures X̂ .

This measure indicates a similarity between generated and ground truth poses but does

not include temporal alignment with the speech in its measure. Kucherenko et al. [77] found

FGD has a moderate correlation with gesture human-likeness ratings from a user study where

human-likeness was measured independently from speech appropriateness.

The Frèchet distance measures have been used for more than just raw pose representation;

they have also been extended to characteristics. Ng et al. [103] uses Frèchet Kinetic Distance

(FDk), which is similar to FGD. However, there is no auto-encoding process. Instead, the first

derivative of each joint is used to determine the distribution of velocities for both the ground

truth and predicted motion. FDk is the Frèchet Distance between these two distributions.

The FGD measure in feature space relies on a pre-trained pose auto-encoder, which

introduces difficulties when reproducing results from different publications. It is impossible

to directly compare results from publication to publication unless the pre-trained autoencoder

is released and used and the pose skeleton hierarchy matches that of the autoencoder. This

also makes the autoencoder dataset specific, making comparing models trained on different

datasets more challenging.

2.5.2.2 Beat Alignment

To mitigate the lack of temporal alignment measure in the FGD score, it is often coupled with

Beat Alignment (BA). BA was initially introduced to evaluate dance synthesis by Li et al.

[83], measuring how closely a movement matched a beat in the music. Liu et al. [84] since

adapted this measure for speech gestures. BA provides a measure of synchrony between
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speech and gestures using a Chamfer Distance between audio and gesture beats. In Liu et al.

[84], an audio beat is determined using a root mean square onset and a defined threshold. A

motion beat is defined using local minimums in velocity for a particular joint, typically a left

or right wrist. The BA score can be defined as:

BeatAlign =
1
m

m

∑
i=1

exp(−
min∀ty

j∈By ||tx
i − ty

j ||2

2σ2 ) (2.2)

where Bx = {tx
i } is the kinematic beats, By −{ty

j} is the music beats and σ is a parameter

to normalise sequences with different FPS.

2.6 Discussion

This chapter has reviewed how speech and gesture coincide with an insight into the different

roles gestures play in communication. It has also introduced the various approaches to

automated co-speech gesture generation, from rule-based, statistical and machine learning

approaches. The Generation and Evaluation of Non-verbal Behaviour for Embodied Agent

(GENEA) workshops are a key influence in co-speech gesture generation and this has

been introduced and explained, with its pivotal role in driving co-speech gesture evaluation

methods. This chapter also explains these evaluation methods and their inherent difficulties.

The rest of the work in this thesis will focus on the generation of co-speech gestures

using machine-learning approaches. The approaches will include deterministic and proba-

bilistic approaches and will be evaluated using the recommended methods discussed in this

chapter. Two introduced methods are also evaluated as part of the 2022 and 2023 GENEA

Challenges.
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Chapter 3

Gesture Datasets

Contributing Publications

• Taylor, S., Windle, J., Greenwood, D., and Matthews, I. (2021). Speech-driven con-

versational agents using conditional flow-vaes. In Proceedings of the 18th ACM

SIGGRAPH European Conference on Visual Media Production, CVMP ’21, New York,

NY, USA. Association for Computing Machinery

3.1 Introduction

Gestures have historically been primarily researched in psychology. This research has relied

on physical observation of humans or video recordings [86, 92, 105, 91] or extracting hand

position and head orientation from video [117]. Recent advancements in data capture and the

availability of high-quality gesture data have led to advances in data-driven speech-to-gesture

models. This chapter addresses gesture data from the perspective of data-driven approaches

to automatic character animation, its modalities, processing and augmentation, and analysis

of currently released datasets to provide an in-depth understanding of the current dataset and

modality options for speech driven gesture generation.
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3.2 Modalities

Data-driven speech-to-motion generation is a multimodal task, with each modality playing

a pivotal role in ensuring effective communication. This section focuses on three critical

modalities for communicative effect during conversational gesture: motion, audio and speech

transcription as text. This section introduces the different modality data types.

3.2.1 Motion

The human body follows a pre-defined skeleton with numerous bones. Although every

human body differs, the fundamental skeleton structure remains the same or similar between

individuals. This is convenient because the underlying motion format for animating digital

humans can follow a set structure and graph topology. Motion formats formed from a skeleton

follow a set topology of joints (nodes) and bones (vertices). Each node represents either the

rotation or position of the respective joint, while the vertices represent a corresponding bone

length. Figure 3.1 shows an example skeleton hierarchy used in motion modelling.

Each skeletal structure can contain many kinematic chains, which provide constrained

motion to a chain of joints depending on their interactions. Using known joint angles,

Forward Kinematics derives each joint’s position and movement velocity. Conversely,

Inverse Kinematics uses the known position of the kinematic chain end effector. It derives the

position and rotations of the rest of the chain to reach the desired position of the end effector.

Inverse Kinematics are helpful in character animation; however, they can only look realistic

and natural, assuming the underlying kinematic rig is derived from a complete dynamic

physical model [125]. Due to this complex physical model requirement and current data

capture techniques, the data-driven gesture generation literature favours Forward Kinematics

and predicts each joint rotation or position.
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Fig. 3.1 Example skeleton topology, showing joints (nodes) with their respective rotations
and bones (vertices) with their respective bone lengths.

Given a pre-defined skeleton, the rotations and bone lengths of each joint, Forward

Kinematics produces a skeletal pose for each frame that can have a mesh applied to render

the animation. This is commonplace for animating 3D motion material, and numerous

pre-existing animation pipelines exist. These pipelines often use a pre-defined file format

called Biovision hierarchical data (BVH). The BVH format consists of two parts: a header

(hierarchy) section, which describes the hierarchy and initial pose of the skeleton, and a data

(motion) section, which defines each frame of motion in a sequence. The hierarchy section

describes the skeleton with its root joint and corresponding kinematic chains to multiple

end effectors. Listing 3.1 shows an example BVH file. This file only contains two joints,

Hips and Spine, each includes an OFFSET parameter which defines the length and direction
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to draw the parent segment, for example, in Listing 3.1, the offset defines that Hips joint

should be drawn at -20.557875 87.152710 -32.076614 from the origin and the Spine

joint should be drawn 0.000000 8.814246 -2.080107 from the Hips joint, each in the X,

Y and Z direction respectively. Each joint in this section also contains a CHANNELS keyword

followed by value labels. While there is no standard for the number of values possible for

each joint or the label value, each label typically corresponds to a position or rotation. The

rotation represents an Euler angle rotation change while the position is a second offset, which

moves the joint as required; for example, the root joint has an initial offset. However, the

global motion of the skeleton is represented as an offset to this original value. It is expected

to have the root joint contain six values, Three for position offset and three rotations, while

all other joints control three rotations values only. Some data include three position values

for each joint to provide a per-joint position offset, which may be helpful to account for bone

stretching during the motion capture process. The MOTION section of the BVH file contains

some information regarding the number of frames in the file and the frame time, which

defines how long each frame is representing; for example, in 30fps motion, a frame time

will be 0.033̇ seconds (33ms). Each subsequent line is space-separated values that follow the

exact order of the defined skeleton and their respective CHANNELS values. Each line of the

BVH file and, therefore, a pose at frame n can be represented mathematically as:

pn = [xn,yn,zn,r j,1,n, ...,r j,3,N ] (3.1)

where x,y,z denote the global skeleton position and r j,1:3,n form rotations for each joint j as

Euler rotation representation.

HIERARCHY

ROOT Hips

{

OFFSET -20.557875 87.152710 -32.076614
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CHANNELS 6 Xpos Ypos Zpos Zrot Yrot Xrot

JOINT Spine

{

OFFSET 0.000000 8.814246 -2.080107

CHANNELS 3 Zrot Yrot Xrot

}

}

MOTION

Frames: 2

Frame Time: 0.0333333

5.23 88.29 8.71 -0.24 1.33 -17.24 0.82 0.048 10.29

6.11 88.33 7.97 -0.27 0.98 -17.23 0.64 0.069 10.23

Listing 3.1 BVH Example

3.2.1.1 Joint Angle Representations

Although Euler angles are an intuitive joint angle representation, they have inherent issues.

There is a many-to-one mapping from angles to joint position, this is to say that there are

many different combinations of 3 angle values that will result in the same end result. Zhou

et al. [159] state that Euler angle representations are discontinuous for SO(3), which is the

group of all rotations around an origin in 3D space and can result in large regression errors.

As well as this, Euler angles suffer from the Gimbal lock paradigm. This is where two of the

three axes align resulting in a loss of one degree of freedom. To mitigate these issues in a

deep learning environment, alternative angle representations are often employed such as the

exponential map representation and the 6 degrees of freedom representations proposed by

Zhou et al. [159].
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3.2.2 Speech

High-quality motion and high-quality audio are both required for data-driven gesture gen-

eration. Audio capture is typically cheap compared to motion capture but requires several

considerations when recording. Recording audio for co-speech gestures should be kept

consistent and with noise limited as much as possible. In addition to speech audio, speech

text transcriptions can be desirable as an extra modality to provide speech semantics.

It is ideal to ensure this happens in a controlled, consistent environment with the same

recording device when recording audio. This environment includes the room or area in which

the recording is occurring and the position of the recording device relative to the speaker and

its surroundings. Audio is particularly sensitive to noise, such as the background hum of air

conditioning or the rustling of clothes. These aspects can be challenging to keep consistent,

particularly across multiple recording sessions that can be recorded on separate days. This

introduces inconsistencies across audio recordings that require attention before being used in

a data-driven approach.

Audio should be normalised as much as possible between recording sessions to ensure

the relative loudness is consistent. Humans often use loudness as an emotional response or

reaction. It’s important to isolate this change in the recording due to emotion rather than

environmental changes.

The microphone type is a crucial recording consideration, each with strengths and

weaknesses. A Lavalier microphone attaches to the speaker and has the benefit of limiting

noise from the rest of the room and keeping the distance from the microphone, hopefully

resulting in greater consistency of audio recording between sessions. A disadvantage is the

person wearing it can accidentally brush over it, creating a significant noise spike. These

are extra cables for a speaker to wear and could be restrictive of motion. A stand-alone

microphone is a microphone that is not attached to the speaker and captures audio at a

much lower sensitivity. While this method removes the possibility of a speaker touching the
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microphone by accident, the greater distance from speaker to microphone means the amount

of noise captured is significantly increased.

Depending on the data capture setup, there may be multiple speakers involved. Using

Lavalier microphones for each speaker is beneficial in a dyadic, triadic or polyadic recording

setting. This allows each speaker to capture their audio independently and produce audio

files. Independent audio is helpful as it enables separating audio streams within a data-driven

approach. An issue with introducing multiple speakers is the possibility of audio bleed

across microphones. Therefore, although quieter, one or more speakers may be caught by

another microphone, introducing speaker noise. This is often unavoidable and is something

to consider at the data-driven stage.

Raw audio signals and many audio features do not capture the semantic meaning of the

spoken word. For data-driven gestures, semantic meaning is a valuable feature; therefore,

text transcripts can be desirable. Transcripts can be manually labelled or extracted from audio

using Speech-To-Text (STT) systems. While the former should be more accurate, labelling

this data can be time-consuming and expensive. STT systems have become highly precise in

recent years and are becoming a viable option for text extraction.

3.2.2.1 Audio Embedding

When trying to map audio speech to gesture, the raw audio signal is not a particularly useful

data representation. Instead it is common to extract particular audio features that encode

features such as prosody, pitch and energy. The most suitable audio representation for

speech-motion synthesis is an open research question. One of the most common audio speech

representations chosen in previous work is Mel-frequency Cepstral Coefficients (MFCCs)

[6, 48, 133]. MFCCs represent the spectral characteristics of sound that are important for

human speech perception. These are well performing audio features for speech-to-gesture [6].

While these have provided impressive results, there is scope for more descriptive features.

33



Recently, learned audio encodings have become available [11, 120, 25], aiming to improve

on manually extracted features such as MFCCs. In the majority of this work, PASE+ [120]

will be utilised as the audio embedding of choice. PASE+ [120] uses a trained network to

extract audio features. The network was trained using a multi-task encoder-decoder method

where the same encoding is used as input to multiple decoders. Each decoder has a different

task, in PASE+, there are 12 regression tasks, which include estimating MFCCs, FBANKs

and other speech-related information, including prosody and speech content.

The extensive pre-training objectives of PASE+ ensures that these features encode partic-

ularly useful features for gesture such as prosodic elements, MFCCs and other speech-related

features. The prosodic elements of speech have been highlighted in many studies to have a

close relationship to gesture movement [36, 71, 35, 45, 58] suggesting that the objectives of

PASE+ are of a particular benefit to gesture generation. Other methods such as Wav2Vec[11],

WavLM [25], deepspeech [49] and Whisper [118] do not actively encode prosody, nor are

they evaluated on prosodic tasks. As well as this, the embedding size is smaller for more

efficient training when compared to competitive embeddings such as WavLM [25], with an

embedding size 768 over 25ms of audio compared to PASE+ having size 256 over 10ms

audio.

3.2.3 Style

Many datasets aimed at gesture generation include a level of style control. This usually

occurs through different speaker styles or different emotional performances. The speaker is

self-explanatory in that the conditioning should match the style of a specific speaker. Emotion

can be either natural or acted. Genuine emotion will typically only be available from in-the-

wild video sources, whereas emotion can be acted and exaggerated during controlled data

capture. This can be a desirable attribute to data as it presents the opportunity to provide

fine-grained control and style transfer across the same speech conditioning.

34



3.3 Motion Data Capture

Data collection is often challenging, particularly when multiple modalities and human

participants are involved. This section explores the advantages and disadvantages of particular

data collection techniques and their impact on data-driven approaches.

3.3.1 Video

Video is a widely used source of co-speech gesture data due to the abundance of widely

available footage of speech-related videos. Motion is extracted from video using landmark

prediction for a pre-defined skeleton representing a subset of joints in the human skeleton.

As video is a two-dimensional recording medium, extracting 2-D landmarks from video is a

much simpler problem than 3-D. This, in turn, leads to the majority of video-driven datasets

being limited to 2D [43, 153, 3]. While the performance of predicting 3D positions from

2D data has increased in recent years, the extraction process can be challenging. Inferring

the 3rd dimension from 2D can often lead to noise and inaccurate and inconsistent depth

predictions. As discussed in Section 3.2.1, this is a distinct issue as 3D data is desirable for

its ability to fit into standard 3D character animation pipelines.

There are a few critical issues regarding using video for motion data extraction, mainly

when using in-the-wild video sources: occlusion, camera positioning and camera cuts. Each

provides an issue for both 2D and 3D joint prediction, often having a more significant impact

on the prediction of the 3rd dimension. This has the most significant effect on the hand,

particularly finger motion, which is very fine-grained and often subtle.

Occlusion means that the body joint is not visible in the scene. This is a common problem,

mainly as hands or fingers are crossed or a camera is positioned to the speaker’s side. In

a controlled environment, it is possible to control the camera position to limit this and ask

the speakers to be aware of potentially occluding certain areas of the body; however, this
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may restrict the motion produced by a speaker and appear unnatural. Occluded joints may

be interpolated or given a defined skeleton constrained to conform to the skeleton given

a particular bone length and topology knowledge. While this is a feasible approach, it

often misses granular details such as hand and finger positions, which can be helpful in

communication. Performance issue also scales with the amount of occlusion in a skeleton,

particularly if the occlusion is stacked along the kinematic chain.

Cameras are rarely in the same position between videos or even within the same video.

This can cause issues with scaling bone lengths and even missing joints altogether; for

example, one camera may show the whole body, whereas the next may only show the upper

body. Video cuts are often used when editing videos to ensure the content is shortened with

only the required information present. When extracting co-speech gestures, it’s critical to

know when a speech sequence starts and ends, as without this knowledge, there is a risk that

the scene may cut and there is a significant, unnatural jump within a sequence.

Where it is possible to cheaply extract a large volume of data from ‘in-the-wild’ sources,

the output would require extensive cleaning. This is because recordings are not taken in a

consistent and controlled environment, which can lead to audio issues such as those detailed

in 3.2.2. These issues can be limited but likely not eradicated by ensuring a controlled

recording environment. This will inherently restrict the volume of data available.

3.3.2 Motion Capture

The current state-of-the-art motion tracking is in the form of large motion capture (mocap)

studios. These studios contain cameras at multiple angles, requiring the tracked actor to wear

a mocap suit. This suit has retroreflective or LED markers positioned at key joint positions.

Each camera is time-synced and tracks each marker to derive the positions of each joint

on the suit, which are then fit a virtual skeleton with a defined topology. Motion capture is
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typically tracked in a consistent and controlled environment and mitigates many issues from

video-tracked data.

Motion capture is a highly effective method for gathering gesture data; however, it is also

costly in terms of both financial and processing expenses. Tracking requires a minimum of

two cameras; however, the accuracy of tracking scales with the number of cameras. Like

the occlusion issue discussed in the previous section, motion capture suffers from the same

fate. However, capturing multiple motion views means that others can accurately track an

occluded marker in one camera. Literature utilising the OptiTrack motion tracking commonly

uses 6, 10 or 12 cameras [100] to mitigate occlusion and ensure accurate tracking. This is

particularly effective when comparing hand and finger tracking from motion capture and

video capture.

3.3.3 Motion Capture and Video Hybrid

It is possible to accurately capture 3D motion from video feeds using a similar approach to

traditional motion capture. This approach does not work for in-the-wild videos and requires a

controlled environment with multiple camera views. Taylor et al. use humble, non-specialist

hardware and a setup that is easy to replicate for future collaborative growth [133]. Section

3.4.1 discusses this approach in more detail.

3.4 Releases

There are many datasets available for co-speech gesture generation. Table 3.1 shows a

complete list with details. This section will focus on the subset of datasets used in studies

discussed in this thesis.
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Name Hours # Speakers # Session
Speakers Motion Format Motion Source Modalities Fingers

IEMOCAP [18] 12 10 2 mp4 video MoCap Ges., Audio, Text, Emotion
SaGA [89] 1 6 2 mp4 video MoCap Ges., Audio, Gest. properties
Creative-IT [96] 2 16 2 3d joint rot. MoCap Ges., Audio, Text, Emotion
MPI-EBEDB [139] 1.43 8 1 3d joint rot. Ges., Text
Gesture-Speech Dataset [132] 5 2 1 3d joint rot. Ges., Audio ✓
CMU Panoptic [62] 5.5 50 1-8 3d joint rot. Multi-Video Ges., Audio, Text
Trinity Speech-Gesture 1 [37] 6 1 1 3d joint rot. MoCap Ges., Audio
Speech-Gesture [43] 144 10 1 2d joint pos. Video Ges., Audio
TED Dataset [153] 106 1295 1 2d joint pos. Video Ges., Audio
Talking With Hands [78] 50 50 2 3d joint rot. MoCap Ges., Audio ✓
PATS [3] 250 25 1 2d joint pos. Video Ges., Audio, Text
Trinity Speech-Gesture I
GENEA Extension [74] 6 1 1 3d joint rot. MoCap Ges., Audio, Text

Trinity Speech-Gesture II [38] 4 1 1 3d joint rot. MoCap Ges., Audio, Gest. segment
Speech-Gesture 3D extension [48] 144 10 1 3d joint pos. Video Ges., Audio
UEA-DH [133] 3.5 1 2 3d joint rot. Multi-Video Ges., Audio
Talking With Hands
GENEA22 Extension [154] 20 17 2 3d joint rot. MoCap Ges., Audio, Text ✓

SaGA++ [75] 4 25 2 3d joint rot. MoCap Ges., Audio, Gest. properties
ZEGGS Dataset [42] 2 1 1 3d joint rot. MoCap Ges., Audio, Emotion ✓
BEAT Dataset [84] 26 30 1-2 3d joint rot. MoCap Ges., Audio, Text, Emotion, Gest. properties ✓
Talking With Hands
GENEA23 Extension [76] 20 17 2 3d joint rot. MoCap Ges., Audio, Text, Interlocutor Alignment ✓

Audio2Photoreal [103] 8 4 2 3d joint rot. Multi-Video Ges., Audio, facial codes. ✓

Table 3.1 A comprehensive list of available co-speech gesture datasets. Table adapted from
Nyatsanga et al. [106].

3.4.1 UEA Digital Humans

A male speaker (Speaker A) was filmed conversing with a female speaker (Speaker B) who

was off-camera. Speaker A was filmed before a green backdrop from three synchronised

views (see Figure 3.2). The video was recorded at 25fps and 1080p resolution with 48kHz

audio. The dataset contains ≈3.5 hours of dialogue and comprises three parts: Part 1 (1

hour) includes an unscripted conversation between the speakers. Part 2 (1 hour) is a debate

on a topic chosen from Speaker A’s list. Speaker B argued the opposing view to Speaker

A to incite a heated discussion. Part 3 (1.5 hours) is a performance of scripted emotional

monologue vignettes, which were included to provoke a broader range of affective states.

2D key points are located in each camera view using the monocular body pose detection

system OpenPose [20]. Cameras are calibrated using a checkerboard target, and the 2D key

points are projected into 3D world space through triangulation. Occlusion may still occur;

the key point is omitted in this case. Due to the speaker’s sitting position on a stool, the lower

body is not reliably tracked and discarded. As this dataset aims at dyadic gesture generation,

the head is considered a rigid object, and consequently, any joints above the neck are reduced
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Fig. 3.2 A frame from each camera view (top), and the corresponding pose at 0 and ±30
degrees from frontal pose (bottom) shown on a reference skeleton.

to a single rotation. The body gesture is therefore represented using nine remaining joints

as shown in Figure 3.2. Poses are translated so that the base of the spine rests at the world

origin, (0,0,0).

While the speaker’s position in relation to the camera is kept reasonably consistent

between recordings, as these were recorded over multiple sessions, the speaker’s global

orientation may vary over time. The pose is frontalised using procrustes alignment to

compute a rotation, R, minimising the distance between a clip’s hip and shoulder landmarks

to the corresponding landmarks of a frontal reference skeleton. R is computed and applied

once per clip, and a clip is defined as a natural break in the capture or a 13-minute segment,

whichever is shortest.
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3.4.2 Talking With Hands

One of the largest and highest quality motion datasets is the Talking With Hands 16.2M from

Lee et al. [78]. This motion-captured dataset contains high-quality audio and motion from

50 speakers, each recorded in a dyadic conversational setting.

Each conversation follows a free-talking or video-retelling construct. Free-talking ses-

sions started with a provided, casual topic to spike conversation; however, participants

were encouraged to drift from this topic to encourage natural conversation flow. The video-

retelling construct consisted of Speaker A watching a video, for which Speaker A must then

tell Speaker B what happened in the video. After this, Speaker B must retell the story to

Speaker A. This interaction encourages a natural, active speaking and listening paradigm,

with interruptions and questions.

Participants wore mocap suits fitted with retroreflective markers. The motion was captured

using 24 OptiTrack cameras sampled at 90 frames per second, and the motion capture data

was converted to joint angle representations in Biovision hierarchical data (BVH) format.

The audio was captured using directional microphone headsets on each speaker sampled at

48kHz.

The dataset comprises 16.2 million motion frames for 50 speakers; however, much has

not been publicly released due to anonymity concerns. Instead, a subset of 36 speakers

has been released, still making it a substantial amount of data. The anonymity concerns

also mean the audio data has been heavily redacted to remove any personally identifiable

information. Of the 36 available speakers, only 18 have audio aligned with the motion. Each

audio file has been manually edited to mute any personally identifiable information, and

therefore, many of the sequences contain missing information and muted elements.

Despite this missing data and muted audio, the GENEA workshop, described in Chapter

2.4, recognised the value of this large corpus of high-quality data and was used in the GENEA

challenges. For the 2022 challenge, Yoon et al. [154] released an improved subset of this,
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cleaning some of the motion and adding speech text transcripts. The 2023 Challenge enhanced

this data further with more data cleaning and the alignment of interlocutor information. In

the original Talking With Hands data release, although the motion and audio from both

speakers were released, the motion and audio between both may not have been synchronised.

The GENEA Challenge 2023 aligns both speaker’s motion and audio to allow for the dyad

information to influence gesture prediction.

3.4.3 ZeroEGGS

Gesturing style can be determined by an actor’s age and affective state [42]. Controlling this

style can be a useful tool for speech-to-gesture systems. The ZeroEGGs dataset [42] contains

two hours of female-voiced monologue acting in 19 different styles.

Both body motion and high-quality audio were captured, allowing for diverse predictive

styles and high-quality motion. Styles performed in the data are Agreement, Angry, Disagree-

ment, Distracted, Flirty, Happy, Laughing, Oration, Old, Neutral, Pensive, Relaxed, Sad,

Sarcastic, Scared, Sneaky, Still, Threatening and Tired. The diverse range of styles aims to

cover a variety of postures. For example, Oration motion consists of shoulders held in high

posture whereas Old is a very hunched and low posture. Styles also encourage a variety of

head motions; for example, Agreemment and Disagreement consist of nodding and shaking

of the head, respectively. The affective state is also covered in the motion with styles such as

Happy and Angry containing exaggerated movements to reflect the speaker’s emotive state.

3.5 Augmentation

Data augmentation is a technique used to increase the amount of data by adding slightly

modified copies of real data or creating synthetic data from existing data. The most common

technique for this is through data warping defined by Perez et al. as an approach to directly
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augment the input data to the model in data space [113]. Augmentation approaches vary

depending on the data type and the problem domain.

When working with image data, simple transformations are commonly applied to each

image. These include flipping, scaling, rotating, translating, noise injection and colour space

transformation [128]. While flipping, scaling, rotating and translating can apply to a 3D

skeleton representation of body motion data, it is not necessarily appropriate. Scaling the

skeleton by a different amount in each dimension would alter the identity. If we scale by the

same amount and joint angles represent the skeleton pose, this scaling would not provide

additional information as the angles would remain identical. Applying a global rotation to

the skeleton might introduce unnatural positioning (e.g. losing foot contact with the ground).

Translating the skeleton would not effectively augment the data as the speaker would still

move in the same way but in a different location. Adding noise to the captured motion would

cause unnatural, jittery motion. Flipping (or laterally mirroring) the skeleton is the only data

augmentation approach that produces potentially valid human body motion.

3.6 Discussion

This chapter introduces the modalities involved in automatic co-speech gesture generation

and provides details on how these multiple modalities are gathered to form the released

datasets. It also describes methods of data augmentation to increase the amount of data

available however, the next chapter will extend the data augmentation discussion with a

particular focus on the lateral mirroring augmentation technique.

This thesis involves a particular focus on the Talking With Hands dataset described

in Section 3.4.2, featured in the majority of proceeding chapters. The ZeroEGGS dataset

described in Section 3.4.3 is also used in Chapter 6. These are both high-quality and large

datasets and, therefore, lend themselves to this work. In each case, the modalities of speech

42



and style are fundamental to each experiment. The speaker’s identity or gesture styles are

utilised in each experiment to add an extra level of gesture generation conditioning.
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Chapter 4

Speech Gesture Symmetry

Contributing Publications

• Windle, J., Taylor, S., Greenwood, D., and Matthews, I. (2022b). Arm motion symmetry

in conversation. Speech Communication, 144:75–88

• Windle, J., Taylor, S., Greenwood, D., and Matthews, I. (2022c). Pose augmentation:

mirror the right way. In Proceedings of the 22nd ACM International Conference on

Intelligent Virtual Agents, IVA ’22, New York, NY, USA. Association for Computing

Machinery

4.1 Introduction

Domain knowledge is required in any machine learning problem, particularly for data

processing and performance evaluation. This chapter introduces the topic of gesture and

its relationship to speech and explores speech gesture data. This analysis pays particular

attention to gesture symmetry and how the common augmentation technique of mirroring a

pose may impact communicative understanding and naturalness. This analysis also reveals

practical objective measures regarding motion characteristics including introducing two
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statistically derived gesture spaces that could be utilised in future work to analyse the

performance of data-driven speech-to-gesture generation.

4.2 Arm Gesture and Symmetry

Relying on speech or gesture alone does not allow a speaker to communicate most optimally.

Removing either of these modalities leads to a reduction in semiotic versatility [140] and

communicative understanding [57]. One reason is that each modality may represent certain

information better than the other. For example, hands might better describe shape or direction

using visual cues. The gestures that form these cues may or may not be symmetrical, which

may, in part, depend on the particular shape or direction being described.

Environmental conditions greatly contribute to the importance of each modality during a

conversation. A small and enclosed space may cause a person to be conservative with their

gesturing, whereas to communicate the same speech in an expansive, outside environment,

they may gesture more actively as they have more space. Proximity and facing direction of

the conversational partner within the environment will also affect the extent and gesturing.

If conversation occurs while walking alongside their partner, this will prompt different

behaviour to a static face-to-face interaction. Similarly, if the partner is far away, gestures

may be emphasised to account for the reduction in the received audio volume. It has been

found that gesture activity increases during adverse listening conditions, such as acoustic

noise and non-native speaking conversational partners [33].

Objects surrounding or colliding with the speaker introduce physical constraints that

inhibit or otherwise affect gesturing. For instance, a wall to one side of the speaker will

limit their available gesture space, constrain physical activity and likely increase asymmetry.

Similarly, a speaker’s hand might be occupied with an object, such as a glass of water, which

would alter gestural behaviour.
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Individuals exhibit gestural idiosyncrasies. Some speakers may commonly perform self-

adaptor traits such as self-touching or scratching. Others may have physiological restrictions,

making particular gestures impossible and affecting the realisation of others. In each of these

cases, asymmetry in the positioning of the arms is likely.

The amount of conversational gesturing during an interaction can be linked to a speaker’s

personality. It has been found that a speaker’s Big Five personality traits (extroversion,

neuroticism, conscientiousness, agreeableness and openness to experience) are correlated

with the amount of gesture production [57]. In particular, extroversion is positively correlated

with representational gesture production, possibly due to extroverted people having high

energy in social situations and, therefore, gesturing regardless of communicative effect.

McNeill defined a gesture space [94], stating that most gestures happen in the central

gesture space, which encompasses the area below the neck and between the shoulders and

elbows. Peripheral gesture space encapsulates gestures performed outside of the central

gesture space and can be thought of as the extremes of gesturing. They suggest that the

peripheral gestures aim to capture visual attention.

McNeill also defined a classification of the semantic functions of gesture types [94]. As

described in Section 2.2 they categorised gestures as either emblematic, iconic metaphoric,

deictic or beat:

• Emblematic gestures: bear a conventionalised meaning

• Iconic gestures: resemble a particular physical aspect of the conveyed information

• Metaphoric gesture: is an Iconic gesture resembling abstract content

• Deictic gesture: point out locations in space

• Beat gestures: is simple and fast movements of the hands commonly synchronised

with prosodic events in speech [114]
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However, in practice, a gesture may perform many semantic functions. Instead, it has been

proposed to treat each gesture category as a dimension on which gestures load to differing

degrees [93].

A speaker’s handedness has been found to impact gesture production, particularly regard-

ing the positioning of the left and right arms. It has been found that beat-style gestures were

more commonly performed with a speaker’s dominant hand. In contrast, representational

gestures in right-handed speakers had a right-handed preference, while left-handed speakers

did not have a hand preference [24]. There is an association between gestural handedness

and the emotional dimensions of pleasure and arousal. Kipp and Martin [67] found a signifi-

cant correlation between emotion category and handedness of the gesture, where speakers

consistently used their left hands to gesture during a relaxed, positive mood and their right

hands to gesture when in a negative, aggressive mood.

These works each analyse gestural symmetry during conversation. However, these works

are limited by the data used. Data is often observed manually from video [94] or limited to a

few speaker’s worth of data [67]. This reveals a limitation in current studies that is addressed

in this chapter.

4.3 Data and Pre-processing

This study performs an analysis of the body motion from the Talking with Hands dataset

[78] described in Section 3.4.2. This dataset consists of 50 different speakers during dyadic

conversation, capturing 90fps motion capture and associated audio. Unfortunately, not all of

this data is publicly available; therefore, the available subset of 36 speakers has been used.

The majority of speakers were only captured in conversation with one other speaker (shallow

speakers), while a small number had multiple conversational partners (deep speakers). Any

non-conversation data segments (e.g. T-Pose sequences) are removed before analysis.
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The dataset provides a set of 3D skeleton joint key points for each frame. This study

focuses on arm movements and considers only the 3D locations of the left and right shoulder,

elbow, forearm and wrist. The skeleton was translated per frame such that the mid-point

between each shoulder joint was at the origin. This simplifies the analysis and accounts for

large translations of arm positions from motion originating from the spine, such as leaning

forward and backwards. This allows the evaluation of translations made by motion generated

from the arms independently of the rest of the pose. The coordinate system utilised in this

chapter is as follows:

• Y - Height (Up and Down)

• X - Depth (Back and Forth)

• Z - Width (Left and Right)

A consistent colour scheme is used throughout all figures to represent each forearm. Red

depicts the right forearm and Blue depicts the left forearm.

4.4 Mean Pose Symmetry

The symmetry of the mean poses for each speaker is first evaluated, aiming to reveal an

impression of the per-speaker symmetry across all of their motion. Using all the frames

of motion, the per-speaker mean pose is calculated. The right arm is then projected to the

space of the left arm by laterally mirroring (along the y-axis). Symmetry can be quantified

using the Euclidean distance between all joints in the left arm and the projected right arm.

The lower this distance, the closer the two arms are to each other, which indicates a more

symmetrical pose where a distance of 0 would represent complete symmetry.

The symmetry range is shown in Figure 4.1. This presents that a person’s mean pose

is not always symmetrical. Shallow3 is found to have the most symmetrical mean pose,

whereas Deep3 has the most asymmetric pose according to the Euclidean distance.
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Fig. 4.1 Symmetry distance between each speaker’s mirrored right arm and the left.

From the 36 speakers, the two with the highest and the two with the lowest Euclidean

distance are chosen for further examination, representing the subjects exhibiting the least

and most arm symmetry in their mean pose. It is possible to visualise the level of symmetry

by overlaying a perspective projection of the mirrored right arm onto the left arm. Figure

4.2 shows this projection from both a frontal and side view for each of the four speakers.

There is an apparent asymmetry in the mean arm pose of Deep3 and Shallow4 (columns

one and two). The left arm of Deep3 shows itself angled towards the right side of the body,

whereas the right arm points away from the body, towards the camera. Shallow4 orients

their right wrist away from their body while their left wrist points towards them. At the

other extreme, Shallow3 and Shallow2 are symmetrical (columns three and four). In these

examples, the mirrored right arm overlaps the left arm from the shoulder to the elbow with a

slight divergence from the elbow to the wrist.

The most considerable differences between the arm positions are observed in the side view,

whereby each left arm is positioned further forward than the right. While this observation is
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more prominent on the two most asymmetric speakers, it holds for each speaker in Figure

4.2.

Fig. 4.2 A projection of the mean pose for four speakers. In each case, the right arm (red
forearm) has been mirrored and overlaid onto the left arm (blue forearm). Top row: front
view. Bottom row: side view.

4.5 Spatial Symmetry

The mean pose analysis in Section 4.4 indicates the symmetry of a speaker’s average (or

neutral) arm positions. However, it does not explain whether the motion of the arms is

similar or symmetrical. This section investigates whether the observed asymmetry affects a

speaker’s tendency to gesture more on one side than the other and whether the arms occupy

symmetrical gesture spaces. 3D key points are used to gather statistics regarding the arm

motion of each speaker, describe the speakers’ motion ranges and traits, and define their

data-driven gesture spaces.

50



Fig. 4.3 Per-frame Euclidean distance from the mean of each arm for four speakers. L=Left
arm, R=Right arm.

4.5.1 Full Arm Motion Range

To reveal whether a similar amount of movement is performed by the left and right arms, the

deviation from the mean pose is measured. Frame-wise Euclidean distances are computed

independently from each arm to its respective mean pose. These statistics are calculated over

all arm joints.

Figure 4.3 shows box plots indicating the distribution of the amount of deviation from the

mean pose of each arm. The results are for the four speakers identified as exhibiting the least

and most symmetry in their mean pose in Section 4.4. The deviation from the mean pose

in the left and right arms is not considerably different when assessing the poses within the

whiskers, representing those within 1.5× the interquartile range beyond the first and third

quartiles. However, the outliers appear somewhat asymmetrical for speakers Deep3 and

Shallow4, each displaying more significant divergence from the mean with the right arm

compared to the left. Shallow3 and Shallow2 exhibit more symmetrical outliers, indicating

that both arms encompass a similar amount of space during these infrequent, more significant

gestures. The maximum and minimum values for each speaker follow the same trend, with

larger maximum values recorded for the right arm in the former two speakers and similar

values for both arms in the latter two.
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Fig. 4.4 A frontal perspective projection of all poses per speaker, taken at one-second intervals
with the mean pose overlaid in black.

Figure 4.4 shows a frontal perspective projection of each speaker’s arm pose taken over

their respective conversations at 1-second intervals. Variability is observed in the gestural

symmetry and the amount of gesturing per speaker. Shallow3 appears the most symmetrical,

with a wide range of positions produced by both arms. Despite having a highly symmetrical

mean pose, Shallow2 exhibits a high degree of asymmetry in the peripheral poses, whereby

the right arm reaches more expansive poses than the left. Still, the left arm produces higher

gestures than the right. Deep3 and Shallow4 raise their right hands more frequently than

their left, suggesting increased expressiveness in that dominant hand. These plots show that

asymmetry is most apparent in the peripheral gesture space where the extreme gestures are

performed. Although relatively infrequent, these extreme gestures capture visual attention

and are perceptually significant [94].

4.5.2 Gesture Spaces

McNeill defines the central gesture space as the area below the neck and between the

shoulders and elbows, and the peripheral gesture space as any gestures performed outside of

the central gesture space [94]. Given the variability between the spaces occupied by each

speaker’s arm and the frequency in which they extend into their respective peripheral spaces,

a data-driven approach to defining speaker-specific gesture spaces is defined. Statistics are

used to define a speaker’s common gesture space and extreme gesture space. The common
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Fig. 4.5 Per-frame Euclidean distance from the mean of each arm, split into Extreme Gesture
Space (Top) and Common Gesture Space (Bottom). L=Left Arm. R=Right Arm.

gesture space is the region within a single standard deviation of the respective speaker’s

mean arm pose. The extreme gesture space is the space outside a single standard deviation of

the mean pose, away from the body.

Using this new definition, data is partitioned into two sections. The extreme partition

contains all poses with at least one arm in the extreme gesture space, and the common

partition contains the remaining data. Per-speaker distance from the mean pose is again

computed for each partition, and the results can be seen in Figure 4.5. For most speakers,

the distances from the mean for gestures within the common gesture space are similar for

both left and right arms (Figure 4.5, bottom row). An exception is the speaker Deep3, whose

range is more extensive for the right hand. The most significant differences between the left

and right arms are observed in the extreme gesture space (Figure 4.5, top row), particularly

for the asymmetric speakers Deep3 and Shallow4. In each case, one hand diverges further

from the mean than the other.
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Fig. 4.6 Frontal projections of all poses from four speakers at one-second intervals, split
into Extreme Gesture Space (Top) and Common Gesture Space (Bottom) with the mean pose
overlaid in black. The percentage in the corner denotes the percentage of poses belonging to
the respective gesture space for the respective speaker.

For Deep3, the left arm is more active in the extreme gesture space than the right, and the

reverse is true in the common gesture space. The perspective projection of all poses is plotted

corresponding to the extreme and common gesture spaces in Figure 4.6 for each speaker

to visualise these differences. The top row reveals that the right arm of Deep3 contributes

to gesturing in the extreme gesture space, but the poses of the left arm are more expansive,

taller, and further from the mean pose. In contrast, the bottom row shows more movement in

the right arm than the left in the common gesture space, but not significantly.

Figure 4.6 highlights that the positioning of the arms in common gesture space appears

to be more symmetrical than in extreme space across all speakers. Each speaker exhibits

different types of asymmetry in the extreme gesture space. Shallow4 lowers its left arm and

raises the right, and shallow2 extends its right arm wider than the left. Shallow3 has highly

mobile arms but holds symmetry in both spaces reasonably well, consistent with the findings

in Section 4.5.1. The percentage of poses within each gesture space as shown in Figure 4.6

impacts the effect of mirroring. Given more symmetry in the common gesture space, if a
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Fig. 4.7 Shallow25 poses taken at one-second intervals with the mean pose overlaid in black.
This speaker exhibits self-adaptor movements whereby the left hand frequently touches the
right forearm.

speaker uses the extreme gesture space less, the potential negative impact of mirroring is

reduced.

4.5.3 Self-adaptor Traits

Self-adaptors are movements that co-occur with speech gesturing and typically include

self-touch, such as scratching the neck, clasping at an elbow, adjusting hair or interlocking

fingers. These traits tend to be realised asymmetrically.

Figure 4.7 shows the poses of speaker Shallow25, who frequently touches their left hand

to their right forearm. The reverse, the right hand touching the left forearm, is absent in any

motion. If laterally mirrored, this self-adaptor movement would not accurately represent a

valid pose from that speaker. The presence and degree of self-adaptor traits have been found
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to significantly impact the perceived level of neuroticism of a speaker [102], and the effect of

reversing the handedness of the behaviour is not well established.

4.6 Symmetry in Gesture Types

The type of gesture being performed may be necessary when considering the impact of

symmetry. By reviewing several speech-motion pairs, it’s possible to determine what impact

may occur from the gesture being mirrored. While it is not possible to generalise from these

few examples, it should be helpful to consider specific aspects of gestures suitable when

mirrored.

Fig. 4.8 A speaker performing a beat gesture. (a) shows each pose formed over the sequence
with the sentence being said below. (b) shows the positions of each wrist in both lateral
(left-right) and height (up-down) directions.

The study supports that beat gestures are often performed by a single hand. Figure 4.8

shows a pose plot of a beat gesture and the values of each wrist position over time. While

the pose plot appears fairly symmetrical with both arms raised, it is clear that the right arm
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is moving up and down while the left stays fairly static. While knowledge of the dominant

hand of this speaker is unknown, some trends similar to those of Çatak et al. [24] where one

hand is performing the gesture are observed.

Fig. 4.9 A speaker performing a metaphoric gesture. In this case, the gesture is asymmetric
due to context. (a) shows each pose formed over the sequence with the sentence being said
below. (b) shows the positions of each wrist in both lateral (left-right) and height (up-down)
directions.

Çatak et al. [24] suggest that representational gestures are performed by a dominant

hand for right-handed speakers, but no dominant hand was found in left-handed speakers.

Handedness cannot be compared in this work, but instead consider that the context of the

gesture can determine the symmetry of the gesture performed. Figure 4.9 shows a metaphoric

gesture mimicking using an umbrella. It is typical for a person only to use a single hand

while using an umbrella; therefore, a single hand is used to depict this. Should this pose be

mirrored, it may still make logical sense as a single hand will be used, but the handedness of

the speaker may not be maintained. Figure 4.10 is a gesture performed by another speaker.

However, they are referring to moving a heavy object onto a table. Typically, moving heavy
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objects as outlined in the speech would require two hands; therefore, two hands have been

used to depict this. In this instance, there are high degrees of symmetry between each arm

movement, both arms moving and seemingly at the same or similar time.

Fig. 4.10 A speaker performing a metaphoric gesture. In this case, the gesture is symmetric
due to context. (a) shows each pose formed over the sequence with the sentence being said
below. (b) shows the positions of each wrist in both lateral (left-right) and height (up-down)
directions.

Regarding directional Deictic gestures, the hand closest to the direction was often used.

The time plot in Figure 4.11 shows a gesture referring to each end of a building. “That end

of the building” is referred to using the right arm, pointing towards the same direction to

depict an area far away. “this end of the building” is seemingly where they stood, and a slight

movement of the left arm refers to this. Figure 4.11 time plot shows a clear spike as the right

arm moves to the peak directional gesture; the left arm lowers, suggesting asymmetry.

Some examples of symmetrical and asymmetrical poses and their associated gesture

type have been described. Sometimes, a mirrored, symmetrical pose may still portray the

same meaning. An excellent example is when an inconic action requires both hands to lift
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Fig. 4.11 A speaker performing a Deictic gesture. (a) shows each pose formed over the
sequence with the sentence being said below. (b) shows the positions of each wrist in both
lateral (left-right) and height (up-down) directions.

something. However, in the example of the Deictic gesture, this would not continue to make

sense when performed in the exact location.

4.7 Mirrored Pose Validity

For some machine learning approaches, laterally mirroring body pose aims to generate further

valid examples of the same speaker. In these cases, validity only holds if the mirrored poses

fall within the gesture space of the original data belonging to that speaker. This section

visualises and quantifies mirrored pose validity using this definition.

A nearest neighbour search was performed for each mirrored pose in the original motion

data per speaker. The distance metric used is the Euclidean distance, which is computed over

the joint locations in both arms. Poses within the extreme gesture space are the focus, defined

as any pose outside one standard deviation away from the mean pose (Section 4.5.2). Figure
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Fig. 4.12 The frontal 2D projections with mean pose overlaid of the mirrored poses that are
at least one standard deviation away from their mean pose (top) and the closest respective
mean poses from the original data (bottom).

4.12 presents a visualisation of the nearest neighbours. In this plot, the top row shows a subset

of the mirrored poses for each speaker, and the bottom row shows the nearest neighbours

from the original motion data. It is evident from this figure that it is not possible to cover the

full range of motion found in the mirrored poses in the original data. For each speaker, there

are areas in world space for which the arm does not reach in the original data.

In the rightmost column of Figure 4.12, it shows that, with speaker Shallow2, for the left

arm to reach out as wide as it does in the mirrored poses, in the original data, the right arm

also has to extend. This suggests that in the original data, it is characteristic for either both

arms to move to a wide position together or for the right arm to move out wide independently.

It is uncharacteristic for the left arm to reach out alone from the right arm. For Deep3 and

Shallow4 (leftmost columns), when the mirrored poses are at their most extreme poses (i.e.,

the arms elevated to their highest and widest positions), it is impossible to match these in the

original data.
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Figure 4.13 shows mean distances between the mirrored poses and the closest match in

the original data. Although Deep3 was associated with the least symmetrical mean pose from

the dataset (Section 4.5), it shows that, in the extreme gesture space, they produce similar

gestures with both left and right hands.

Fig. 4.13 Euclidean distance between mirrored arm position and the closest pose from the
original data for poses in the extreme gesture space.

4.8 Temporal Symmetry

Analysis so far has considered only frame-wise statistics, which do not account for differences

in the dynamics of each arm. Lateral mirroring for body data augmentation swaps the

positions of the arms on a frame-by-frame basis, so the dynamics of the respective arms are

inherently swapped. In practice, an asynchrony, or a temporal shift, may exist between the

motion of the two arms, particularly if the speaker gestures with a dominant hand. In this

section, a cross-correlation analysis is performed to reveal any temporal lag between left and

right hands.

Correlation between the left and right-hand positions is computed over a 401-frame

window (≈ 4.5s), centred at frame t. For each windowed frame in the left-hand data,

t = 0, . . . ,T , a window slides over the right arm data from frames t − 200 to t + 200 and

computes the correlation coefficient between the segments. A larger window size was not
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used since a lag longer than 2.2 seconds was more commonly due to a rhythmic motion than

an asynchrony caused by a leading hand. The cross-correlation analysis is performed for

each motion sequence on a per-speaker basis. The analysis is run independently on each

directional axis, and the Euclidean distance to the mean pose of each hand, and the results

can be seen in Figure 4.14.

Fig. 4.14 Cross correlation analysis between left and right-hand position for each directional
axis and Euclidean distance from the mean. Dist. denotes the overall distance from the mean
pose, and X,Y, and Z are joint depth, height and width, respectively.

Although Shallow2 has a relatively symmetrical gesture space (Figure 4.4), Figure 4.14

clearly shows a dominant hand in the temporal domain. This Figure shows that this speaker

leads with their right hand with a mean offset of 28 frames (≈ 0.31s) when considering the

distance from the mean pose. When considering the individual axes, it is evident that the

right-hand leads in all cases, and the X and Y axes, the offset is greater than 0.5s. This

suggests that, although a symmetrical pose is formed, a temporal offset exists between hands

achieving this pose.

Other speakers’ motions are more symmetrical, and minimal temporal offsets were found.

Shallow3 in Figure 4.14 is an example where the mean offset does not exceed a mean of 17

frames (0.19s) in any axis.
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4.9 Mutual Information

This section explores mirroring for data augmentation from an information theory perspective.

Specifically, whilst mirroring effectively doubles the amount of data, how much additional

information does it introduce? Mutual information is computed between the original data

and its mirrored counterpart to reveal the dependence between the two distributions.

Normalised Mutual Information (NMI) [130] is measured on a per-speaker, per-axis basis

at the wrist joint. NMI is computed using the following:

NMI(X , X̃) =
I(X , X̃)√

H(X)H(X̃)
(4.1)

where I(X , X̃) is the mutual information between the original data X and mirrored data X̂ , and

H(X) and H(X̃) is the entropy of the original and mirrored data respectively. The entropy is

calculated using the nearest neighbour approach [70].

Normalising the Mutual Information allows for easy comparison between speakers and

axis, producing a value between 0-1. This NMI value describes the dependence of the two

variables. At zero NMI, the variables are completely independent, and as the NMI increases

to 1, it indicates a reduction in uncertainty and largely dependent variables.

The NMI for each speaker is shown in Figure 4.15. This shows that the amount of mutual

information in the wrists is speaker-dependent. However, when considering the relative

mutual information between axes, the Y-axis (movement of the wrist in the vertical axis)

consistently has higher values. Therefore, this analysis suggests that more information will

be gained in the movement along the X-axis (forward-back) and the Z-axis (left-right) from

augmenting the dataset with mirrored poses. Information symmetry is revealed from NMI.

Low levels of NMI and, therefore, low information symmetry indicate the importance of

both wrists to predictive models. This is particularly important when regarding motion

datasets gathered from video. As occlusion is common, arms are often interpolated or
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Fig. 4.15 Normalised Mutual Information per-speaker, per-axis measured between the original
and mirrored wrist joints. Lower values represent a higher degree of independence.

missing from the data. By removing or including potentially incorrect arm movement on

one side, important information is lost or large amounts of uncharacteristic information are

introduced.

4.10 Mirroring Effect on Generative Modelling

To further support these findings, a Long Short-Term Memory (LSTM) model is trained on

different data splits and use various augmentation settings to map from speech to body pose.

This aims to determine the impact of including the potentially uncharacteristic mirrored

motion for a speaker and whether including the mirrored speaker as a new virtual identity

improves results.
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4.10.1 Motion Representation

Of the 36 speakers released, only 18 have audio and motion capture available; therefore, this

subset is used. The motion was down-sampled to 30fps to maintain realistic motion, but

training time was reduced. A test sequence is randomly held out for each speaker, and the

remaining data, 20%, is held out for validation, and 80% is used for training. Each speaker’s

global position is inconsistent; therefore, the respective mean global root position is removed

from each frame on a per-sequence basis. 3D positions in world space are the target values,

standardised by subtracting the mean pose and dividing by the standard deviation computed

over all speakers across all training sequences.

4.10.2 Audio Representation

Mel Spectrograms or Mel Frequency Cepstral Coefficients (MFCCs) are often used in

speech-to-motion pipelines [48, 6, 133]. Instead, a model trained using a multi-task learning

framework that is comprised of 12 regression tasks is used. PASE+ [120] features encode an

audio waveform and should implicitly encode MFCCs and other speech-related information,

including prosody and speech content. Speech is downsampled using a band-sinc filtering

method from 44.1KHz to 16KHz.

4.10.3 Generative Model

An LSTM-based model trained to predict a frame of motion from a motion frame’s worth of

audio (33ms) is used. The prediction is also conditioned using a learned feature vector that

encodes a speaker’s identity to ensure the motion is speaker-specific. This learned feature

vector should adequately associate the speaker and their gesturing style. This learned feature

vector should allow the introduction of a speaker’s potentially uncharacteristic mirrored

motion to the model without affecting the gesturing style of the original speaker.
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The LSTM model contains 4 bi-directional layers, each with 1024 hidden units and a

40% dropout, followed by a ReLU non-linearity layer and a fully connected layer. The output

from the fully connected layer is the estimated (standardised) body pose at that frame.

4.10.4 Training Procedure

Models are trained using the Adam optimiser with a learning rate 0.0001 and batch size of

256. Not all sequences contain hand motion; where this is the case, the loss is computed

against all joints in the body except the hands. 30-frame long sequences are used to train,

with a 25-second overlap on each window.

A multi-term loss function is employed minimising the position values as an L2 loss on

joint positions and an L2 loss on joint velocity and acceleration. Introducing the velocity

and acceleration allows the model to produce smoother and more realistic transitions. On

observation of some bone stretching artefacts due to positions not having any constraint on

distance apart, an L1 loss on bone length is included. The final loss Lc is computed as:

Lp = L2(y, ŷ)

Lv = L2( f ′(y), f ′(ŷ))

La = L2( f ′′(y), f ′′(ŷ))

Lb = L1(ylengths, ŷlengths)

Lc = Lp +Lv +La +Lb

(4.2)

where y and ŷ is the ground truth and predicted motion, and ylengths and ŷlengths are

Euclidean distances between each joint and its parent in the skeleton hierarchy for the

ground truth and predicted motion respectively. Lp represents positional accuracy, Lv velocity

accuracy, La acceleration accuracy, Lb bone length accuracy, and Lc is the combined loss. L1

and L2 represent Mean Absolute Error and Mean Squared Error, respectively.
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4.10.5 Experimental Setup

The same model architecture is trained on each of the settings defined as follows:

All Data. A baseline formed using all available training data with no augmentation.

Half Data. A random subsample of the training data reduces the number of samples by

approximately 50%. A model trained using this reduced data is helpful to compare the effect

of doubling the size of the training set by augmentation versus adding additional ground truth

data.

Mirrored Same Identity. Created by augmenting the Half Data training set by laterally

mirroring the pose at each frame. Mirrored data is assigned the same identity label as the

original speaker. This determines the impact of introducing uncharacteristic motion for a

specific speaker.

Mirrored Virtual Identity. The Half Data training set augmented by laterally mirroring the

pose at each frame. A new virtual identity label is assigned to the mirrored data during

training. This determines if adding motion that could be considered characteristic for a

different speaker aids or hinders performance.

All Data Mirrored Virtual Identity The model is also trained on all available training data

and the laterally mirrored augmentation. The augmented sequences are assigned new virtual

identity labels as in the Mirrored Virtual Identity setting. This represents the most optimal

setting.

4.10.6 Results

Motion characteristics are used to evaluate performance. These include positional pose plots,

distances from the mean pose and temporal handedness. This analysis should indicate how

characteristic the predicted motion is and whether the introduction of motion has had an

impact on performance. The same processing procedure as in Section 4.3 was followed,
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and poses were translated per frame so that the midpoint of the left and right shoulders are

centred on the origin. Overlaying pose projections at 1s intervals provides an overview of the

predicted motion range and shows the type of gestures performed. Distributions showing the

distance from the mean pose indicate a characteristic of how active a speaker is, which will

indicate how similar the predicted motion of a speaker moves to the ground truth. Temporal

offsets are analysed using cross-correlation lags between the onset of left wrist motion given

right wrist motion in the Z (left-right) and Y (up-down) axes, which should show if the

temporal characteristics are preserved across speakers.

4.10.6.1 Using the same identity

Two key findings can be observed: the mirrored data produced far more muted and symmetri-

cal motion than desired.

The movement generated was found to be positionally symmetrical over the whole pose,

particularly with arm movements. Figure 4.16a shows each of the arms consistently raising

simultaneously when using mirrored data as the same identity. While using just half of the

data and no mirror augmentation, more asymmetrical poses are closer to the characteristics

performed in the ground truth.

Figure 4.16b indicates the time and distance away from the mean pose. It is a common

trend across speakers that the distance from the mean pose was lower in the mirrored with

the same identity split compared to motion generated from half of the data and the ground

truth. This indicates the muted motion observed, producing slow and small movements.

Temporal symmetry is notably present when using the same identity. When the left-hand

moves, the right hand also moves at the same time, producing unnatural motion. Figure

4.16 shows a strong correlation between the left and right wrists moving at a temporal lag

offset of ±1 frame. Compared to the ground truth, this high temporal symmetry is very

uncharacteristic of the speaker.
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Fig. 4.16 A comparison for a single speaker’s generated motion showing the detrimental
impact of including mirrored motion under the same identity. Each row corresponds to a
different data split used. Column (a) contains the orthographic projection of a pose at every
second in the sequence. Column (b) shows the distribution of distances from the mean arm
pose. Column (c) shows the cross-correlation lags between the onset of left wrist motion
given right wrist motion in the Z (left-right) and Y (up-down) shown in brown and pink
respectively.

69



Fig. 4.17 A comparison for a single speaker’s generated motion showing the detrimental
impact of including mirrored motion under the same identity. Each row corresponds to a
different data split used. Column (a) contains the orthographic projection of a pose at every
second in the sequence. Column (b) shows the distribution of distances from the mean arm
pose. Column (c) shows the cross-correlation lags between the onset of left wrist motion
given right wrist motion in the Z (left-right) and Y (up-down) shown in brown and pink
respectively.
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4.10.6.2 Augmenting With a Virtual Identity

With the detrimental effect of including mirrored data under the same identity, further

examination of the impact of including mirrored data under a virtual identity (Mirrored

Virtual Identity) is required.

Improvements are identified in generated motion quality, which varies between speakers.

However, a negative impact on performance was not found. Mirroring with a virtual identity

was found to be competitive with a model trained with all the available data, often improving

positioning, adding more movement that closely resembles the ground truth and generating

motion from all of the data.

An example of improvement from including lateral mirrored data is shown in Figure 4.17.

The distribution of distances from the mean pose shown in Figure 4.17b decreases from half

of the data and half mirrored as a virtual identity. Poses in Figure 4.17a appear closer to the

predictions using all of the data and ground truth. Lowering the arms more often than the

generated motion using half of the data supports the hypothesis that adding mirrored data as

a virtual identity can be competitive with a model including all data.

4.11 Discussion

In this chapter arm symmetry during dyadic conversation and its impact on lateral mirroring

for body motion data augmentation were analysed. This presents the potential issues that

could arise and when it would not be a suitable data augmentation approach.

If lateral mirroring is used for pose data augmentation, caution should be taken if the

gesturing style and handedness of the speaker are to be preserved. From this analysis, it is

clear that mirroring can result in valid poses and dynamics for specific speakers who move

with a high degree of arm symmetry. Statistical analysis can be performed on a per-speaker

basis to ensure that this is the case. However, the information gained from mirroring the arm
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motion might be minimal for these highly symmetrical speakers. In most cases, the speakers

did not move symmetrically, and the mirrored data would not reflect the actual characteristics

of a speaker’s gesturing style. While mirroring could produce a physically valid pose for a

speaker, it may not fit with their motion style or handedness.

From the generative modelling discussed, a naive mirroring implementation did not pre-

dict characteristic or plausible motion and was found to be detrimental to model performance.

Instead, the suggestion is for using a new virtual identity for the mirrored poses. It was found

that the amount of improvement was speaker-dependent. This may be due to the non-uniform

data distribution across the speakers. The dataset used has shallow and deep speakers, so the

amount of data available per speaker varies. Although the models appeared to capture the

speaker identities well, there is a chance that with small amounts of data for some speakers,

the motion characteristics required to describe this speaker’s motion are not present in the

training data. The improvement may be due to increased generalised characteristics common

across all speakers. Suppose the aim is to preserve the gesturing style and handedness of the

original speaker. In that case, lateral mirroring should instead be used to increase the number

of speakers in a dataset by treating the mirrored data as its own virtual identity. Care must

still be taken to account for directional cues in the training data speech that could lead to a

multi-modal disparity.

Shallow25 in Figure 4.7 is an example of an asymmetrical self-adaptor trait characteristic

of that speaker. The left arm touching the right arm is common in their data, but the right

arm does not appear to touch the left arm similarly. If this stylistic motion were maintained,

simply mirroring the body pose would not suffice.

Mirroring the data has the potential to cancel out temporal offset characteristics. It is

evident that specific speakers gesture with a leading hand. The generative model trained on

original and augmented motion data with the same identity removes any temporal offsets and
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produces temporally symmetrical motion. This synthetic motion would not be faithful to the

original speaker.

Given the speaker-dependent nature of the amount of symmetry, it can be expected that

the inclusion of a symmetry statistic to aid in numerous evaluation tasks. The use of statistics

for synthetic motion evaluation is discussed in Section 4.11.1; however, it is also suggested

to use these statistics for identity classification. Motion symmetry could be critical to the

classification of speaker identity. It is expected that a discriminatory model (i.e. “Does

this motion resemble the expected speaker?”) could be successful when classifying using

symmetry motion characteristics. More work is required to determine what degree of success

classifying a speaker’s identity using motion symmetry alone could provide.

The mutual dependence between the mirrored poses and the original is speaker-dependent,

and it’s evident that some information is gained through lateral mirroring. More information

may be enticing. However, this measure does not inform on appropriateness, and the added

information may introduce uncharacteristic motions.

Previous work by Çatak et al. [24] has considered the impact of handedness on the

beat and representational gestures. They found that beat gestures preferred the dominant

hand of the speaker, whereas representational gestures varied. There was no preference for

left-handed speakers, but for right-handed speakers, there was a right-handed preference.

This suggests that, although arm positions could be reflectively similar, the types of gesturing

could be varied. When training a generative body motion model using mirrored motion, there

is a risk that both hands will produce beat gestures in the synthesised animation, which may

reduce realism or even understanding.

After analysing a few gesture types and their relationship to symmetry, it’s not possible

to generalise from this small analysis alone but it would be sensible to consider when

certain gesture types could be adequately mirrored. Handedness must be maintained during

directional or positional gestures, such as pointing, to communicate a direction. If a speaker
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uses a gesture to signify to the left and the augmented version points to the right without

adapting the corresponding audio speech, this would lead to a disparity in the multi-modal

context. When building gesture-generation systems, keeping the handedness of gestures

produced consistent would be beneficial.

Further study is required to determine the impact of modifying positional and temporal

symmetry on realism and understanding. However, this chapter’s findings suggest that care

should be taken when augmenting data using lateral mirroring. There is a risk that with this

augmented data, the motion could lose speaker-dependent characteristics.

4.11.1 Evaluating Synthetic Motion

Evaluating synthesised body animation is a significant challenge in data-driven embodied

agent synthesis. It is common to evaluate the performance of generative models using a user

study [6]. Assuming the synthesised data is to represent that of a particular speaker, the

analysis from this study could also be considered as a performance evaluation method.

If the goal is to generate animated body motion that is faithful to the style of a particular

speaker, it would be expected that the animation possesses the same positional and temporal

characteristics as the speaker’s ground truth motion. Statistical analyses based on the work

presented in this chapter would provide good indicators of these qualities. The per-speaker

percentage of time spent in the extreme gesture space, distributions of velocity, degree of

spatial symmetry, and temporal lag of the animated result compared to the ground truth

motion would indicate the similarities in both gesturing style and handedness.
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Chapter 5

Body-Part-Specific Decoding

Contributing Publications

• Windle, J., Greenwood, D., and Taylor, S. (2022a). Uea digital humans entry to

the genea challenge 2022. In Proceedings of the 2022 International Conference on

Multimodal Interaction, pages 771–777

5.1 Introduction

Gesture generation from speech has evolved from previously focusing on the upper-body mo-

tion only [133, 6, 74] to now predicting the full body [154], including global position. Given

this advancement, how the lower body is predicted could be crucial to gesture generation

performance. One particular research question is whether using a single decoder to predict

all joints in the whole body or a multi-decoder approach to produce body-section-specific

experts could be preferable.

This chapter describes the UEA Digital Humans entry to the Generation and Evaluation

of Non-verbal Behaviour for Embodied Agent (GENEA) challenge 2022. The challenge

aimed to further the scientific knowledge using a large-scale, joint subjective evaluation of
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many gesture generation systems. Two models were presented to the challenge to evaluate

the part-specific decoding method. A Bi-Directional Long Short Term Memory (BLSTM)

to full body and a BLSTM multi-decoder to produce body-section-specific experts. Each

system uses audio and word embeddings to predict a sequence of 6D rotation [159] values for

each body joint, producing appropriate gesture animation. The GENEA Challenge compares

these methods against other competitive systems in a large subjective user study.

A BLSTM is chosen as a baseline model for comparison due to their strength in modelling

sequential data. Many speech-to-motion deep learning techniques are built upon BLSTMs

[37, 131, 51] and LSTM-based models are a commonly used baseline in pose generation

work [6, 133, 53]. Inspired by the multiple decoders used in Habibie et al. [48], a model is

presented that uses BLSTMs to encode audio and text features and multiple BLSTM-based

decoders that model specific areas of the body. The full body is divided into four sections:

head, upper body (including arms), hands and legs.

This chapter compares the performance of generating gestures using body-part-specific

decoding and predicting the full body. The data is first introduced, followed by a full

description of each approach and its training methodology. The results are then evaluated

and compared against each other using both objective and subjective measures.

5.2 GENEA22 Data

Each of these models is trained on the GENEA 2022 data [154] derived from the Talking

With Hands dataset [78] as described in Chapter 3.4.2. This data consists of high-quality

30fps mocap data in Biovision Hierarchical (BVH) format, with corresponding speech audio

and text transcripts. Talking With Hands recorded dyadic conversations with the mocap and

audio, separated by each speaker and, in this challenge, treated independently. Each model

uses the pre-trained PASE+ [120] speech audio encoder and pre-trained FastText [97] word

encoder for multi-modal representations.
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5.2.1 Motion Representation

Both models in this experiment predict global skeleton position and joint rotations as their

output. A body pose at frame n is defined as:

pn = [xn,yn,zn,r j,1,n, ...,r j,6,N ] (5.1)

where x,y,z denote the global skeleton position and r j,1:6,n form rotations for each joint j in

the 6D rotation representation presented by [159]. pn is a vector of length 501, representing

the 83 joint rotations in the skeleton. These rotation representations have gained traction in

3D pose estimation [46, 141] due to Zhou et al. [159] finding these are more suitable for

learning applications. Rotations can then be converted to 3D keypoint positions in world

space via forward Kinematics.

BVH file formats contain two types of offset to consider, as discussed in Chapter 3.2.1.

Global joint offsets and per-frame joint offsets. In BVH format, it is common to have a joint

offset for each joint that represents each bone length. A per-frame joint offset is typically

only present in the joint representing world position; in the case of Talking With Hands

format, the joint is labelled body-world. However, Talking With Hands is different as each

joint has a per-frame offset, too, possibly to account for bone-stretching in the data capture.

Talking With Hands contains multi-modal data of multiple speakers and, therefore,

different physical attributes. For each speaker identity, a slight difference in bone lengths is

observed between BVH files corresponding to the same speaker. This is likely due to the

recording setup. However, the differences were minimal. For rendering purposes, a single

random BVH file for each speaker is chosen from the training dataset, and these values are

used across all outputs for the respective speaker.

Regarding the per-frame offsets found in the Talking With Hands dataset, low variance is

observed in these values. Through visual inspection of the ground truth data, removing or
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keeping these values static throughout all frames did not impact visual performance. While

local playback of predicted motion was fine with the removed offsets, a static offset to each

frame was added to ensure the BVH format was correctly formatted for the challenge. This

static offset was chosen from the same random BVH file per speaker as the joint offsets, but

only the first frame offset was used and repeated across all frames in each BVH file. Keeping

the bone lengths and per-frame offsets static should allow the model to focus on representing

the motion characteristics rather than physical attributes.

5.2.2 Audio Representation

The most suitable audio representation for speech-motion synthesis is an open research

question. One of the most common audio speech representations chosen in previous work

is Mel Frequency Cepstral Coefficients (MFCCs) [6, 48, 133]. While these have provided

impressive results, there is scope for more descriptive features. Through empirical evidence,

the Problem Agnostic Speech Encoding (PASE+) [120] outperformed MFCCs. PASE+

adequately encodes an audio waveform to represent features required for 12 regression tasks.

These 12 tasks include estimating MFCCs, FBANKs and other speech-related information,

including prosody and speech content. Therefore, MFCCs and other useful speech-related

features are implicitly encoded in these features. PASE+ features are extracted before training.

The PASE+ model expects audio waveforms to be sampled at 16kHz. Therefore, the audio

was downsampled using a band-sinc filtering method from 44.1kHz to 16kHz. Most speech

signals contain frequency components of only up to 8kHz. Therefore, 16 kHz is an optimal

sampling frequency for speech, and downsampling should not hinder speech quality. The

released, pre-trained PASE+ model extracts an audio feature embedding of size 768 for each

33ms motion frame.
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5.2.3 Text Representation

Text embedding is included in the model to provide explicit word-based context to gestures.

The FastText word embedding described by Bojanowski et al. [16] is extracted using the

pre-trained model released by Mikolov et al. [97]. This word embedding has been used in

multi-modal gesture generation before [152], suggesting it is known to produce effective

word embeddings for gesture generation. Each word embedding is extracted at a size of 300

per word aligned with its respective time frame in the context of the audio waveform. For

each frame of motion, the word embedding of the word being spoken at the time of the frame

is included. A vector of zero values is passed if no word is spoken at a given frame. When a

word is spoken across multiple frames, the vector is repeated for the appropriate number of

frames.

5.2.4 Data Presentation

The speaker’s identity is provided as a unique ID passed to an embedding layer. This layer

contains a lookup table that stores a fixed vector embedding representative of the speaker.

The layer contains trainable weights, meaning vector representations of speakers that move

similarly should be close in vector space. This embedding acts as a style conditioning

variable and produces motion that closely represents the style of the speaker ID provided.

For this dataset, as there are only 17 different speaker identities, a small embedding size of 2

is adequate to represent the different speaker styles.

Before training, speech audio and text transcripts are pre-processed as described in

Section 5.2. For both PASE+ and FastText models, these weights are frozen and not updated

during training. Each data modality is then concatenated to a flat vector of size 1070 per

motion frame, ready to be passed through the rest of the network.
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5.3 Decoding Methods

There are two decoding methods of interest in this chapter. The BLSTM-Full baseline system

represents a high-performing, simple, but effective method. A second model, BLSTM-Parts,

uses a BLSTM encoder, followed by BLSTM body-section-specific decoders. The encoder

aims to represent the motion so that the decoders can each be specialists in predicting their

respective body sections. Hyperparameters for both models have been fine-tuned using a

hyperparameter sweep, and final parameters were chosen using a combination of low loss

and objective measure scores and empirical observation from researchers.

LSTM ReLU

PASE+

FastText

Speaker
Embedding

Fully
Connected"Hello"

0...N

Fig. 5.1 Outline of the BLSTM-Full baseline model used for full body speech-to-motion
prediction. This model takes as input speech audio, text transcript and speaker encoding.
Outputs are the joint rotation values. A pre-trained model is used to extract the audio and
text inputs. Red box defines frozen weights.

5.3.1 Bi-Directional Long Short Term Memory Baseline

A Bi-Directional Long Short Term Memory (BLSTM) baseline system is first trained, which

is referred to as BLSTM-Full. Figure 5.1 gives an end-to-end model overview. Data is

processed and concatenated using the method described in Section 5.2 and then passed to

a BLSTM network. The BLSTM output is then linearly projected using a fully connected

layer to predict the pose pn as defined in Equation 5.1.

This model consists of 4 bi-directional layers, each with 1024 hidden units and a 40%

dropout, followed by a ReLU non-linearity layer and a fully connected layer. The output
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from the fully connected layer estimates the 6D rotations of each joint and the global position

of the body-world joint.

5.3.2 Body Part-Specific Decoders

A second architecture with part-specific expert decoders is introduced and referred to as

BLSTM-Parts. Figure 5.2 shows an end-to-end view of this model. Each decoder is

responsible for a subset of joints representing the head, upper body (including arms), legs

and hands. This should be a sufficient grouping of subsets, as each subset should consist

of closely related joints. For example, Chapter 4 found that there is a close relationship

between how each arm moves and, therefore, should be predicted together to ensure that any

prediction made for one is also aware of the prediction of the other to keep this relationship.

The number of joints in each body part section varies. Table 5.1 summarises the number

of joints predicted by each specific decoder. Although the hand joints contain the shortest

bones, they also contain the largest number. This is due to each finger also containing

between 3 and 4 joints. The head section only contains two joints, while the original skeleton

contains very granular details of the face, including joints for the eyes, nose, and tongue.

Despite being present in the skeleton, the joints are not tracked and, therefore, have a static

rotation value and do not need to be included in the prediction.

Body Section Number Joints Number of Values
Head 2 12
Body 16 96
Hands 36 216
Legs 9 57

Table 5.1 Number of joints predicted by each body part-specific decoders.

The encoder consists of 4 bi-directional layers, each with 768 hidden units and a 40%

dropout followed by a ReLU non-linearity layer. This follows a similar architecture as the

baseline and provides a reliable encoding of motion from the input. Each body section is
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Fig. 5.2 Outline of BLSTM-Parts model used for speech-to-motion prediction with part-
specific decoders. Red box defines frozen weights

predicted using a different decoder that follows the same architecture. A decoder in the

architecture consists of 2 bi-directional layers, each with 768 hidden units and a 40% dropout,

followed by a ReLU non-linearity layer and a fully connected layer. The output from each

fully connected layer is the 6D rotations of representative joints. The decoder responsible for

the legs also predicts the body-world position as the leg movement should have the most

significant impact on the global position of the speaker.

5.3.3 Training Procedure

Each model is trained using the same procedure. The loss function contains multiple

terms and weights. While 6D rotation values are learned, positions are also included when

computing the loss. The loss comprises an L2 loss on the rotations, positions, acceleration

and movement velocity. By adding these terms, empirical findings found motion became

smoother and expanded the range of motion performed compared to a rotation loss alone.
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The final loss Lc is computed as:

Lp = λpL2(yp, ŷp)

Lv = L2( f ′(yp), f ′(ŷp))

La = L2( f ′′(yp), f ′′(ŷp))

Lr = λrL2(yr, ŷr)

Lo = λoL2(yo, ŷo)

Lc = Lp +Lv +La +Lr +Lo

(5.2)

where yr and ŷr are ground truth and predicted 6D rotations respectively, yp and ŷp are the

world positions derived from the 6D rotations via Forward Kinematics and yo and ŷo are the

global offsets for the root joint. f ′ and f ′′ are the first and second derivatives respectively. Lp

is representative of positional distance, Lv similarity in velocity, La similarity in acceleration,

Lr is the similarity in 6D rotations and Lo is how close the root offset is. λp is the weighting

of positions, λr is the weighting of rotations and λo is the weighting of offsets. These weights

are applied to bring all terms into the same order of magnitude and increase the importance

of some terms. L2 represents the Mean Squared Error between the two sets of data. A small

parameter search was used to find the optimal term weights. Setting λp = 0.1, λo = 0.01 and

λr = 20 produced the best motion from observation.

The Adam optimiser is used during training with a learning rate of 0.0001 and a batch

size of 256. Where hand motion is absent from the dataset, the hand motion is excluded

during the loss calculation. This encourages the model to learn effective finger movements

and avoid learning a static hand position. To balance training time and data samples, motion

is split into 30-frame chunks with the corresponding audio with a 25-frame overlap. Each

model predicts a 30-frame sequence of motion, one frame at a time. Only the training data is

used during training, and the validation data is reserved for model selection purposes only.

83



The BLSTM baseline is trained for 300 epochs, and the part-specific decoder, 240 epochs,

which are determined by observed motion quality.

5.4 Evaluation

The performance of both the BLSTM-Full baseline and BLSTM-Parts models are first

evaluated by objective measures and empirical observation. As discussed in Chapter 2.5.2, no

single metric can effectively evaluate the quality of generated gestures. Instead, a combination

of Frèchet Gesture Distance (FGD) [152, 13] and Beat Alignment (BA) [83, 84] scores have

been used for their ability to reflect perceived realism and the alignment of the motion to the

speech [7, 84, 152].

Further to the objective evaluation, empirical observation identifies two key issues from

both models. Rotations were sometimes predicted to unnatural values, particularly in the

shoulders and arms. In addition to this, foot contact and natural leg movement were not

always guaranteed.

5.4.1 Objective Results

The BLSTM baseline is compared against the BLSTM-Parts method with respect to the

ground truth motion. Results are summarised in Table 5.2.

The part-specific decoder method outperforms the BLSTM-Full baseline in both objective

measures. The FGD score is much lower for the BLSTM-Parts method. This suggests that

the distribution of motion performed during these predictions more closely resembles that of

the ground truth test motion than the baseline BLSTM-Full. Beat Alignment scores suggest

that both models’ gestures align closely with audio beats. Again, the BLSTM-Parts model

outperforms the BLSTM-Full baseline model, however, only slightly.
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FGD↓ BA↑
BLSTM-Full 189.263 0.822
BLSTM-Parts 107.949 0.836

Table 5.2 Frèchet Gesture Distance (FGD, lower is better) [152] and Beat Alignment (BA,
higher is better) [84] scores for each system calculated with respect to the ground truth test
dataset.

5.4.2 Ground Truth Comparison

The results of both models are shown in Figure 5.3, where six different test sequences are

compared to the Ground Truth test sequences. Each sequence of poses sampled at 1-second

intervals is plotted and overlayed to show the extent and types of gesturing that are generated.

Additionally, the magnitude of the velocity for the head, right and left wrists and feet are

calculated, and the distribution for both ground truth and predicted sequences is displayed.

The velocity magnitude aims to describe the movement characteristics, which should closely

match that of the ground truth. Each distribution should also indicate the amount of motion

from each joint. Arm and head motion are important factors in communicative gestures. The

joints are chosen as the joints are at the end of the kinematic chain and, therefore, display the

most velocity change in relation to others.

For each sequence shown in Figure 5.3, the plotted predicted poses show similar levels

of motion to the ground truth. The range of arm motion predicted by both BLSTM-Full

and BLSTM-Parts appears to be more extensive than the ground truth. The magnitude of

velocity distributions for the arms show that while these sequences are more active, the

motion characteristics are similar, as the velocities seen in the predicted sequences closely

match those of the ground truth. A common trend among the arm motion is the BLSTM-

Parts distributions tend to show slightly higher velocities more often than the BLSTM-Full.

These velocity distributions are marginally closer to the Ground Truth than the BLSTM-Full

baseline.
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Fig. 5.3 A test sequence from 6 different style categories shown for ground truth (left)
and sequences predicted from the Bi-Directional Long Short Term Memory (BLSTM)-Full
Network (middle) and BLSTM-Parts (right) for the same audio sampled every 1 second.
Each example is shown with the distribution of the velocity magnitude for the wrists, feet
and head to indicate the amount and speed of motion across the sequence.
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The most considerable difference in motion between predicted sequences and Ground

Truth is regarding leg motion. In the BLSTM-Full and BLSTM-Parts predicted poses, the

legs appear to form wider stances and move substantially more than the ground truth. These

leg motions appear unnatural and may be distracting when visualising results. The BLSTM-

Parts method also seems to include a number of erroneous leg poses that are persistently off

the ground, removing foot contact. When examining the magnitude of the velocity of leg

motion, the BLSTM-Full baseline appears relatively similar to the ground truth motion. The

BLSTM-Parts method has a distribution that favours a much higher velocity than the ground

truth data.

Fig. 5.4 Failure case for the BLSTM-Parts part-specific decoder model incorrectly predicting
leg motion. This shows a pose where both legs are visibly raised from the ground in an
unnatural position for the legs.
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5.4.3 Foot Contact

Given these findings in the ground truth comparison, further investigation into foot contact is

needed. The baseline BLSTM-Full model achieved some level of plausible leg movement

and foot contact. However, the part-specific decoder model struggled to predict valid leg

motion and foot contact. While some sequences of leg motion were realistic and appropriate,

the predicted leg motion often involved large errors of foot contact where both feet were far

from the ground.

Figure 5.4 shows an example of both legs raised unnaturally. While the results suggest

that the part-specific decoders produce better arm, head and hand movement, this leg motion

is distracting and essentially negates the better motion from the rest of the body.

5.4.4 Unconstrained Rotation

Although the inclusion of positions in the loss function was found to be beneficial, it

introduced the issue of extreme rotations. If no weighting is applied to Lp in Equation 5.2,

this term dominates the loss and causes unnatural rotations to be formed. This is due to

solving inverse kinematics, as many solutions exist to form a particular pose. The model

tended to produce impossible rotations. For example, rotations exceed a typical value range

for a particular joint. Despite these physically impossible rotations, absolute positions of

end-effectors relative to the over-rotated joint in world space appeared to be accurate.

Introducing a weight to constrain the positional influence allows a balance of valid

rotation values and positive position influence. Despite the weight inclusion, there are still

some issues regarding unnatural rotations. When viewing rendered sequences, unnatural

poses can sometimes be observed being formed. Figure 5.5a shows an example of a pose

where the right shoulder has a rotation value outside of the typical range and causes an

unnatural pose. This issue would remain for several frames before recovering to a well-
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formed pose. Figure 5.5b shows a recovered pose from the same sequence as Figure 5.5a.

This issue is common in both proposed models, albeit slightly more prominent in the BLSTM

(a) Effect of the shoulder joint exceeding its
typical range.

(b) Recovered pose

Fig. 5.5 An example of a sequence where a joint rotation exceeds a typical range of motion.
In this case, the shoulder joint produces a rotation value, which pushes the right arm back
into an unnatural position. These unnatural poses resolve themselves after a while, as shown
by a pose from the same sequence once the rotation has returned to a normal range.

baseline. The motion predicted during these phases of over-rotation is still appropriate, and

gesturing still appears to be as correct to the speech as in other phases. This issue could cause

a negative effect when evaluating the human likeness of the predicted motion. However, the

appropriateness of gestures should be less affected.

5.5 User Study Results

Each model was evaluated in the GENEA user study, comparing both models to other

systems. The GENEA Challenge 2022 consisted of two user studies, full-body and upper-

body, where only one system could be submitted to each. Due to the severe leg motion and

foot contact issues mentioned previously, for the subjective user study, the BLSTM-Parts

model is compared to other systems using only the upper body. This is to determine whether

the other part-specific experts may aid performance without being unfairly compared when
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including the distracting leg movement, which detracts from the performance of the rest of

the body.

To effectively compare synthesised gesture, the GENEA Challenge compared the sub-

mitted synthesised motion to both natural motion and pre-existing baseline systems. Each

motion condition was assigned a three-letter ID following a set structure:

U/F - Representing Upper/Full body respectively.

N/B/S - Representing Natural/Baseline/Submission respectively.

A-Q - Representing a unique ID.

For example, the full body natural motion is assigned the ID FNA and full body baseline,

FBT. The BLSTM-Full baseline is entered into the full-body tier with the ID FSG, and the

part-specific decoder, BLSTM-Parts, is entered into the upper-body tier with the ID USM.

Table 5.3 provides results of the user-study from the main challenge paper [154].

5.5.1 Human-likeness

Evaluating human-likeness determines whether the synthesised motion looks like the motion

of an actual human, controlling for the effect of the speech. The video stimuli audio is

removed to ensure the measure is for human-likeness alone and decoupled from appropriate-

ness. A Human Evaluation of Multiple Videos in Parallel (HEMVIP) [61] method was used

to measure this. For this question, multiple motion examples are presented in parallel, and the

subject is asked to assign a rating to each one. Each question asked “How human-like does

the gesture motion appear?” while being presented with eight video stimuli to be rated on a

scale from 0 (worst) to 100 (best) by adjusting an individual GUI slider for each video. This

rating allows for pairwise statistical tests and produces a median rating for each condition.

Both models ranked fourth in human-likeness compared to all other systems except

natural motion. While not performing best, this is still higher than four other systems,

including the baseline models, suggesting the models successfully capture a reasonable level
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Human-likeness Appropriateness
Number of responses Percent matched

ID Median Mean Match. Equal Mismatch. (splitting ties)

FNA 70 ∈ [69, 71] 66.7±1.2 590 138 163 74.0 ∈ [70.9, 76.9]
FBT 27.5 ∈ [25, 30] 30.5±1.4 278 362 250 51.6 ∈ [48.2, 55.0]
FSA 71 ∈ [70, 73] 68.1±1.4 393 216 269 57.1 ∈ [53.7, 60.4]
FSB 30 ∈ [28, 31] 32.5±1.5 397 163 330 53.8 ∈ [50.4, 57.1]
FSC 53 ∈ [51, 55] 52.3±1.4 347 237 295 53.0 ∈ [49.5, 56.3]
FSD 34 ∈ [32, 36] 35.1±1.4 329 256 302 51.5 ∈ [48.1, 54.9]
FSF 38 ∈ [35, 40] 38.3±1.6 388 130 359 51.7 ∈ [48.2, 55.1]
FSG 38 ∈ [35, 40] 38.6±1.6 406 184 319 54.8 ∈ [51.4, 58.1]
FSH 36 ∈ [33, 38] 36.6±1.4 445 166 262 60.5 ∈ [57.1, 63.8]
FSI 46 ∈ [45, 48] 46.2±1.3 403 178 312 55.1 ∈ [51.7, 58.4]

(a) Full Body Results

Human-likeness Appropriateness
Number of responses Percent matched

ID Median Mean Match. Equal Mismatch. (splitting ties)

UNA 63 ∈ [61, 65] 59.9±1.3 691 107 189 75.4 ∈ [72.5, 78.1]
UBA 33 ∈ [31, 34] 34.6±1.4 424 264 303 56.1 ∈ [52.9, 59.3]
UBT 36 ∈ [34, 39] 37.0±1.4 341 367 287 52.7 ∈ [49.5, 55.9]
USJ 53 ∈ [52, 55] 53.6±1.3 461 164 365 54.8 ∈ [51.6, 58.0]
USK 41 ∈ [40, 44] 41.5±1.4 454 185 353 55.1 ∈ [51.9, 58.3]
USL 22 ∈ [20, 25] 27.2±1.3 282 548 159 56.2 ∈ [53.0, 59.4]
USM 41 ∈ [40, 42] 41.9±1.4 503 175 328 58.7 ∈ [55.5, 61.8]
USN 44 ∈ [41, 45] 44.2±1.4 443 190 352 54.6 ∈ [51.4, 57.8]
USO 48 ∈ [47, 50] 47.3±1.4 439 209 335 55.3 ∈ [52.1, 58.5]
USP 29.5 ∈ [28, 31] 32.4±1.4 440 180 376 53.2 ∈ [50.0, 56.4]
USQ 69 ∈ [68, 70] 67.5±1.2 504 182 310 59.7 ∈ [56.6, 62.9]

(b) Upper Body Results

Table 5.3 Table of results from main challenge paper [154]. Summary statistics of user-study
ratings from all user studies, with confidence intervals at the level α = 0.05. “Percent
matched” identifies how often participants preferred matched over mismatched motion
regarding appropriateness. The part-specific decoder BLSTM model results are highlighted
in pink . Higher is better for Median, Mean, Match and Percent Matched columns. For
Mismatch, lower is better, and for Equal, lower is preferable.
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(b) Upper-body study

Fig. 5.6 Figure from main challenge paper [154]. Significance of pairwise differences
between conditions. White means the condition listed on the y-axis rated significantly above
the condition on the x-axis, black means the opposite (y rated below x), and grey means no
statistically significant difference at the level α = 0.05 after Holm-Bonferroni correction.

of human-likeness. This limited performance of both models is likely due to the over-rotation

issues described in Section 5.4.4.

While it is not possible to compare the results of each model directly in this study, it is

possible to compare each performance with their respective ground truth ratings. Although

the upper-body median is only 3 points higher, it is interesting to compare this against the

median of the ground truth. The median rating of the BLSTM-Full baseline in the full-body

study is 32 points lower than the ground truth. However, a lower median value of the upper-

body ground truth means the gap between the BLSTM-Parts model and ground truth is 22.

This suggests the BLSTM-Parts model may produce motion that is closer in human-likeness

to the ground truth than the BLSTM-Full baseline when ignoring the lower body.

Challenge organisers also included baseline systems in the challenge. These use the IDs

FBT/UBT for text-only baselines and UBA for the audio-only baselines. Figure 5.6 shows

that the proposed models are significantly better in both challenge tiers than all baselines.

92



5.5.2 Appropriateness

How appropriate the motion is to speech is one of the most critical performance charac-

teristics for gesture generation. The appropriateness evaluation is designed to assess the

appropriateness separate from the intrinsic human-likeness of the motion. To evaluate this,

subjects are presented with a pair of videos containing the same speech audio. One video is

the motion associated with that audio, and the other is a mismatched motion for the audio,

i.e. the motion is related to another speech audio stimulus. Both motion stimuli are from

the same condition system to ensure human-likeness does not influence the choice. Subjects

were asked to “Please indicate which character’s motion best matches the speech, both in

terms of rhythm and intonation and in terms of meaning.” with answers gathered by selecting

the character on the left, on the right, or indicate that the two were equally well matched.

This allows calculating the percentage number of times subjects prefer the matched over

mismatched conditions.

Both BLSTM models performed well in the appropriateness of gesture to speech.

BLSTM-Full (FSG) ranked third, and the BLSTM-Parts (USM) ranked second against

all other systems excluding natural motion. Figure 5.7 visualises the distribution in responses

from the appropriateness study. The full-body model remained in the middle of the pack but

can still be considered significantly more appropriate than random chance as the confidence

interval does not overlap with the 0.5 value of random chance.

While it is not possible to draw a statistical significance against any other submissions,

the fact that the upper-body submission went from the middle of the pack in human likeness

to gaining the second-highest appropriateness score in the submissions is promising.

It is difficult to derive the reason for this performance gain from the user study alone.

However, it is possible to speculate based on visual observation. Observed gestures produced

from this model would start at the expected time in relation to speech. The gesture intensity

was also an expected value, particularly in the arm motion. The timing of beat gestures
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(b) Upper-body study

Fig. 5.7 Figure from main challenge paper [154]. Bar plots visualising the response distri-
bution in the appropriateness studies. The blue bar (bottom) represents responses where
subjects preferred the matched motion, the light grey bar (middle) represents tied (“They
are equal”) responses, and the red bar (top) represents responses preferring mismatched
motion, with the height of each bar being proportional to the fraction of responses in each
category. The black horizontal line bisecting the light grey bar shows the proportion of
matched responses after splitting ties, each with a 0.05 confidence interval. The dashed black
line indicates chance-level performance. Conditions are ordered by descending preference
for matched after splitting ties.

can be related to prosodic characteristics of speech [17]. The observed accurate timing and

intensity may come from using PASE+ features that adequately encode many speech features,

including prosody. As the arm-specific decoder only has to focus on predicting arms, it is

possible this decoder can more effectively use these features.

5.6 Discussion

While both models performed well in general, particularly given the simplicity of the

architecture, there are still many things to consider going forward. Leg movement is a

limiting factor in the predicted motion, particularly with the multiple-decoder model. This

may be due to a weak correlation between speech and leg motion. Gestures are rarely made

by legs alone; instead, the leg motion likely depends on the motion of the rest of the body.
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There appears to be a disparity between the leg movement and the rest of the body. Qualitative

observation and objective measures suggest that the addition of independent decoders for

separate body parts works well and has been shown to work effectively in Habibie et al. [48].

Motion in the fingers, arms and head appears to improve over the BLSTM baseline. However,

with the severe limitation of leg motion disparity, decoding motion in separate body sections

cannot be recommended in its current state against predicting all joints using a single decoder.

Decoding the legs with the core body may help with the disparity in leg movement.

Both models have room for improvement regarding human-likeness. This may be due to

the occasional extreme rotation described in Section 5.4.4. This may be solved by further

cleaning of the data or in future work, it may be useful to include constraints on joints. For

example, setting hard limits on how far a joint can rotate. These could be learned from data

or hand-crafted limits on a per-joint, per-speaker basis.
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Chapter 6

Style Conditioned Speech-To-Gesture

Generation With Long-Term Context

6.1 Introduction

This chapter introduces a novel transformer diffusion architecture for speech-to-gesture

generation. The diffusion mechanism generates latent samples that are then transformed by a

Transformer-XL architecture into a sequence of gestures. The proposed Gesture Diffusion

Network has expanding memory and can generate smoothly varying animations for any

input size. Additionally, the model can be conditioned on speaking style, enabling stylised

animation that can be controlled at inference time. The audio is encoded using PASE+

features [120], which allows the model to generalise across out-of-domain audio.

Speech-to-gesture generation is a challenging problem due to the inherent ambiguity

in mapping speech-to-body poses. Traditional supervised techniques, which model the

problem as deterministic, often struggle to achieve good results. Probabilistic models, such

as diffusion models, are more suitable for this task as they can handle the many-to-many

relationship between speech and gestures. Furthermore, gestures can be temporally sparse

or extended over long durations, which standard recurrent techniques do not handle well.
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Transformer architectures can be effective but are typically limited to fixed input contexts and

do not scale well with increasing input size. The Transformer-XL architecture [29] addresses

this limitation by providing an extended attention mechanism and segment-level recurrence,

allowing for larger input context and efficient training and inference.

Experiments show this model can generate diverse, natural-looking gesture animations

for different voices and speaking styles. A user study supports that this approach produces

appropriate and realistic gesturing and outperforms state-of-the-art methods. Rendered

animations from the proposed model are available1.

This chapter will first motivate style-controlled animation and the use of probabilistic,

recurrent methods. The Gesture Diffusion Network is then defined before an experimental

setup is described to produce stylised co-speech gestures. These produced gestures are

then evaluated using empirical and objective measures to determine the efficacy of gesture

production and style conditioning against the ground truth, as well as the ability to interpolate

styles and produce motion for out-of-domain audio. An extensive subjective and objective

evaluation is performed to compare the Gesture Diffusion Network to other state-of-the-art

methods. The amount of historical memory available to the model is an important aspect

of the proposed approach, and therefore, an ablation study looks at the effect of length of

memory on both training and inference time.

6.2 Style Controlled Diffusion Motivation

It is desirable for the animator to be able to control the style of the generated motion at a

high level, using conditioning variables, for instance, [4, 42, 41, 152, 6, 7]. Style can refer to

characteristics of the overall motion, such as hand height, speed, radius, and symmetry [6] or

to a speaker’s individual traits [152]. Gesturing style can also be determined by an actor’s

1 https://youtu.be/x6B8rAffUJ0
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age and affective state [42] or by back-channel inputs such as whether the actor is shouting or

whispering, speaking or listening [133]. Prior work has incorporated style by concatenating a

one-hot vector to the input [133] or learning a style embedding space [152, 116]. The method

introduced in this chapter takes the latter approach since it allows interpolation within the

embedding space and gives continuous style control.

Probabilistic models such as Variational Autoencoders [9, 41, 42, 82] and Flow-based

models [133, 6, 53] have gained popularity for gesture generation since they better model the

ambiguities between speech and human motion. Diffusion models [55, 104] are considered

state of the art in probabilistic generative modelling due to their impressive ability to produce

realistic and diverse output, particularly in text-to-image generation [32, 124, 119, 126].

These models work by sampling noise from a distribution and gradually refining it to produce

a realistic target sample, typically incorporating conditioning values to guide the denoising

process. One of the key features of diffusion models is their ability to generate multiple

results for the same conditioning value, as the random sample of noise also influences the

output.

6.3 Unlimited Sequence Length Prediction

Recent research has shown that diffusion models can also handle time-series or sequence-

based data, such as generating 3D motion from text [65, 134, 157] or dancing and speech

gestures from audio [28, 8, 156]. Sequence-based diffusion models have made use of

Transformer architectures [134, 65] for their ability to model temporal information effectively.

However, a limitation of vanilla Transformer architectures is that they do not scale well with

the length of the sequence. As the sequence length increases, the size of the self-attention

mechanism also grows exponentially, leading to memory and computational limitations.

Also, diffusion models necessitate passing data through the model multiple times, further

exacerbating these limitations. As a result, architectures have to limit the maximum generative
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length to a fixed number of frames [65]. Speech sequences may naturally exceed the

limits imposed by length-limited models. A naive method to process them is to divide the

speech into segments and process each segment separately before combining the results.

However, this approach preserves very little context of previous predictions and introduces a

discontinuity between segments.

The Transformer-XL [29] architecture allows for extended attention beyond a fixed length.

It introduces a recurrence mechanism to the Transformer architecture using segment-level

recurrence with state reuse and a learned positional encoding scheme. The memory length

can be adjusted after training, allowing more context to be included during inference than

during training. As changing memory length can alter the positional context of historical

events, the Transformer-XL introduces a learned, relative positional encoding scheme to

accommodate the context length change. The Transformer-XL can, therefore, be trained

more efficiently on narrower segments than a vanilla Transformer without compromising on

the length of historical influence.

6.4 Gesture Diffusion Network

This section introduces a Gesture Diffusion Network that combines a diffusion model with a

Transformer-XL for predicting a sequence of poses, X, from a stream of audio, a, and a given

style. The diffusion process consists of two steps, noising and denoising. The noising process

gradually adds a small amount of noise to a sequence of poses. The Gesture Diffusion

Network then gradually denoises the noisy sequence and generates a sequence of poses

conditioned on speech and style.

This model is the first to integrate diffusion modelling with a Transformer-XL architecture

to model the longer-term relationship between speech and gesture for input of any duration.

A similar concurrent architecture by Alexanderson et al. [7] combined diffusion models with

Conformers for audio-driven gesture and dance generation. This method is not theoretically
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constrained by sequence length due to the inclusion of TiSA (Time Interval aware Self-

Attention for popularity prediction) [144] for positional embeddings, however, due to the

nature of Transformer-based approaches, the complexity for this model scales quadratically

with sequence length. This means the model would often be inhibited due to memory

constraints being met due to long sequence lengths. By instead using a Transformer-XL

based architecture, this memory usage can be split into smaller segments and allow for

more efficient inference for long sequences while still retaining historical context from past

predictions.

This section provides an end-to-end description of conditioned speech-to-gesture gen-

eration with long-term context. It starts by describing the diffusion process and feature

extraction before introducing the Gesture Diffusion Network and describing how this model

handles long-term context.

6.4.1 Diffusion Noising Process

The noising step consists of a Markov Chain q(xk|xk−1) for k ∈ {1, ...,K} where K denotes

the number of diffusion steps. During training, given a ground truth sequence of poses

x0, the Markov Chain adds noise progressively until q(xK|x0) approximates a standard

normal distribution and no longer resembles x0. The noise added is sampled from a normal

distribution such that

q(xk|xk−1) = N (xk;αkxk−1,βkI ) (6.1)

where αk is defined as
√

1−βk [55, 129]. The value βk is defined by a variance schedule

that determines the intensity of the noise εk being added. The cosine schedule used by Nichol

et al. [104] progressively adds a small amount of noise each time. For the initial noising step

at inference where k = K, εK is sampled from N (0,I ).
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Fig. 6.1 Feature Extraction process. At 30fps, PASE+ features are extracted [120] as well as
the learned style embedding and concatenated to a vector representing the input for a single
motion frame.

6.4.2 Feature Extraction

Each audio sequence a1:T can vary in length, T . Each sequence is split into non-overlapping

segments of length w frames. Splitting into segments is beneficial to avoid the computational

limitations described in Section 6.3 and allow prediction without a limit on audio length.

The proposed model choice ensures that the transition between predicted windows remains

coherent and smooth. Frame Feature Vectors (FFVs) are computed for each window, which

encode the speech and style for each frame in a segment using the architecture in Figure 6.1

to produce FFVt:t+w. A frame is defined as a motion frame sampled at 30fps. The Gesture

Diffusion Network is trained to predict a sequence of poses x̂1:T from the series of Frame

Feature Vectors FFV1:T and a noised sequence of poses. At inference time, these sequences

of poses are a random sample from a normal distribution, and at training time, these are the

ground truth poses that have noise added as described in Section 6.4.1.
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6.4.3 Gesture Diffusion Network

The Gesture Diffusion Network provides the denoising mechanism to reverse the noising

process using a parameterised backwards process, p(x0|FFV). The Transformer-XL model

[29] gradually reduces xK to x0 conditioned on the associated FFV given a noise sample εk.

In diffusion models, the noise ε is commonly predicted at every diffusion step. However,

inspired by other works [134, 119], the estimated pose x̂k is predicted at each step, which

enables the direct use of geometric terms in the loss function. The Transformer-XL includes

memory from the previous context, introducing segment-level recurrence with state reuse.

Figure 6.2 shows an overview of the proposed Gesture Diffusion Network, which is

repeated K times for each segment. At each noise step k, its corresponding sinusoidal time

embedding is used as input to a Diffusion Step Embedding. The embedding is from a network

comprising two linear layers with a Sigmoid Linear Unit activation function between the two.

The output of the Diffusion Step Embedding is the first sequence input to the Transformer-XL.

Each FFVt:t+w is concatenated with the corresponding noise sample εk,t , which has passed

through a single linear layer. These combined features are then transformed using another

single linear layer before being passed to the Transformer-XL as the rest of the sequence.

The Transformer-XL contains attention mechanisms much like a vanilla Transformer;

however, instead of computing attention only on the current sequence, it also has access to

the past context. This knowledge is given in the form of reusable states from earlier segments,

defined as Wt−m where m is the memory length. Memory length can extend beyond a single

segment in the past, and due to the learned relative positional encoding, it can differ during

training and inference.

The sequence output from the Transformer-XL architecture is passed to a decoding layer.

The decoder layer outputs the predicted pose x̂k,t . The last denoising step (k = 1) predicts

the final pose sequence. For all values of k > 1 noise is added to x̂k according to the noise

schedule to produce εk−1,t .
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Fig. 6.2 Gesture Diffusion Network. The diffusion process runs for k = 1000 : 1 steps.
Given a sequence of feature vectors, FFV, and noisy pose vectors, ε , of length w, each step
predicts the corresponding denoised pose sequence x̂. For all steps k > 1, the prediction x̂ is
subsequently noised and fed to the next denoising step, concatenated with the same FFV.
Colours indicate the same layer being used for each input when applicable.

6.4.4 Extended Context

One of the contributions of the proposed architecture is the model’s ability to remember

the long-term context of variable length that can extend beyond a single segment. Figure

6.3 shows an example of predicting x̂1:360 from FFV1:360 using a segment size of w = 90

frames and memory length of m = 180. For the first input segment, FFV1:90, the Gesture

Diffusion Network returns the predicted pose sequence x̂1:90. The Transformer-XL model

also caches the fixed hidden states W1:90. For the subsequent input segment, FFV91:180, the

Gesture Diffusion Network also has this additional context of the cached previous segment.
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Fig. 6.3 Overview of the long-term context model at inference time. The audio is split into
segments of length 90, where each frame corresponds to a motion frame window (sampled
at 30fps). Frame Feature Vectors (FFV) are derived from the audio segment as defined
in Figure 6.1. Each segment of FFV values is passed to a Gesture Diffusion Network as
described in Figure 6.2. This model will output 90 frames of motion and the previous states
from the Transformer-XL model as W, which stores the long-term context of up to 180
previous frames.

The process is repeated for each following segment, each time caching the previous 180

hidden states. For example, when processing FFV271:360 with a memory length m = 180, the

Gesture Diffusion Network only has the cached context of W90:260, and no longer retains

context from predictions x̂1:90. The length of cached context can change, even after training.

6.5 Experimental Setup

The Gesture Diffusion Network is trained to generate style-conditioned animation using the

ZeroEGGs speech and motion dataset [42], described in Chapter 3.4.3. The data is partitioned

into a training and test set as provided, containing 94 and 40 minutes of motion, respectively.

104



This section introduces the motion, speech and style conditioning representations before

providing an overview of the training procedure and post-processing.

6.5.1 Motion Representation

The ZeroEGGs data is downsampled from 60fps to 30fps, and skeleton joint rotations

are extracted to encode the pose, x, at each frame. Joint rotations are a convenient pose

representation as these fit into pre-existing 3D animation pipelines and can be re-targeted to

a character mesh. Euler angles from ZeroEGGs are converted to the 6DOF rotations defined

by Zhou et al. [159] for their suitability to deep learning tasks. The body pose at time n is

defined as:

xn = [xn,yn,zn,r j,1,n, ...,r j,6,N ] (6.2)

where x,y,z denote the global skeleton position and r j,1:6,n form rotations for each joint j

in the 6D rotation representation. These values are standardised by removing the mean

and scaling to unit variance calculated using the training data to bring these values to the

same scale as the rotations. While joint positions are not predicted, they are used in the

loss function defined in Section 6.5.4 and are calculated using Euler angles and pre-defined

skeletal offsets.

6.5.2 Speech Representation

Audio features are extracted using the Problem Agnostic Speech Encoding (PASE+) [120].

PASE+ implicitly encodes multiple features, including MFCC, FBANKs and other speech-

related information, including prosody and speech content. The released, pre-trained PASE+

model extracts an audio feature embedding of size 768 for each frame of motion. The weights

of this model are frozen and not updated during training.
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6.5.3 Style Conditioning Representation

Each motion sequence in the training data is acted according to a labelled style. The model

is trained with these labels to generate gesture animation in a particular style at inference

time. Style is represented using a learned vector embedding layer. The perceptually similar

styles should be close in the latent space, and those dissimilar ones should be far apart.

Interpolation can be performed in the latent space to transition between styles smoothly.

6.5.4 Training Procedure

At each denoising step the pose, represented by a vector of joint rotations x̂ is predicted. Joint

positions are evaluated from the rotations using Forward Kinematics to provide additional

geometric constraints during training. The loss function comprises multiple terms including a

L1 loss on the rotations (Lr), positions (Lp), acceleration (La), velocity (Lv) and kinetic energy

(Lv2) of each joint. xr and x̂r represent ground truth and predicted 6D rotations, respectively;

xp and x̂p to be positions in world space, the following loss function is used:

Lr = λrL1(xr, x̂r)

Lp = λpL1(xp, x̂p)

Lv = λvL1( f ′(xp), f ′(x̂p))

Lv2 = λv2L1( f ′(xp)
2, f ′(x̂p)

2)

La = λaL1( f ′′(xp), f ′′(x̂p))

Lc = Lp +Lv +La +Lr +Lv2

(6.3)

Where f ′ and f ′′ are the first and second derivatives respectively. Each term has a λ weighting

to ensure they are all within the same order of magnitude and to indicate importance.

The optimal parameter configuration was identified through a thorough parameter sweep

(shown in Table 6.1). The Gesture Diffusion Network was trained for 3350 epochs using
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Hyperparameter Value
TransformerXL Head Dimension 32

Inner Dimension 4096
Number Heads 32
Number Layers 8

Embeddings Feature Embedding 1024
Pose Embedding 256
Style Embedding 8
Diffusion Step Embedding 1024

Training Dropout 0.2
Batch Size 32
Learning Rate 0.00001
λr 1
λp 0.01
λv, λa 0.5
λv2 0.2

Context Segment Length 90 frames
Memory Length 180 frames

Table 6.1 Training hyperparameters.

the AdamW [87] optimiser. The most successful results were achieved with a sequence

segment size of 90 frames (3 seconds) and a memory length of 180 frames (6 seconds). This

was determined by a combination of low Frèchet Gesture Distance (FGD) scores and the

observed quality of the rendered predicted sequences.

6.5.5 Post-Processing

The raw model output can contain low levels of high-frequency noise that detracts from

the overall realism of the motion. Following other work on motion synthesis [156, 158],

a Savitzky-Golay Smoothing filter is applied to mitigate this using a window length of 9

and polynomial order of 2. The small window size and low polynomial order mean this

filter provides minimal smoothing while retaining accurate beat gestures. Comparatively, the

proposed method uses much less smoothing than another diffusion model from Zhang et al.

[156], which requires a window size of 32 and polynomial order 4.
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6.6 Evaluation

Fig. 6.4 Gesture Diffusion Network uses a novel transformer diffusion architecture for
generating gestures from Speech. The model has a variable length context, and the Animation
can be conditioned on style. The resulting Animation can be retargeted to rigs such as the
MetaHuman [40] shown.

A comprehensive evaluation in which motion predicted from the Gesture Diffusion

Network is compared against ground truth motion for the held-out test set. The effect of

varying and interpolating styles and the model’s ability to generalise to out-of-domain audio

is also explored. A rendered example is shown in Figure 6.4, and further results can be found

online2.

6.6.1 Ground Truth Comparison

An attribute of diffusion models is their ability to generate multiple results for the same

conditioning values. This is a desired attribute, but the predicted motion will not necessarily

resemble the ground truth motion closely at every inference step. This is due to the one-to-

many relationship between speech and gesture. Therefore, the characteristics of generated

motion are evaluated and compared against the characteristics of corresponding ground truth

sequences. Motion characteristics are beneficial to evaluate gesture as discussed in Chapter

4.11.1, particularly when comparing a stylistic aspect such as speaker identity or emotion.

2 https://youtu.be/x6B8rAffUJ0
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Fig. 6.5 A test sequence from 6 different style categories shown for ground truth (left) and
sequences predicted from the Gesture Diffusion Network for the same audio (right) sampled
every 1 second. Each example is shown with the distribution of the velocity magnitude for
the wrists, feet and head to indicate the amount and speed of motion across the sequence.

109



The results of the GDN prediction are shown in Figure 6.5, where six different test

sequences are compared. The style conditioning label is set to match the style of the test

audio for each sequence. The full sequence of poses is displayed, sampled at 1-second

intervals to show the extent and types of gesturing that are generated. Additionally, the

magnitude of the velocity is computed for the head, the right and left wrists, and the feet, and

it displays the distribution for both ground truth and predicted sequences. The poses in the

predicted sequences closely resemble those of the respective ground truth values. The poses

formed in each prediction are also particularly representative of their respective styles. For

example, in the Happy sequence, the arms are highly active with a broader span compared to

the Old or Tired sequences. The Gesture Diffusion Network can capture the nuances of each

style, even if they are subtle. For example, during the Old sequence, the model generates

animation with the actor’s hunched back posture; in the Tired style, the model captures the

flexing at the knees and hips.

The rate of movement is an essential characteristic of gesture, particularly when con-

sidering style. Observed from the plots in Figure 6.5, styles such as Happy and Angry are

associated with faster motion with joint velocity values centred higher than other styles

such as Flirty and Tired. This trend persists across the motion generated from the Gesture

Diffusion Model, indicating that the dynamics of the generated Animation closely match that

of the ground truth.

6.6.2 Style Conditioning

The impact of style on gesture generation is evaluated using the same audio input and sam-

pling noise while varying the conditioning style. Figure 6.6 shows orthographic projections

of the pose at each second of a sequence conditioned on different styles and a corresponding

frame from the rendered sequence.
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Neutral Happy Sad Angry Old Speech

Fig. 6.6 Animation generated from the same audio and noise sample but conditioned on
different styles. An orthographic projection of the pose at every second of the generated
sequence is shown with a rendered frame from the same sequence below.

Evident characteristics of each style can be observed in Figure 6.6. Happy is particularly

expressive, resembling motion similar to a Neutral sequence but with exaggerated, wider

arm movement. Angry motion is also predicted with active arms but less low body motion.

Additionally, the arms maintain a wide pose and do not cross the body, which is consistent

with the ground truth. Old motion maintains a hunched-over posture with the hands resting

on the actor’s legs, only raising occasionally. Speech also has active arm motion. However,

this is consistently raised instead of often lowering as in other styles. The results indicate that

the Gesture Diffusion Network can produce gestural motion appropriate to the given style.

6.6.3 Generalisation to Out of Domain Audio

PASE+ features effectively encode the content of the Speech while being agnostic to the

speaker and language [120]. Given the agnostic aspect of the features, audio from sources

other than the ZeroEGGs dataset can be used to generate gesture. This is demonstrated

using audio from the GENEA challenge 2022 data [154] and Multilingual LibriSpeech [115].

Rendered results are shown in the supplementary video.
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Ground Truth Neutral Angry Scared Speech

Fig. 6.7 Gesture generation using out-of-domain audio, conditioned on different styles. The
ground truth sequence is shown on the left.

Neutral Flirty Angry Old Speech

Fig. 6.8 Generated Animation for out-of-domain Polish Speech, conditioned on different
styles.

An example of a GENEA sequence can be seen in Figure 6.7 with the ground truth motion

of the actor. The GENEA audio contains muted sections where the authors remove periods of

speech to preserve anonymity. Despite this, the Gesture Diffusion Network generates natural

motion that preserves the conditioning style.

The model’s ability to generate realistic animation for speech in different languages is

demonstrated by generating animation for Polish speech, as shown in Figure 6.8. The method

is agnostic to language, generates realistic animation appropriate to the given style, and

synchronises well with the audio.

6.6.4 Style Interpolation

Linear interpolation can be performed between styles in the latent embedding space, which

shows how the animation changes. Figure 6.9 shows animation for the same audio sequence,

with the same noise for consistency between predictions. The style embedding value is varied
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Fig. 6.9 Linearly interpolating between Happy and Sad in the embedding space generates
Animation that gradually becomes more expressive.

by linearly interpolating between the Happy and Sad styles. The gradual shift from a highly

active Happy sequence to a Sad sequence is evident. As the weight of the interpolation shifts

towards Sad, the movement decreases an appropriate amount. Further examples can be found

in the supplementary video3.

6.7 Comparison to other methods

Results are compared using both objective and subjective measures against the baseline

ZeroEGGs (ZE) [42] and StyleGestures (SG) [6] approaches as these are both state-of-the-art

methods for each dataset used.

Gesture motion is computed for the test audio from the ZE system using the released

source code and pre-trained model checkpoint4. To compare against StyleGestures, the

Gesture Diffusion Network is retrained on the Trinity dataset [37] using the GENEA 2020

3 https://youtu.be/x6B8rAffUJ0

4https://github.com/ubisoft/ubisoft-laforge-ZeroEGGS
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challenge [74] train/test splits and the same hyperparameters as identified in Section 6.5.4

except for number of epochs which is reduced to 2400 to avoid overfitting the smaller dataset.

The Trinity dataset does not have style labels, so the model is conditioned on audio alone

for this task. The released source code5 was used to train the SG model according to the

parameters provided by the authors.

All test samples are used in each respective dataset for computing the objective measures

and a random subset in the user study.

6.7.1 Objective Results

No single metric can effectively evaluate the quality of generated gestures. Instead, a

combination of Frèchet Gesture Distance (FGD) [152, 13] and Beat Alignment (BA) [83, 84]

scores have been used for their ability to reflect perceived realism and the alignment of the

motion to the speech [7, 84, 152].

Frèchet Gesture Distance is a measure based on the Frèchet Inception Distance (FID) [54]

and is commonly used to evaluate generative models. This measure indicates the similarity

between the generated and ground truth poses but does not capture how well the generated

examples temporally align with the audio. To address this, the Beat Alignment score is also

reported. Originally introduced for dance synthesis [83], the Beat Alignment score has been

adapted for evaluating speech gestures [84]. BA measures synchrony between gestures and

audio using a Chamfer Distance between audio and gesture beats. Chapter 2.5.2 provides

further details regarding these measures.

The Gesture Diffusion Network is compared both with and without smoothing (denoted

as GDN and GDN-NS respectively) against ZE, SG and Ground Truth (GT) motion for each

dataset. Results are summarised in Table 6.2.
5https://github.com/simonalexanderson/StyleGestures
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Dataset Trinity ZeroEGGs
Evaluation FGD↓ BA↑ FGD↓ BA↑
GT - 0.848 - 0.811
GDN-NS 64.45 0.897 35.23 0.864
GDN 64.72 0.895 33.49 0.855
SG 218.32 0.890 - -
ZE - - 56.046 0.797

Table 6.2 Frèchet Gesture Distance (FGD, lower is better) [152] and Beat Alignment (BA,
higher is better) [84] scores for each system calculated with respect to the ground truth test
dataset. Computed over both the Trinity and ZeroEGGs datasets.

The GDN method, both with and without smoothing, outperforms the ZeroEGGs ap-

proach on FGD and BA. On the Trinity dataset, the BA scores are very similar across all

systems, and the GDN and GDN-NS methods outperform SG according to FGD. Note that

the output from the SG model is post-processed to reverse the pre-processing that was applied

to the data before training.

One concern with applying a smoothing filter is that gestures can become less pronounced.

Given the minimal amount of smoothing applied in the method, this did not have much of

an impact. This is supported by the Beat Alignment scores, which only fell by 0.09 on the

ZeroEGGs dataset and 0.02 on the Trinity dataset. The FGD score improved slightly when

smoothing was applied when trained on ZeroEGGs, and a minimal change was observed on

the Trinity dataset.

The Beat Alignment is higher for the GDN method and SG than for GT. This might be

due to the model’s lack of semantic understanding and reliance on the prosody embedded in

the audio for generating gestures. These prosodic features relate to acoustic energy and pitch,

which are commonly synchronised with beat gestures [147, 114].

6.7.2 User Study

A user study is presented to evaluate the perceived human likeness and appropriateness of

the gestures generated by the Gesture Diffusion Network compared with other methods. The
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relationships between motion, speech and style are analysed. Participants were hired through

the prolific6 platform with 30 participants in each experiment after removing any participants

that failed attention checks. Participants were filtered to be fluent in English. This study uses

a similar methodology to [7].

All test sequences for each method were rendered on a MetaHuman [40] with static facial

animation as shown in Figure 6.10. A different MetaHuman character is used for the Trinity

and ZeroEGGs studies to match the actor’s voice appropriately.

To evaluate the Gesture Diffusion Network on the ZeroEGGs dataset, 35 random 10-

second test clips are rendered spanning five examples of 7 different styles (neutral, happy, old,

sad, angry, pensive and scared) for each of GT, ZE and GDN method. For the Trinity dataset,

35 random 10-second test clips are rendered for each GT, SG and GDN method. Methods are

compared in a pairwise manner by presenting the participant with two side-by-side videos

that were each generated for the same audio but with different systems. For each dataset,

there are three system combinations to compare (GT vs. GDN, GDN vs. ZE/SG and GT vs.

ZE/SG) and the order is flipped so that the videos are seen on both the left and right sides of

the screen (35 clips × 3 combinations × 2 sides = 210 comparisons).

Each participant was presented with a subset of 30 pairwise comparisons consisting of

10 random pairs for each of the 3 system combinations, and they were asked to watch both of

the two 10-second video clips. Figure 6.10 shows an example of the user study interface. The

scoring methodology uses a merit system [109] where an answer is given a value of 2, 1 or 0

for clear preference, slight preference and no preference, respectively. A one-way ANOVA

test with a post-hoc Tukey test was subsequently used for significance testing. Preference

testing allows a win rate calculation where a win is assigned when there is an identified

preference for a system, not including ties.

6https://www.prolific.co/
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Fig. 6.10 Example user study question with answer options.

6.7.2.1 Perceived Motion Realism and Appropriateness to Speech

The overall motion preference and how well the gestures correspond to the speech are first

analysed. This test uses the same question-and-answer options as Alexanderson et al. [7].

The question was posed as “Which character’s motion do you prefer, taking into account

both how natural-looking the motion is and how well it matches the speech rhythm and

intonation?”. The participants were asked to choose from the options {Clear preference

for left, Slight preference for left, No Preference, Slight preference for right and Clear

preference for right}.

Table 6.3 summarises the results. Average merit scores are presented to indicate the

relative performance score of each method. Win and tie rates are also provided to indicate

model performance vs. the GDN method. This provides and insight into how often a method

is preferred to the GDN and if there are many occasions when the performance is tied.

On the ZeroEGGs dataset (right column), the GDN model outperforms ZE in both merit

score and win rate. The merit score indicates that animation generated using the Gesture
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Dataset Trinity ZeroEGGs
Evaluation Realism/Appropriateness Realism/Appropriateness Style
Measure Merit Score Win Rate Tie Rate Merit Score Win Rate Tie Rate Merit Score Win Rate Tie Rate
GT 1.34±0.07 80.0% 8.4% 1.37± 0.06 72.8% 14.1% 0.89±0.07 50.7% 15.6%
GDN 0.36±0.05 - - 0.50 ± 0.06 - - 0.68 ± 0.04 - -
SG 0.29±0.05 33.2% 25.6% - - - - - -
ZE - - - 0.18 ±0.04 18.8% 27.8% 0.24 ± 0.06 14.4% 19.6%

Table 6.3 User study results. Merit scores [109] with 95% confidence intervals and win
and tie rates for each method vs. the Gesture Diffusion Network (GDN). The highest merit
scores for each experiment are written in bold. With the exception of the GT condition, the
animation from the GDN was preferred in all cases, outperforming SG and ZE. Notably,
on the ZeroEGGs dataset, animation from the GDN model is preferred over or tied with
ground truth 27.2% and 49.4% of the time for realism/appropriateness and style matching,
respectively.

Diffusion Network was preferred over ZeroEGGs (p < 0.001), while GT was considered

better than both methods (p < 0.001). While the GDN method falls short of Ground Truth,

the GT only had a win rate of 72.8%. This means that animation from the GDN model is

preferred over or tied with ground truth 27.2% of the time. Comparatively, ZE had a win

rate of 18.8% and a tie rate of 27.8% when compared to GDN, meaning that the GDN model

has a winning preference over ZE 53.4% of the time. These results support the objective

measures described in Section 6.7.1.

Next, the performance on the Trinity dataset (Table 6.3, left column) is evaluated. Ground

Truth performs significantly better than both systems (p < 0.001). Although the GDN is rated

higher than SG, this difference is not statistically significant (p < 0.19). However, SG is only

preferred 33% of the time when compared to the GDN system. With a tie rate of 25.6%,

this means that the GDN method has a winning preference 41.2% of the time. Note that the

model hyperparameters were tuned on the ZeroEGGs dataset, and increased performance

may be observed by re-configuring them using the Trinity data.

6.7.2.2 Perceived Style Appropriateness

To measure style preference participants are asked a similar question to Alexanderson et al.

[7], posed as “Based on the body movements alone (disregarding the face), which of the two
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clips looks most like {STYLE}?” where STYLE is a phrase that is representative of the

conditioning style label, such as “an old person” or ”happy”. Audio was not permitted for

this study, as one modality can affect the perception of the other [17, 7, 74, 60].

Results are shown in Table 6.3. Based on the merit score, GT animations were perceived

as matching the style more closely than the GDN method (p<0.001). However, the Gesture

Diffusion Network results were considered significantly better than ZE (p<0.001) at this task.

Notably, participants only awarded a preference to GT 50.6% of the time, which means that

for 49.4% of the test sequences, GDN was either indistinguishable or preferable to GT.

6.8 Effect of Memory Length

Memory length has a minimal effect over short isolated speech sequences, but as the sequence

length grows, the importance of retaining contextual information also increases. Over a

sequence of gesturing, there is a clear relationship between present and historic motion. For

example, a behavioural or comfort motion, such as a weight shift from the left to right leg,

rarely occurs multiple times over a period of 10 seconds in the data. However, when the

Gesture Diffusion Network’s historical context is limited to a few seconds, a weight shift

occurred repeatedly in quick succession as the model had no knowledge of the previous

activations.

An ablation study is presented to determine the effect of memory length on the realism

of the generated animation. First, the impact of training models with varying memory

lengths is evaluated and then the effect of varying the memory length after training. See the

supplementary video7 for rendered examples.

7 https://youtu.be/x6B8rAffUJ0
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6.8.1 Training Memory

Five model variants are trained using the hyperparameters shown in Table 6.1 and set

the memory length to 1, 30, 90, 180 and 270 frames, respectively, so that the impact of

memory length on performance can be isolated. When the memory length was set to 1, the

generated animations lacked continuity and were not human-like. However, as the memory

length increased, the animations became more natural and appropriate to the speech. A

memory length of 180 frames (6 seconds) was determined to produce motion that was most

contextually correct over long sequences.

For shorter memory lengths, gestures were observed to become out of phase with the

speech. For example, arms lower to a rest position prematurely and raise unnaturally quickly

to compensate and regain phase with the speech. This was noticeable in longer audio clips

with short pauses in speech, for example, when the speaker is in thought between sentences.

With only a small amount of previous context, it is difficult to know if the speaker is in an

inactive state or if there is just a small break in the speech. With the memory set to 180

frames (6 seconds), the previous context retains the knowledge of speech occurring and keeps

the arms raised appropriately. The ability of the GDN model to capture long-term context

generates more natural animation.

Predicted sequences are compared against Ground Truth test sequences using the mea-

sures described in Section 6.7.1. A canonical correlation analysis (CCA) is additionally

performed, which produces a score that indicates how correlated the two sequences are, with

1 being the most correlated. Table 6.4 summarises the results. Both CCA and FGD indicate

that a single frame’s concise historical context is insufficient. This is also supported by

subjective analysis, where motion was very noisy and did not predict any natural human-like

motion. Performance starts to plateau around the 90-180 frame memory length with only

minor improvements gained between 90 and 180. There was a noticeable drop off in perfor-

mance when memory was extended beyond 180, which may be due to the model complexity
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reaching its limit for the data available. When increasing beyond 180, motion is still natural

and smooth; however, the gesturing becomes less expressive.

Beat Alignment does not change much as the memory length is varied. However, an

outlier is noted when the model is trained with a single frame of historical context. This is

likely due to the noisy generated motion with sharp velocity changes, identified as beats,

producing false positive gesture beat activations. This suggests that this measure should only

be used in combination with other metrics, such as FGD or subjective human evaluations.

Memory Length Beat
(# frames) CCA ↑ FGD ↓ Align ↑

1 0.978 132.00 0.915
30 0.992 45.85 0.862
90 0.993 36.67 0.869

180 0.995 35.23 0.864
270 0.973 40.29 0.859

Table 6.4 Measuring the effect of varying the training memory length. Predicted sequences
are compared against ground truth over the held-out test sequences. The best results in each
column are written in bold. A training memory length of 180 frames (6 seconds) is optimal.

6.8.2 Memory at Test Time

The training memory length is fixed to 180 frames, and the context is altered up to 270

frames (9 seconds) to test the impact of changing context length after training. The increase

in memory length at inference time from training is possible due to the Transformer-XL

architecture using a learned relative positional encoding that is robust to a change in context

memory length. Differences are compared between memory lengths of 1, 90, 180, 210 and

270.

Measures from Section 6.7.1 are again calculated together with CCA and present the

results in Table 6.5. Reducing the memory length to 1 frame maximises the Beat Alignment

score, but perceptually, the sequences appear noisy and temporally unstable. FGD scores

indicate that reducing the number of memory frames from 180 to 90 at test time has little
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Memory Length Beat
(# frames) CCA ↑ FGD ↓ Align ↑

1 0.915 139.89 0.908
90 0.995 35.16 0.859

180 0.995 35.23 0.864
210 0.996 37.66 0.861
270 0.996 40.65 0.866

Table 6.5 The effect of varying memory length at test time. Predicted sequences are compared
against ground truth sequences on the held-out test set. The best results in each column are
written in bold.

impact on performance. Although the CCA values continued to increase monotonically as

the memory length increased, the improvement was marginal. It concludes that a memory

length between 90 and 180 is reasonable for the data.

6.9 Discussion

This chapter presented the Gesture Diffusion Network for generating stylised gestures from

speech using a Transformer-XL + Diffusion model that leverages long-term context from

previously predicted poses. This approach Demonstrates effective style control and shows

how styles can be interpolated and varied over a single animated sequence. Provides evidence

of the effectiveness of using PASE+ features for speech-driven gesture generation and how

they enable the model to generalise across different voices and languages. A particular

benefit to this method is the ability to predict motion seamlessly without a limit on audio

length.

Through recurrent state reuse, the model overcomes the common sequence length lim-

itation with Transformer based models while retaining knowledge of a long-term context.

Long-term context is important for gesture generation, enabling smooth and plausible tran-

sitions across segment boundaries. It also suppresses unnatural repetitive behaviours (e.g.,

quickly shifting weight from one leg to another). It allows the model to disambiguate be-
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tween periods of inactivity and short pauses in the speech. An ablation study identified that a

Gesture Diffusion Network trained with a memory length of 6 seconds was optimal for the

ZeroEGGs dataset.

The new approach’s effectiveness is proven through objective and subjective measures,

outperforming the ZeroEGGs approach in both measures. By embedding style in a latent

representation, generating animation sequences for the same audio input in multiple styles is

possible. This latent representation also allows smooth interpolation between styles. Using

PASE+ feature embeddings for audio allows the trained model to effectively generalise to

unseen speakers and languages.
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Chapter 7

Towards Dyadic Contribution

Contributing Publications

• Windle, J., Matthews, I., Milner, B., and Taylor, S. (2023). The uea digital humans

entry to the genea challenge 2023. In Proceedings of the 25th International Conference

on Multimodal Interaction, ICMI ’23, page 802–810, New York, NY, USA. Association

for Computing Machinery

7.1 Introduction

Speech-driven gesture generation has predominantly focused on estimating motion for

monadic speech input of a main-agent, with no knowledge of interlocutor speech and no

concept of interaction. This chapter instead focuses on generating gestures in a dyadic setting

– predicting a main-agent’s motion from the speech of both the main-agent itself and also the

speech of the interlocutor.

Most speech-to-gesture approaches focus on monadic, non-verbal communication during

speech. This is sometimes due to the dataset being a monologue of a single actor, however,

many approaches such as those participating in the Generation and Evaluation of Non-verbal
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Behaviour for Embodied Agent (GENEA) Challenge 2022 [154] use a single speakers

speech, even when a second speaker is present in the data capture process. While these

non-verbal roles are an important aspect of communication, these approaches ignore the

effectiveness and importance of back-channel communication. Back-channel communication

is the act of incorporating vocalisations, facial expressions, gaze, and gestures—involving

responsive feedback to the speaker [98]. This is typically performed by the member of the

conversation in a listening state to provide feedback information to the main speaker, for

example, agreement, disagreement, or confusion. These back-channels aid conversation; for

example, should the listener provide a back-channel that suggests confusion, the speaker

may wish to expand or explain a concept again, which influences conversational flow.

This chapter explores the use of a model where the motion of a main-agent is predicted

using the speech of both the main-agent itself and also the speech of the interlocutor. This

model is an adapted Transformer-XL [29] architecture to generate smooth, contextually

and temporally coherent motion that can adapt to varying lengths of historical context.

Specifically, the Transformer-XL model is extended to provide cross-attention with the

interlocutor’s speech to impart knowledge of both speakers into the prediction.

The Generation and Evaluation of Non-verbal Behaviour for Embodied Agent (GENEA)

Challenge is a particular motivation for this chapter which is described in more detail in

Section 2.4. In this chapter, the GENEA Challenge 2023 dataset is described to introduce

the dyadic, main-agent and interlocutor interaction. The Transformer-XL [29] model is de-

scribed, and the dyadic contribution adaptation is introduced for the interlocutor to influence

the generation of gestures. The method was evaluated subjectively as part of the GENEA

2023 Challenge and compared to other methods developed using the same dataset, two

baselines, and the natural ground truth motion. These results and findings are then discussed.

Video examples and code are available 1.

1 github.com/JonathanPWindle/uea-dh-genea23
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7.2 GENEA23 Data

The GENEA 2023 challenge data [76] is derived from the Talking With Hands dataset [78]

which is described in more detail in Chapter 4.3. This data includes dyadic conversations

between a main-agent and interlocutor and consists of high-quality 30fps mocap data in

Biovision Hierarchical (BVH) format, with corresponding speech audio and text transcripts.

This chapter aims to generate the main-agent motion conditioned on both main-agent and

interlocutor speech. Main-agent and interlocutor speech data is processed using the same

approach, using all available modalities; motion, speech, transcription and speaker identity.

7.2.1 Motion

Euler angles are required for evaluation purposes within the GENEA Challenge and are a

convenient representation supported by many available 3D animation pipelines. Despite this,

Euler angles are discontinuous and difficult for neural networks to learn [159]. Rotations are

converted to the 6D rotation representation presented by Zhou et al. [159] for their suitability

to deep learning tasks. Global skeleton position is encoded using three x,y,z values. All

values are standardised by subtracting the mean and dividing by the variance computed from

the training data.

Each speaker identity in the dataset has a skeleton with differing bone lengths. Addition-

ally, per-frame joint offsets are present in the data, possibly to account for bone stretching in

the data capture. However, analysis of these joint offset values revealed very low variance,

and setting them to a pre-defined fixed value for all frames did not impact visual performance.

One set of bone lengths and offsets per speaker is used to simplify the training pipeline. A

sample is randomly selected, corresponding to each identity, and the bone lengths and offsets

are fixed accordingly using the first data frame. Joint positions can then be computed using
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the joint angles (measured or predicted) and pre-defined speaker-specific bone measurements

using Forward Kinematics.

7.2.2 Speech

Audio features are extracted using the problem-agnostic speech encoder (PASE+) [120].

PASE+ is a feature embedding learned using a multi-task learning approach to solve 12

regression tasks to encode important speech characteristics. These 12 tasks include estimating

MFCCs, FBANKs and other speech-related information, including prosody and speech

content. The particular benefits of these features are described in Section 3.2.2.1.

PASE+ requires audio to be sampled at 16KHz, so band-sinc filtering is used to reduce

the audio sample rate from 42KHz to 16KHz. The released, pre-trained PASE+ model is

used to extract audio feature embeddings of size 768, which represents a 33ms window of

audio, to align with the 30 fps motion. The weights for this model are not updated during

training.

Word-level features are also extracted from the text transcriptions using the FastText

word embedding described by Bojanowski et al. [16] using the pre-trained model released

by Mikolov et al. [97]. A word embedding is extracted for each spoken word, and each

embedding is aligned to a 33ms motion frame. A vector of zero values is passed if no word

is spoken at a given frame. When a word is spoken across multiple frames, the vector is

repeated for the appropriate number of frames.

7.3 Transformer-XL Architecture

Many speech-to-motion deep learning techniques are built upon recurrent models, such

as bi-directional Long Short-Term Memory models (LSTMs) [37, 131, 51]. Transformer

architectures are growing traction in favour of LSTM models in sequence-based AI, with
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sequence-based motion prediction models already making use of them [134, 65, 14, 88].

Transformer models do not have a concept of temporal position but can effectively model

temporal information, often using a sinusoidal position embedding, which is added to the

input.

Transformers rely on attention mechanisms which inform the network which parts of

data to focus on [138]. In self-attention, the mechanism is applied to the input sequence

to find which elements within the same sequence may relate to each other and which are

key to focus on. Conversely, cross-attention is computed for one input source in relation to

a separate input source, calculating which elements from one sequence may relate and be

important to focus on in another sequence.

To perform sequence-to-sequence generation using a vanilla transformer as defined in

Vaswani et al. [138], a sequence is processed over a sliding window with a one-frame

stride. For each window of input, one frame of output is generated. This is computationally

expensive, and window size is limited by the longest input sequence seen during training.

As the sequence length increases, the size of the self-attention mechanism also grows

exponentially, leading to memory and computational limitations.

The Transformer-XL architecture [29] differs from the traditional transformer architecture

in two key ways: 1) Attention is calculated conditioned on the previous context, and 2) the

positional encoding uses a learned relative embedding. The Transformer-XL architecture

allows for extended attention beyond a fixed length by using segment-level recurrence with

state reuse, allowing the alteration of context length. Therefore, the Transformer-XL can

be trained efficiently on small segment lengths while retaining historical influence through

state reuse. The historic context length can vary, so the Transformer-XL introduces a learned,

relative positional encoding scheme. Due to its improved ability for modelling sequences,

this work adapts the Transformer-XL architecture for dyadic gesture generation.
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7.4 Dyadic Contribution Method

The Transformer-XL [29] architecture is adapted for dyadic, speech-driven gesture generation.

Specifically, this architecture is modified to use both self and cross-attention. This model is

referred to as X-Att-XL. The advantage of the Transformer-XL architecture in this task is that

it models the longer-term relationship between speech and gesture for input of any duration.

The feature extraction process shown in Figure 7.1, is used to generate a feature vector

X of length w for both the main-agent and interlocutor to get Xma and Xin. These features

are then passed to the X-Att-XL model as shown in the overview Figure 7.2 where they are

processed using a number of Self-Attention Blocks and Cross-Attention Blocks.

FastText

"Hello"

PASE+ Speaker
Embedding

Speaker Label

Linear

Fig. 7.1 Outline of the data processing pipeline. The process takes as input w frames starting
at frame t of speech audio, text transcript and a speaker identity label to generate a feature
vector X. Pre-trained models are used for the audio and text inputs. Red box defines frozen
weights.
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Self-Attention Block

Repeat  times

Transformer-XL Attention Block

Feed Forward Block

Q K V

Linear QKV Net

Skip

Q

Linear Q Net

VK

Linear KV Net

Transformer-XL Attention Block

Feed Forward Block

    Relative Encoding Net

Relative Encoding Net

Linear

Cross-Attention Block

Repeat  times

Key

Main-Speaker

Interlocutor

Self-Attention

Cross-Attention

Sinusoidal Position
Embedding

Input on first layer

Input on subsequent
layers

   

Fig. 7.2 Outline of the proposed X-Att-XL dyadic prediction model which takes as input, w
motion frames worth of encoded conditioning information starting at time t and predicts
w frames of body motion. This shows a self-attention block and cross-attention block,
where Q,K,V vectors are extracted using main-agent or interlocutor speech according to
the attention type conditioned on previous m number of hidden states M. These vectors are
passed to the Transformer-XL attention block to calculate attention before being fed into a
feed-forward block. A final linear layer predicts w poses ŷt:t+w.
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7.4.1 Data Representation

Input is segmented into non-overlapping segments of length w frames. For each segment, an

input feature vector X is generated and used to predict Y, a sequence of poses of length w.

The model is called for each non-overlapping w-length frame feature vector X. Therefore, a

speech sequence of length T is called ⌈T
w⌉ times.

For each segment, audio (PASE+) features at:t+w, and text (FastText) features ft:t+w are

extracted as described in Section 7.2.2, where t represents the start frame of a segment of

length w. For each utterance, a speaker label is also provided. This is a unique ID which is

passed to a learned embedding layer. The embedding layer acts as a lookup table for learned

feature embeddings that are representative of each speaker style. The trainable weights

ensure that two speakers with similar gesture styles are close in the latent embedding space,

and conversely, those with different gesturing styles are far apart.

Each modality is extracted and concatenated into a single feature vector X as shown in

Figure 7.1. Feature vectors for both the main-agent and the interlocutor are extracted in the

same way using the same learned weights. This is because a speaker may appear as the

main-agent in some sequences and the interlocutor in others.

7.4.2 Self-Attention

As shown in Figure 7.2, features from the main-agent are processed using a self-attention

block. The attention score is defined in Vaswani et al. [138] as:

Attention(Q,K,V ) = softmax(
QKT
√

dk
)V (7.1)

where Query Q, Key K, and Value V are all vectors, queries and keys of dimension dk,

and values of dimension dv. These vectors are often linear projections of an input vector into

their respective dimensions d.
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When calculating attention scores in the Transformer-XL model, historic context is

included using segment-level recurrence with state reuse. This is achieved by caching

previous hidden state sequences, which can be used when processing future segments. When

no historic context is present at the start of the speech sequence, X-Att-XL extracts Q,K and

V vectors from the main-agent inputs alone. The historic context from processed segments

M of length m is cached as each segment is processed. Q,K and V vectors are then extracted

from the subsequent inputs, conditioned on previous context. This process is completed

using a Linear QKV Net shown in Figure 7.2 which is a single linear layer.

Transformer models do not have inherent knowledge of positional order. To ensure

temporal coherency, a positional encoding is often added to the input vectors to inject some

position context to the model. As the Transformer-XL architecture can have varying lengths

of historic context and is not constrained to a maximum length, a learned relative position

encoding r is instead utilised. The learned relative encoding is from a single linear layer and

takes a sinusoidal position embedding for the full length of context, that is the sum of both

memory length available and the query length. Rather than injecting the temporal information

to the input before calculating Q, K and V , which is the approach used in Vaswani et al.

[138], the Transformer-XL inputs this information after these vectors have been extracted at

the time of calculating the attention score.

Using Q, K and V in conjunction with the relative position encoding r, the Transformer-

XL attention block is used to calculate attention vectors. As Figure 7.2 shows, these attention

vectors are then passed to a Feed Forward Block which comprises of two Linear layers, with

a ReLU activation on the first output and dropout applied to both.

Each self-attention block has multiple attention heads, each aiming to extract different

attention features and a self-attention block is repeated Nself times, with each layer feeding its

output to the next. Memory values M are persisted on a per-layer basis and therefore hidden
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states are specific to each self-attention block. The length of this memory m can be altered

during training and evaluation.

7.4.3 Cross-Attention

While it is reasonable to assume the main-agent speech is driving the majority of the

gestures, the interlocutor can also influence the motion of the agent indicating turn taking and

backchannel communication. For example, the main-agent might nod to show agreement or

understanding when the interlocutor is speaking. Therefore, the main source of information

driving the motion is from the main agent’s speech, but also includes the interlocutor’s speech.

The Transformer-XL is adapted to not only compute self-attention over the main-agent inputs,

but to also utilise cross-attention from the interlocutor while maintaining segment-level

recurrence and relative position encoding. This cross-attention block is shown in Figure 7.2.

Cross-attention is an attention mechanism where the Query Q is extracted from the

input source and the Key K and Value V are extracted from an external input element. The

introduced cross-attention block uses a similar approach as the self-attention block defined

in Section 7.4.2, but instead has two separate networks to process the inputs; one to extract

Q from the main-agent self-attention encoding and one to extract K and V derived from

the interlocutor speech. For each layer of cross-attention blocks, the input to the Q net is

a skip connection from the output of the self-attention encoder and therefore remains the

same input for all cross-attention blocks. The input to the KV net in the first iteration is the

interlocutor feature vectors (described in Section 7.4.1), and the output from a cross-attention

block thereafter.

The output from the cross-attention block is then passed to a single linear layer which

predicts Y, the standardised 6D rotations of each joint and the global position of the skeleton.
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7.4.4 Training Procedure

For each segment of speech of length w, the pose represented by a vector of joint rotations

Ŷ of length w is predicted. In motion synthesis it is common to include both geometric

and temporal constraints in the loss function to ensure that the model generates output

that is both geometrically and dynamically plausible [134, 145, 42]. The loss function Lc

comprises multiple terms including a L1 loss on the rotations (Lr), positions (Lp), velocity

(Lv), acceleration (La) and kinetic energy (Lv2) of each joint. yr and ŷr denote natural

mocap and predicted 6D rotations, respectively and yp and ŷp to be positions in world space

computed using Forward Kinematics given the predicted joint angles and the pre-defined

speaker-specific bone lengths, the following loss function is used:

Lr = L1(yr, ŷr)

Lp = L1(yp, ŷp)

Lv = L1( f ′(yp), f ′(ŷp))

Lv2 = L1( f ′(yp)
2, f ′(ŷp)

2)

La = L1( f ′′(yp), f ′′(ŷp))

Lc = λpLp +λvLv +λaLa +λrLr +λv2Lv2

(7.2)

Where f ′ and f ′′ are the first and second derivatives respectively. Each term has a λ

weighting to control the importance of each term in the loss. These values vary in orders of

magnitude due to positions and rotation values being in differing orders themselves. This

ensures that all terms are within the same order of magnitude.

Table 7.1 summarises the parameters used, optimised using a random grid search param-

eter sweep. These settings were chosen using a combination of low validation loss values

and observed quality of the predicted validation sequences. The X-Att-XL model is trained
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Hyperparameter Value
TransformerXL Head Dimension 32

Number Heads 32
Self-Attention Layers (Nself) 6
Cross-Attention Layers (Ncross) 2

Feed Forward Block Dropout 0.2
Hidden Size 4096

Embeddings Feature Embedding 1024
Speaker Embedding 8

Training Batch Size 32
Learning Rate 0.00001
λr 1
λp 0.01
λv, λa 0.5
λv2 0.2

Context Segment Length (w) 90 frames
Memory Length (m) 180 frames

Table 7.1 Training hyperparameters.

for 1770 epochs using the AdamW [87] optimiser and found that a segment length w of 90

frames and memory length m of 180 frames was optimal. The Feed Forward Blocks used in

both self and cross-attention layers are comprised using the same topology and size.

7.5 Results

The animation generated from the X-Att-XL model is smooth and temporally coherent

without jitter or sudden shifts in motion while maintaining gesture beats in time with speech.

Performance is first evaluated empirically and then subjectively. First, the model performance

of beat gestures is described, followed by a comparison to the natural motion that is performed.

Performance is then evaluated subjectively as part of the GENEA Challenge.

7.5.1 Beat Gestures

The X-Att-XL model appears to reliably and realistically animate beat gestures. Beat gestures

are simple and fast movements of the hands and have a close relationship to prosodic activity,

such as acoustic energy and pitch [147, 114]. The PASE+ model used for encoding audio in
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the X-Att-XL system was trained to estimate prosodic features as one of its downstream tasks,

making the derived audio features particularly suitable for animating beat gestures.

P    r    o g    r     a    m    s <mute>   medical

Fig. 7.3 Generated gestures for given audio beats. Using a 3s audio clip from the test dataset,
the audio spectrogram is shown, as well as aligned audio beat onsets and their corresponding
onset strengths as well as motion gesture onset detection of the right wrist using the method
of beat detection defined in Liu et al. [84]. During the syllable utterance “pro”, it shows the
speaker moves their right hand hand from right to left, and as the stressed syllable “grams” is
spoken, the hand begins to move left to right. When there is silence, the arms begin to rest
and again gesture in the next utterance.

Gestures are not expected to occur during every audio beat, but they should synchronise

with the speech when they happen. Using the motion and audio beat extraction method used

in the beat align score calculation presented in Liu et al. [84] and discussed in Section 2.5.2.2,

the onset of audio beats and motion gestures over time can be visualised. Figure 7.3 shows

two well-timed gestures for a 3-second audio clip. The utterance of “programs” shows a

beat gesture where during the syllable utterance “pro”, the speaker moves their right hand
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from right to left, and as the stressed syllable “grams” is spoken, the hand begins to change

velocity and move from left to right. An example of muted speech is also shown where the

X-Att-XL model continues to perform well. As there is no speech, there is little to inform

gesture; it shows the right arm drops to the side, and the left arm lowers slightly. However,

as the speech begins again, both arms raise in time with the speech.

7.5.2 Natural Motion Comparison

Despite the one-to-many mapping of speech and gesture, the characteristics of motion will

be similar. Comparing predicted motion to natural motion determines whether the generative

model captures the general motion characteristics and speaker-specific traits. Reviewing the

poses formed and velocities provides an overview of how the model performs against natural

motion.

Results are compared between six predicted sequences and the corresponding ground

truth natural motion in Figure 7.4. Each sequence of poses sampled at 1-second intervals is

plotted and overlayed to show the extent and types of generated gesturing. Additionally, the

magnitude of the velocity for the head and the right and left wrists and feet are calculated,

and the distribution for both ground truth and predicted sequences is displayed. The velocity

magnitude describes the movement characteristics, which should closely match the ground

truth. Each distribution should also indicate the amount of motion from each joint. Both

the wrist and head joints are important factors in gesture. These joints are chosen because

they are at the end of the kinematic chain and, therefore, display the most velocity change in

relation to others.

Figure 7.4 shows that the predicted sequences closely match the style of the ground truth

motion. The span of motion is slightly dampened compared to some ground truth sequences;

however, these are in the rare, extreme gesture space, which does not occur often in the
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Fig. 7.4 A test sequence from 6 different style categories shown for ground truth (left) and
X-Att-XL (right) for the same audio sampled every 1 second. Each example is shown with
the distribution of the velocity magnitude for the wrists, feet and head to indicate the amount
and speed of motion across the sequence.
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ground truth data. In each sequence, the magnitude of velocities is closely related to the

ground truth, with similar distributions present for each joint.

One aspect of the X-Att-XL model is the ability to model each speaker’s characteristics.

Rows a, b and c in Figure 7.4 represent different speakers in the dataset. It is clear from

both the speaker’s stance and range of motion, as well as the distribution of velocities, that

the speaker’s style has been adequately learned. Row b shows a speaker with wide arms

and legs, with both arms moving up and down a similar amount on each side, which is also

present in the predicted motion. Row c shows a speaker performing very little motion in

the ground truth, with only the right arm making any gestures. While the predicted motion

shows slightly more leg movement, the rest of the body is very similar, with only the right

arm used for gestures.

A difference between natural mocap motion and the X-Att-XL generated animation is that

the latter does not exhibit sporadic, non-speech related motion such as self-adaptor traits.

Self-adaptors are movements that typically include self-touch, such as scratching of the

neck, clasping at an elbow, adjusting hair or interlocking fingers [102]. Despite the indirect

relationship between these behaviours and speech, these traits are linked to the perceived

emotional stability of an agent [102] and may influence perceived human-likeness.

7.5.3 Back-Channelling

Subtle but important influences were observed in the results. There is evidence of back-

channel communication, such as head nodding and gesture turn-taking. These are sporadic

and difficult to show in static figures. However, these are evidenced in the publicly available

video2 associated with this work.

2 github.com/JonathanPWindle/uea-dh-genea23
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7.5.4 User Study Results

The X-Att-XL approach is evaluated in conjunction with the GENEA Challenge 2023 [76]

which is discussed in Section 2.4. Each challenge participant submitted 70 BVH files

for the main-agent motion generated using the main-agent’s and interlocutor’s speech for

each interaction. Motion is rendered on the same character for comparison using these

submitted BVH files. There are three studies of interest in this challenge; human likeness,

appropriateness to speech and appropriate to interlocutor.

Similar to Section 5.5, to effectively compare synthesised gesture, the GENEA Challenge

compared the submitted synthesised motion to both natural motion and pre-existing baseline

systems. Each motion condition was assigned a three-letter ID following a set structure:

N/B/S - Representing Natural/Baseline/Submission respectively.

A-L - Representing a unique ID.

For example, NA denotes the natural motion of the mocap sequences, and the ID which

will be used in Figures and Tables throughout to represent the proposed X-Att-XL is SJ.

Baselines slightly change the format where BD and BM are baseline systems in a dyadic and

monadic setting, respectively.

7.5.5 Human Likeness

This user study aims to evaluate whether the synthesised motion looks like the motion of an

actual human, independent of the speech. The evaluation method is similar to Section 5.5.1,

slightly changing the question presentation. The video stimuli audio is removed to ensure

the measure is for human-likeness alone and decoupled from appropriateness. A Human

Evaluation of Multiple Videos in Parallel (HEMVIP) [61] method was used to measure this.

For this question, multiple motion examples are presented in parallel, and the subject is asked

to assign a rating to each one. Each question asked “Please indicate on a sliding scale how
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human-like the gesture motion appears” while being presented with eight video stimuli to be

rated on a scale from 0 (worst) to 100 (best) by adjusting an individual GUI slider for each

video. This rating allows for pairwise statistical tests and produces a median rating for each

condition.

Summary statistics (median, mean) are shown in Table 7.2 and significance comparisons

are provided in Figure 7.5. The proposed X-Att-XL system (SJ) was evaluated to be the third

highest ranking out of the 14 generative methods with regard to mean and median human

likeness score. Figure 7.5 shows only NA, SG, and SF are significantly better than the

X-Att-XL. The X-Att-XL system scores significantly higher than nine other systems, including

both baseline systems.

Condi- Human-likeness
tion Median Mean

NA 71 ∈ [70, 71] 68.4±1.0
SG 69 ∈ [67, 70] 65.6±1.4
SF 65 ∈ [64, 67] 63.6±1.3
SJ 51 ∈ [50, 53] 51.8±1.3
SL 51 ∈ [50, 51] 50.6±1.3
SE 50 ∈ [49, 51] 50.9±1.3
SH 46 ∈ [44, 49] 45.1±1.5
BD 46 ∈ [43, 47] 45.3±1.4
SD 45 ∈ [43, 47] 44.7±1.3
BM 43 ∈ [42, 45] 42.9±1.3
SI 40 ∈ [39, 43] 41.4±1.4
SK 37 ∈ [35, 40] 40.2±1.5
SA 30 ∈ [29, 31] 32.0±1.3
SB 24 ∈ [23, 27] 27.4±1.3
SC 9 ∈ [ 9, 9] 11.6±0.9

Table 7.2 Summary statistics of user-study ratings from the human-likeness study, with
confidence intervals at the level α = 0.05. Conditions are ordered by decreasing sample
median rating. X-Att-XL model results are highlighted in pink . Table and caption from [76].
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Fig. 7.5 Significance of pairwise differences between conditions in human-likeness study.
White means that the condition listed on the y-axis rated significantly above the condition
on the x-axis, black means the opposite (y rated below x), and grey means no statistically
significant difference at the level α = 0.05 after Holm-Bonferroni correction. Conditions are
listed in the same order as in Table 7.2. Figure and caption from [76].

7.5.6 Speech Appropriateness

The appropriateness evaluation is designed to assess the appropriateness separate from the

motion’s intrinsic human likeness. It aims to determine whether the gestures produced

are appropriate to the speech, given the timing and meaning of both. To measure the

appropriateness of gestures to speech, participants were asked to view two videos and answer,

“Which character’s motion matches the speech better, both in terms of rhythm and intonation

and in terms of meaning?”. Both video stimuli are from the same condition and thus ensure

the same motion quality, but one matches the speech, and the other is mismatched, generated

from an unrelated speech sequence. Five response options were available, namely “Left is

clearly better”, “Left is slightly better”, “They are equal”, “Right is slightly better”, and

“Right is clearly better”. Each answer is assigned a value of -2, -1, 0, 1, 2 where a negative
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value is given for a preference for mismatched motion and a positive value for a preference

for matched motion.

Condi-
MAS

Pref. Raw response count
tion matched 2 1 0 −1 −2 Sum

NA 0.81±0.06 73.6% 755 452 185 217 157 1766
SG 0.39±0.07 61.8% 531 486 201 330 259 1807
SJ 0.27±0.06 58.4% 338 521 391 401 155 1806
BM 0.20±0.05 56.6% 269 559 390 451 139 1808
SF 0.20±0.06 55.8% 397 483 261 421 249 1811
SK 0.18±0.06 55.6% 370 491 283 406 252 1802
SI 0.16±0.06 55.5% 283 547 342 428 202 1802
SE 0.16±0.05 54.9% 221 525 489 453 117 1805
BD 0.14±0.06 54.8% 310 505 357 422 220 1814
SD 0.14±0.06 55.0% 252 561 350 459 175 1797
SB 0.13±0.06 55.0% 320 508 339 386 262 1815
SA 0.11±0.06 53.6% 238 495 438 444 162 1777
SH 0.09±0.07 52.9% 384 438 258 393 325 1798
SL 0.05±0.05 51.7% 200 522 432 491 170 1815
SC −0.02±0.04 49.1% 72 284 1057 314 76 1803

Table 7.3 Summary statistics of user-study responses from the appropriateness to speech
study, with confidence intervals for the mean appropriateness score (MAS) at the level α =
0.05. “Pref. matched” identifies how often test-takers preferred matched motion in terms of
appropriateness, ignoring ties. The X-Att-XL model results are highlighted in pink . Table
and caption from [76].

Table 7.3 provides summary statistics and win rates, Figure 7.6 visualises the response

distribution and Figure 7.7 shows significance comparisons. The X-Att-XL approach (SJ)

ranked second in the submitted systems. Figure 7.7 shows few significant differences between

pairwise systems. Only SG and the natural mocap (NA) rank significantly better than the

X-Att-XL system. Again, the X-Att-XL system ranks significantly better than nine other

conditions including the dyadic baseline system.
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Fig. 7.6 Bar plots visualising the response distribution in the appropriateness to speech study.
The blue bar (bottom) represents responses where subjects preferred the matched motion,
the light grey bar (middle) represents tied (“They are equal”) responses, and the red bar
(top) represents responses preferring mismatched motion, with the height of each bar being
proportional to the fraction of responses in each category. Lighter colours correspond to slight
preference, and darker colours to clear preference. On top of each bar is also a confidence
interval for the mean appropriateness score, scaled to fit the current axes. The dotted black
line indicates chance-level performance. Conditions are ordered by mean appropriateness
score. Figure and caption from [76].
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Fig. 7.7 Significance of pairwise differences between conditions in the appropriateness to
speech evaluation. White means that the condition listed on the y-axis rated significantly
above the condition on the x-axis, black means the opposite (y rated below x), and grey means
no statistically significant difference at the level α = 0.05 after Holm-Bonferroni correction.
Conditions are listed in the same order as in Table 7.3. Figure and caption from [76].
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7.5.7 Interlocutor Appropriateness

As the model includes awareness of the interlocutor’s speech and motion, the appropriateness

of the generated main-agent motion to the interlocutor’s speech is also evaluated. The

study used a similar technique for measuring speech appropriateness but differed in several

important aspects. The test data contained pairs of interactions, one with matched main-agent

and interlocutor interactions and another with the same main-agent speech but mismatched

interlocutor speech. Preference can be quantified for generated motion with matched over

mismatched interlocutor behaviour and, therefore, assess how interlocutor behaviour affects

the motion.

Cond-
MAS

Pref. Raw response count
ition matched 2 1 0 −1 −2 Sum

NA 0.63±0.08 67.9% 367 272 98 189 88 1014
SA 0.09±0.06 53.5% 77 243 444 194 55 1013
BD 0.07±0.06 53.0% 74 274 374 229 59 1010
SB 0.07±0.08 51.8% 156 262 206 263 119 1006
SL 0.07±0.06 53.4% 52 267 439 204 47 1009
SE 0.05±0.07 51.8% 89 305 263 284 73 1014
SF 0.04±0.06 50.9% 94 208 419 208 76 1005
SI 0.04±0.08 50.9% 147 269 193 269 129 1007
SD 0.02±0.07 52.2% 85 307 278 241 106 1017
BM −0.01±0.06 49.9% 55 212 470 206 63 1006
SJ −0.03±0.05 49.1% 31 157 617 168 39 1012
SC −0.03±0.05 49.1% 34 183 541 190 45 993
SK −0.06±0.09 47.4% 200 227 111 276 205 1019
SG −0.09±0.08 46.7% 140 252 163 293 167 1015
SH −0.21±0.07 44.0% 55 237 308 270 144 1014

Table 7.4 Summary statistics of user-study responses from the appropriateness to interlocutor
study, with confidence intervals for the mean appropriateness score (MAS) at the level α =
0.05. “Pref. matched” identifies how often test-takers preferred matched motion in terms of
appropriateness, ignoring ties. The X-Att-XL model results are highlighted in pink . Table
and caption from [76].
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Table 7.4 provides summary statistics and win rates. The X-Att-XL system ranked 8th in

this study, but only natural mocap (NA), SA, BD, and SL are rated significantly higher than

it as shown in Figure 7.8. This shows there is no significant difference to any other system,

except SH where the X-Att-XL was significantly better. Statistics in Figure 7.9 show that the

X-Att-XL system had the lowest number of negative scores (preference for the mismatched

dyadic interaction) and a large number of no preference scores.
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...over condition x, in terms of appropriateness to interlocutor

NA

SA

BD

SB

SL

SE

SF

SI

SD

BM

SJ

SC

SK

SG

SH

S
ig

n
if
ic

an
t 

p
re

fe
re

n
ce

 f
or

 c
on

d
it
io

n
 y

..
.

Fig. 7.8 Significance of pairwise differences between conditions in the appropriateness to
interlocutor study. White means that the condition listed on the y-axis rated significantly
above the condition on the x-axis, black means the opposite (y rated below x), and grey means
no statistically significant difference at the level α = 0.05 after Holm-Bonferroni correction.
Conditions are listed in the same order as in Figure 7.4. Figure and caption from [76].

7.6 Discussion

The X-Att-XL approach performed well with regard to human likeness and appropriateness

to speech. The X-Att-XL model performed comparably to 10 of the other systems with

regards to appropriateness to the interlocutor’s speech, but clearly, it can be improved in this

area. Figure 7.9 and Table 7.4 show that, for the X-Att-XL system, participants preferred
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Fig. 7.9 Bar plots visualising the response distribution in the appropriateness to interlocutor
study. The blue bar (bottom) represents responses where subjects preferred the matched
motion, the light grey bar (middle) represents tied (“They are equal”) responses, and the red
bar (top) represents responses preferring mismatched motion, with the height of each bar
being proportional to the fraction of responses in each category. Lighter colours correspond
to slight preference, and darker colours to clear preference. On top of each bar is also a
confidence interval for the mean appropriateness score, scaled to fit the current axes. The
dotted black line indicates chance-level performance. Conditions are ordered by mean
appropriateness score. Figure and caption from [76].

the mismatched stimuli least compared to all other systems (including natural mocap). The

majority of responses were tied, meaning that they considered the mismatched stimuli to be

of equal appropriateness as the matched animation. It is unclear where this uncertainty stems

from and more work is required to evaluate this cause. This may be due to the subtle and

sporadic nature of the interlocutor influence.

The overall impact of including the interlocutor’s speech is difficult to evaluate. Al-

though this chapter has not shown any statistical improvement, there are some observational

improvements. The appropriate back-channel communication, such as head nodding and

turn-taking through gesture, is evident, although sporadic. The sporadic nature of this means

it may be overlooked during subjective evaluation, or many evaluation clips may not include

these movements. The GENEA Challenge included two baselines, monadic and dyadic.

While there is no significant difference between these two methods, the lack of significant

difference and slight improvement from monadic to dyadic suggests that the inclusion of the
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interlocutor should not hamper performance and, therefore, is a worthwhile inclusion for

generative models in the future.

Although the proposed X-Att-XL method is deterministic, i.e. the same inputs will always

produce the same outputs, it could be possible to incorporate this design into a probabilistic

model. For example, this approach could be adjusted to incorporate probabilistic diffusion

[55, 104] methods.
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Chapter 8

Large Language Model Driven Gesture

Animation

Contributing Publications

• (2024). Llanimation: Llama driven gesture animation. In Computer Graphics Forum,

volume 43, page e15167. Wiley Online Library

8.1 Introduction

Speech and gesture are codependent, and gesture production is a complex function of audio

and text speech content, including semantics and prosody. For instance, beat gestures

synchronise with the timing of the speech audio dynamics, while iconic gestures convey the

shape of the discussed topic [17]. Historically, methods for automatically generating gestures

were predominantly audio-driven, exploiting the prosodic and speech-related content that is

encoded in the audio signal. While audio features effectively encode prosody, they may also

not capture semantics. Conversely, text features capture the content but may lack prosodic

information. It becomes apparent that a combination of features may yield optimal results.
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Large-Language Models (LLMs) are exposed to large natural language corpora, making

them exceptional in language and content understanding. This chapter explores the integration

of LLM embeddings into a gesture generation model to improve the semantic accuracy of

co-speech gestures. Experiments comparing methodologies for combining LLM embeddings

with audio features are defined, and results are reported using the objective and perceptual

performance to determine the contribution of each feature. The introduced approach, named

LLAniMAtion, utilises LLAMA2 language embeddings [136] and optionally combines them

with PASE+ audio features [120] in a Transformer-XL architecture [146]. Surprisingly, the

results show that LLM features perform significantly better than audio features, and no

significant difference is recorded when these two modalities are combined. This experiment

also demonstrates that LLM features contribute more to the perceived quality of the resulting

gesture animations than audio features.

This chapter describes the motivation for using LLM features. The LLAniMAtion ap-

proach is introduced and described with an experimental setup of how features can be

combined. An ablation study is performed to determine the effectiveness of LLM feature in

isolation and in combination with audio features through objective and subjective measures.

The methods are then further compared against the current state-of-the-art using objective

and subjective measures.

8.2 Large-Language Model Motivation

Speech-driven gesture generation has historically relied on audio features as its primary input.

While text-based features have gained momentum in recent research, the utilisation of LLM

features remains limited. This section reviews audio features to understand the common

features used in gesture generation and why these are useful features. The section also

reviews LLM models used in gesture and related fields, describing why they are particularly

suited to gesture generation models.
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8.2.1 Speech Features for Gesture Generation

Gesture generation systems widely adopt audio-based features. In the co-speech gesture

generation review by Nyatsanga et al. [106], out of 40 methods reviewed, 35 used audio

as an input feature. In contrast, only 17 methods involved text as an input. Audio features

can be embedded using various methods. Perhaps most common is the use of MFCC

[51, 6, 116, 47, 108, 8], sometimes combined with other prosodic features such as pitch

(F0) and energy [72]. Other latent representations such as Wav2Vec 2.0 [11] and PASE+

[120] have grown in popularity as these can also effectively encode important speech-

related information as well as prosodic features [145, 146, 103], while improving speaker

independence of the representation. Audio features are advantageous with regard to beat

gesture performance as these have a close relationship to prosodic activity, such as acoustic

energy and pitch [147, 114].

Numerous approaches leverage a combination of both audio and text features, with

different methods for incorporating textual information. Word rhythm was used by Zhou

et al. [158] where words are encoded in a binary fashion, taking the value 1 if a word is

spoken and 0 if not. Other works, such as those by Windle et al. [145, 146], discussed in

previous chapters and Yoon et al. [152] integrate FastText embeddings and Bojanowski et

al. [16] which extend the Word2Vec approach [1] exploiting sub-word information. BERT

features [31] have been successfully used in conjunction with audio in the work of [9]. BERT,

originally designed for language modelling and next-sentence prediction, is composed of

transformer encoder layers.

Using text as the exclusive input for gesture generation is infrequent, and performance

is often limited when used. Yoon et al. [153] and Battacharya et al. [14] employ word

embedding vectors [112] to facilitate gesture generation.

Text-based features are particularly advantageous in gesture generation as these inject a

level of lexical and semantic understanding. This should allow a generative model to generate
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more nuanced and varied gestures than those relying on prosodic elements only. Despite the

recognised advantages of text-based features, LLMs have not been used in the context of

gesture generation, whether in isolation or in combination with audio inputs. This highlights

a gap in the current research landscape that is explored in this chapter.

8.2.2 Large Language Models

Given the close relationship between language and gesture, the recent advances in LLM

performance present a promising avenue for advancing gesture generation.

LLM approaches fall into two categories: Encoder-Decoder/ Encoder only, often referred

to as Bidirectional Encoder Representations from Transformers (BERT) [31] and and Decoder

only, known as Generative Pre-trained Transformer (GPT) styles. These models typically

exhibit a task-agnostic architecture. The primary focus in this chapter is on GPT-style models,

which currently stand as leaders in LLM performance.

LLMs are typically trained as a text generation model, the input being the preceding text

and the output being proceeding text. GPT models typically consist of multiple Transformer

[138] layers followed by a linear layer, which is referred to as the head layer. The transformer

layers effectively encode a sequence into a latent embedding and the linear head is trained

to perform a specific task, such as sequence generation or classification, using these latent

values. Figure 8.1 shows a typical GPT architecture overview.

The text is initially encoded, often using Byte-Pair Encoding (BPE). This process can

break relatively rare words into subwords. For example, “thinking” breaks down into “think”

and “ing”; this introduces the knowledge that “think” can be used in multiple contexts,

often with a similar base understanding, but with additional nuances such as “ing” of

“s”. These encodings are tokenised to produce a mapping from word-space to a numeric

representation. This is a reversible process, and therefore, encoding and decoding this

tokenised representation must be possible. These tokenised values are then passed to a multi
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Fig. 8.1 A typical Generative Pre-trained Transformer (GPT) architecture overview. Multiple
Transformer [138] layers followed by a linear layer, which is referred to as the task specific
head layer.

layer Transformer [138] architecture, typically consisting of large and multiple layers. The

output from these multiple Transformer layers is then passed to a Task-specific head, in the

LLM training, this is to predict the next word, however, it is common to replace or fine-tune

this last layer after the base model is trained. This is because the Transformer layers produce

an embedded representation and understanding of the input. It is, therefore, possible to use

this as a text embedding value.

Numerous GPT-style models have been introduced, and among them, GPT-4 from

OpenAI [107] has emerged as a top performer across various language-based tasks. However,

GPT-4 is a closed-source solution. The leading open-source alternative is currently LLAMA2

[136], which surpasses other open-source LLMs in tasks related to commonsense reasoning,

world knowledge, and reading comprehension.
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LLMs have begun to garner attention in gesture-based tasks but have not been used as a

means of gesture generation. For instance, Hensel et al. [52] uses ChatGPT [107] for the

selection and analysis of gestures, while Zeng et al. [155] uses ChatGPT to analyse and

comprehend performed gestures. There are currently no established methods for generating

gestures directly from LLMs.

8.3 LLAniMAtion

In the exploration of using LLMs as a primary feature for co-speech gesture generation,

LLAniMAtion is introduced. LLAniMAtion utilises LLAMA2 text embeddings, which can

be used as an independent feature or in conjunction with PASE+ [120] audio features. The

generative model is based on the adapted Transformer-XL architecture presented in Chapter

7.

8.3.1 Speech Features

The LLAniMAtion method can leverage both audio and text-based features. Each modality

has differing sample rates, with audio sample values updating at a faster pace than text tokens.

Features are extracted at their original sample rates and aligned to fit the timing of a motion

frame at 30fps. N represents the number of ≈33ms motion frames in an input sequence. The

PASE+ and LLAMA2 model weights are frozen and not updated during training.

8.3.1.1 Audio

Audio features are extracted using the PASE+ model as these have been proven effective for

gesture generation [147, 145, 146]. PASE+ was trained by solving 12 regression tasks to learn

important speech characteristics using a multi-task learning approach. These tasks include

estimating MFCCs, FBANKs and other speech-related information, including prosody and
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speech content. Using this model, audio feature embeddings of size 768 for each 33ms audio

window are extracted to align with the 30fps motion. Consequently, audio feature vectors, A,

with a shape of (N ×768) are generated for each audio clip.

8.3.1.2 Text

Word-level features are extracted using the pre-trained, 7-billion parameter LLAMA2 model

[136]. LLAMA2 adopts a Transformer architecture and has been trained on a corpus of 2

trillion tokens sourced from publicly available materials.

For each speech sequence, the released transcript of the audio clip is tokenised and pro-

cessed by the LLAMA2 model. A sequence of embeddings is extracted using the transformer

layers of the LLAMA2 model. The tokenised input is fed to the model and passed forward

through all transformer layers but is not fed through any task-specific linear head. In Figure

8.1, the location of these features is shown with the “LLAMA Feature” label. Therefore,

an associated latent vector is extracted from the output of the last transformer layer for

each word in the utterance and these are used as the text embedding. For each word in the

utterance, an output embedding is assigned and frame-wise alignment is performed to ensure

that each embedding is synchronised with its corresponding motion frame timing at 30fps.

The process generates text-embedding vectors T of shape (N ×4096).

Alignment is achieved by repeating text embeddings as needed to synchronise with the

audio timing. In instances where a word spans multiple frames, the vector is duplicated for

the corresponding number of frames, and a zero-value vector is employed when no word is

spoken at a specific frame. Figure 8.2 provides an overview of the alignment process.

The input utterance is tokenised using a BPE method, meaning a single word may be

broken into multiple constituent parts. For example, the word “thinking” will be divided

into two tokens, “think” and “ing”. In such cases, only the embedding for the last token

is retained, and the embeddings for the preceding parts are discarded. For example, the

155
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"I am thinking of"
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timing

Start End Word Embedding
24.84 24.96 I emb0
24.96 25.4 am emb1
25.4 25.77 thinking emb3
25.77 26.07 of emb4

emb0
emb1
emb2
emb3
emb4

Frame-wise 
align at 30fpsmatch

embedding
with word

Fig. 8.2 Extracting text features using LLAMA2. The text is BPE-tokenised, and a LLAMA2
embedding is computed for each token. These embeddings are aligned with audio at 30fps
by repeating frames as necessary.

embedding associated with “ing” is used rather than “think”. This is common practice when

using LLMs as the final embedding is expected to encapsulate information about preceding

tokens.

8.3.1.3 Speaker style

For each utterance, a speaker label is additionally provided as input. This is a unique ID

per speaker which is passed through a learned embedding layer. The trainable weights of

this layer ensure that speakers with similar gesture styles are positioned closely in the latent

embedding space, while speakers with distinct gesturing styles are situated further apart. An

8-dimensional embedding is used to generate speaker vectors S with a shape of (N ×8).

8.3.2 Body Pose Representation

The body pose at time n is defined as:

yn = [xn,yn,zn,r j,1,n, ...,r j,6,N ] (8.1)
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where x,y,z denote the global skeleton position and r j,1:6,n form rotations for each joint j in

the 6D rotation representation presented by Zhou et al. [159]. These values are standardised

by subtracting the mean and dividing by the standard deviation computed from the training

data.

8.3.3 Model Architecture

In this chapter, the primary objective is to evaluate the impact of LLM features on the

animation of co-speech gestures. To accurately measure this effect, an established model

and training method are employed. Specifically, a model based on the Cross-Attentive

Transformer-XL, which demonstrated effectiveness in the GENEA challenge 2023 [146],

also described in Chapter 7. This approach is built on the Transformer-XL model architecture

[29] which uses segment-level recurrence with state reuse and a learned positional encoding

scheme to ensure temporally cohesive boundaries between segments. Chapter 7 extends

this architecture using cross-attention to incorporate the second speaker’s speech into the

prediction when used in a dyadic setting. Notably, this architecture delivers high-quality

results without the need for more involved training techniques such as diffusion.

Either a single modality or a combination of features are used to form the input feature

matrices X ∈ {Xa,Xt ,X+,X×}. Where Xa is audio only, Xt is text only, X+ is both concate-

nated, and X× is both combined using cross-attention. Please refer to Section 8.4.2 for more

details on the construction of this matrix. The model is trained on a dyadic conversation be-

tween a main agent and an interlocutor. Specifically, the main-agent’s gesturing is predicted,

conditioned on both main-agent and interlocutor speech. Consequently, a set of input features

are extracted for each speaker, Xma and X in, and a set of target poses for the main-agent, Y .

These extracted features are segmented into non-overlapping segments of length W frames.
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Given an input feature vector X of length W , the Transformer-XL predicts Ŷ of length W

using a sliding window technique with no overlap. Consequently, for a speech sequence of

length N, the model is invoked ⌈ N
W ⌉ times. Figure 8.3 shows an overview of this approach.

8.3.4 Training Procedure

Training LLAniMAtion methods use the same methodology as in Chapter 7, and the same

geometric and temporal constraints are used in the loss function. The loss function Lc

comprises multiple terms including a L1 loss on the rotations (Lr), positions (Lp), velocity

(Lv), acceleration (La) and kinetic energy (Lv2) of each joint. The loss is computed as:

Lr = L1(yr, ŷr)

Lp = L1(yp, ŷp)

Lv = L1( f ′(yp), f ′(ŷp))

Lv2 = L1( f ′(yp)
2, f ′(ŷp)

2)

La = L1( f ′′(yp), f ′′(ŷp))

Lc = λpLp +λvLv +λaLa +λrLr +λv2Lv2

(8.2)

where f ′ and f ′′ are the first and second derivatives, yr and ŷr are ground truth and predicted

6D rotations and yp and ŷp are positions in world space computed using Forward Kinematics

given the predicted joint angles and the pre-defined speaker-specific bone lengths. Each term

has a λ weighting to control the importance of each term in the loss.

All training parameters were kept the same as in Chapter 7. However, the Cross Attentive

Transformer-XL included an additional two self-attention layers. These additional layers

were chosen based on validation loss values and the quality of the predicted validation

sequences. Models are trained for 1300 epochs using the AdamW optimiser [87].
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Fig. 8.3 Overview of LLAniMAtion method. The model takes LLAMA2 features as input,
along with a speaker embedding and optional PASE+ features that encode the speech of
a main-agent and an interlocutor. The features are combined and processed through a
cross-attentive Transformer-XL model that produces gesture animation for the main-agent.
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8.3.5 Smoothing

The raw model output can contain low levels of high-frequency noise. Following other work

on motion synthesis [156, 158], a Savitzky-Golay Smoothing filter is applied to mitigate

this. A window length of 9 and a polynomial order of 2 is used. The small window size and

low polynomial mean this filter provides a very small amount of localised smoothing while

retaining accurate beat gestures.

8.4 Experimental Setup

Four distinct models are trained, each with a different set of features: 1) PASE+: An

audio-only model, 2) LLAniMAtion: A LLAMA2 text-only model, 3) LLAniMAtion-+: A

LLAMA2 and PASE+ concatenated model and 4) LLAniMAtion-×: A LLAMA2 and PASE+

cross-attention model. In this section the data and details of the model configurations are

described.

8.4.1 Data

The data used in this study is from the GENEA challenge 2023 [76], discussed in Section

7.2. This dataset is derived from the Talking With Hands dataset [78], containing dyadic

conversations between a main-agent and interlocutor. It comprises high-quality 30fps motion

capture data in Biovision Hierarchical (BVH) format. The dataset includes both speech audio

and text transcripts derived from both speakers in the conversations. The dataset is divided

into three splits: 1) train, 2) validation, and 3) test. The validation set is employed for model

tuning and refinement, while the test set is exclusively reserved for evaluation.
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8.4.2 Feature Combinations

The presented experiments use audio and text modalities in isolation and additionally inves-

tigate two approaches for combining the two modalities: 1) post-extraction concatenation

and 2) cross-attention, respectively referred to as LLAniMAtion-+ and LLAniMAtion-×. In

Figure 8.3, this is shown as a “Feature Combination” box and decides which modalities are

used and how they are combined, depending on the LLAniMAtion setting.

8.4.2.1 Single Modalities

To use each modality individually, the speaker S matrices are concatenated with the audio

A or text T along the feature dimension to form Xa and Xt , respectively. The concatenated

matrix is then passed through a linear layer, giving:

Xa = Wa(A,S)⊤+Ba

Xt = Wt(T ,S)⊤+Bt

(8.3)

where Wa, Wt , Ba and Bt are learned parameters. Xa and Xt are used as inputs for training

the single modality audio and text-based models respectively.

8.4.2.2 Concatenation

To combine modalities A, T and S matrices are concatenated along the feature dimension.

The concatenated matrix is then passed through a linear layer, giving:

X+ = W(A,T ,S)⊤+B (8.4)

where W and B are learned parameters. This results in X+ which are the concatenated audio

and text features and serve as the input to LLAniMAtion-+.
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8.4.2.3 Cross-attention

Additionally, cross-attention is used to experiment with the method of combining audio

and text features. Cross-attention has been shown to be an effective method of combining

modalities, as evidenced in Ng et al. [103]. In this approach, the style embedding is first

concatenated to both audio and text features. The two concatenated matrices are then linearly

projected into the same feature dimension size, d, following Equation 8.3. Cross-attention is

performed on the feature dimension, such that the projected audio features, Xa, serve as the

query, while the projected text features, Xt are set as the key and value [138]:

X× = softmax(
XaX⊤

t√
d

)Xt (8.5)

giving the cross attention combined audio and text features X× which are used as input for

training LLAniMAtion-×.

8.5 Evaluation

An evaluation is presented to determine the efficacy of LLAMA2 features for gesture gen-

eration, in isolation and in combination with audio PASE+ features. This section presents

the observations and reports the associated performance metrics. Finally, a user study is

described that measures the differences in perceived quality.

8.5.1 Observations

Noticeable differences are observed between the animation produced by the PASE+-based

model and the LLAniMAtion method. The PASE+ version primarily generates beat gestures,

whereas the LLAniMAtion model exhibits more varied motions, encompassing both beat

and semantic gestures. The animation from LLAniMAtion appears to be more expansive
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and confident. Video examples and comparisons showing this effect can be seen in the

supplementary material1.

8.5.1.1 Beat Gestures

Beat gestures are characterised by simple and fast movements of the hands, serving to

emphasise prominent aspects of the speech [17]. These gestures have a close relationship

with the timing of prosodic activity, such as acoustic energy and pitch [147, 114]. Given that

these prosodic features can be directly derived from the audio signal, an audio-based model

can be very effective at generating beat gestures. A beat gesture is not necessarily expected

for every audio beat, but when performed, it is likely to be well-timed with the audio beats.

Using the motion and audio beat extraction method defined in the beat align score

calculation proposed by [84], the onset of audio beats and motion gestures over time can

be visualised. Remarkably, LLAniMAtion with LLAMA2 and no audio features consistently

executes beat gestures in synchronisation with audio beats despite lacking explicit energy

or pitch information. Figure 8.4 shows a 1.5-second clip with the left wrist motion onsets

in green and audio beat onsets in red. A speaker can be seen swiftly moving their left hand

from left to right in time with audio beats and returning close to their original pose.

Although the LLAMA2 embeddings are temporally aligned, providing the model with

awareness of word timings, there is no explicit knowledge of syllable-level timing. Further

investigation is needed; however, it is plausible that training with LLAMA2 embeddings

may effectively encode information regarding the presence of lexically stressed syllables in

context within words.

1 https://youtu.be/jBXpWocXvZ8
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Fig. 8.4 Generated gestures for given audio beats using LLAniMAtion method. Using a 1.5s
audio clip from the test dataset, the audio spectrogram is shown, as well as aligned audio
beat onsets and their corresponding onset strengths, as well as motion gesture onset detection
of the left wrist using the method of beat detection defined in [84]. The speaker moves their
left hand from right to left and back again as the syllables are stressed.

8.5.1.2 Semantic gestures

Semantic gestures are often directly linked to speech content, such as mimicking an action or

nodding the head in agreement. During empirical observations, the LLAniMAtion method

demonstrated superior performance compared to the audio PASE+-based model in generating

these types of gestures.

In a test sequence where a speaker is describing the act of eating a crab, the LLAniMAtion

gestures exhibit more activity compared to the PASE+ version, particularly when the speaker
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uses their hands to illustrate actions. This is exemplified when the hands mimicked sticking

a fork in a crab for consumption in time with the verbal description. This sequence can be

seen in Figure 8.5 and the supplementary video2.

LLAniMAtion demonstrates the capacity to adequately encode agreeableness. For exam-

ple, Figure 8.6 shows a predicted test sequence where the speaker can be seen nodding along

with the word yes.

Fig. 8.5 Example sequence showing a speaker mimicking the use of a fork with their right
hand while describing eating crab generated using the LLAniMAtion method

Fig. 8.6 Example nod motion temporally aligned with the word “yes” being spoken. from a
test sequence generated using the LLAniMAtion

8.5.1.3 Laughter

During the transcription process of the GENEA dataset, laughter without speech was denoted

using “###”. This representation was directly input to the LLAMA2 model for feature

extraction. Although the generated embedding would not encode any semantic meaning,

2 https://youtu.be/jBXpWocXvZ8
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Fig. 8.7 Example laughter sequence generated using the LLAniMAtion method

the model learns to associate these tokens to laughter. The LLAniMAtion method captures

moments of laughter as illustrated in Figure 8.7, where the character partially creases over.

This specific behaviour is not observed in the gesture animation produced by the PASE+-

based model .

8.5.2 Performance Metrics

Evaluating the objective performance of gesture generation poses a challenging research

question, primarily due to the many-to-many ambiguous relationship between speech and

gesture. No single metric has been developed that correlates with human perception. However,

a combination of metrics can be used as a means to somewhat evaluate the quality of the

generated gesture. Frèchet Gesture Distance (FGD) [152, 13, 103], Frèchet Kinetic Distance

(FDk) [103] and Beat Alignment (BA) [83, 84] are useful metrics for this task. These metrics

are indicative of static and dynamic appropriateness and the alignment of motion to speech

[8, 84, 152]. Each is discussed in further detail in Section 2.5.2.

Frèchet Gesture Distance is a measure based on the Frèchet Inception Distance (FID)

[54], which is commonly used for evaluating generative models. A pre-trained autoencoder

extracts domain-specific latent features from both ground truth and predicted motion. The
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Model FGD ↓ FDk ↓ BA↑
PASE+ 79.90 34.37 0.871
LLAniMAtion 61.86 24.23 0.855
LLAniMAtion-+ 47.56 23.79 0.869
LLAniMAtion-× 66.87 25.70 0.865

Table 8.1 Frèchet Gesture Distance (FGD) , Frèchet Kinetic Distance (FDk) and Beat
Alignment (BA) scores for each system calculated with respect to the ground truth test
dataset.

FGD score is a Frèchet distance between the two multivariate Gaussian distributions of these

features in latent space. This measures the similarity between the generated and ground

truth poses but does not necessarily indicate how well the generated examples temporally

align with the audio. Frèchet Kinetic Distance is similar; however, there is no auto-encoding

process. Instead, the first derivative of each joint is used to determine the distribution of

velocities for both the ground truth and predicted motion. FDk is the Frèchet Distance

between these two distributions.

Beat Alignment has been adapted from music synthesis [83] to work with gesture gen-

eration [84]. This gives a synchrony measure between audio and gesture beats by using a

chamfer distance between them. Beats are detected using the root mean square onset of the

audio, and a motion beat is identified by the local minimums of the velocity.

8.5.2.1 Results

The measures presented in Table 8.1 indicate that the FGD and FDk scores are consistently

lower for all LLAMA2-based models than for the model trained on PASE+ features. This

suggests that the motion generated by LLAniMAtion may be closer to ground truth, with

LLAniMAtion-+ showing the most realistic motion. The BA score suggests that the audio

features are the most timely as expected due to the increased prosodic knowledge, however,

the differences between this and the LLAniMAtion methods are minimal. Notably, the method

with no audio features is competitive in FGD and BA scores.
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8.5.3 User Study

A user study is presented to further evaluate perceived human likeness and appropriate-

ness of the animations from the PASE+-based model compared with the LLAMA2-based

LLAniMAtion method. Participants were hired through the Prolific3 platform with 50 par-

ticipants in each experiment after removing any participants that failed attention checks.

Participants were filtered to be fluent in English. For this study, a similar methodology to

Alexanderson et al. [8] and the GENEA Challenge 2023 [76] is used.

All test sequences for each method were rendered on the same virtual avatar released by

Kucherenko et al. [76], as shown in Figure 6.4. The exact clip timings from the GENEA

Challenge are used, comprising 41 clips with an average duration of 10 seconds each. During

evaluation, users exclusively heard the audio of the main-agent being animated.

In the pairwise system comparison, participants were presented with two side-by-side

videos generated for the same audio but with different systems. To mitigate bias, the question

order is randomised and randomly swap the side of the screen that each condition is shown.

The question for all studies was posed as “Which character’s motion do you prefer,

taking into account both how natural-looking the motion is and how well it matches the

speech rhythm and intonation?”. The participants were asked to choose from the options

{Clear preference for left, Slight preference for left, No Preference, Slight preference

for right and Clear preference for right}. The scoring methodology uses a merit system

[109] where an answer is given a value of 2, 1 or 0 for clear preference, slight preference and

no preference, respectively. Preference testing allows a win rate calculation where a win is

assigned when there is an identified preference for a system, not including ties. A one-way

ANOVA test with a post-hoc Tukey test was subsequently used for significance testing.

3https://www.prolific.co/
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vs PASE+ vs LLAniMAtion vs LLAniMAtion-+ vs LLAniMAtion-×
Merit Score Win Rate Tie Rate Win Rate Tie Rate Win Rate Tie Rate Win Rate Tie Rate

PASE+ 0.37±0.05 - - 25.4% 11.4% 24.6% 14.8% 28.4% 14.8%
LLAniMAtion 0.68±0.06 63.3% 11.4% - - 38.6% 22.3% 44.3% 14.8%
LLAniMAtion-+ 0.69±0.06 61.0% 14.8% 39.0% 22.3% - - 43.2% 20.8%
LLAniMAtion-× 0.64±0.06 56.8% 14.8% 40.9% 14.8% 36.0% 20.8% - -

Table 8.2 User study results. Merit scores [109] with 95% confidence intervals, win and tie
rates for each comparison.

8.5.3.1 Results

Table 8.2 summarises the results of the user study. These findings validate the objective

measure scores in that all LLAniMAtion-based models outperform the PASE+ audio-only

method. According to the merit score, all LLAniMAtion methods were significantly preferred

over the PASE+ approach (p < 0.001). Win and tie rates show that LLAniMAtion methods

win or are tied with PASE+ most of the time. Surprisingly, the highest win rate is recorded

by the LLAniMAtion method with no PASE+ features included, suggesting that using text as

a sole input is sufficient to generate plausible speech gesturing, and that audio features are

somewhat redundant in the model

Between each LLAniMAtion method, there is no statistically significant difference in

merit scores. The win and tie rates against LLAniMAtion are examined to determine if adding

PASE+ features will provide additional preference. It is evident from these rates that the

choice between LLAniMAtion settings is almost tied to wins and losses. LLAniMAtion-+

wins 1.9% less than LLAniMAtion-×; however, the tie rate is higher and therefore loses less

than LLAniMAtion-×.

This initial study concludes that LLAMA2 features are powerful at encoding information

useful to gesture generation and can produce more realistic-looking gestures than a model

trained on audio input. Combining modalities also does not make a significant difference,

although the concatenation of features performs slightly better than the cross-attention

regarding merit scores and win/tie rates.
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Model FGD ↓ FDk ↓ BA↑
LLAniMAtion 61.86 24.23 0.855
LLAniMAtion-+ 47.56 23.79 0.869
CSMP-Diff 30.620 12.61 0.866

Table 8.3 Frèchet Gesture Distance (FGD) [152], Frèchet Kinetic Distance (FDk) and Beat
Alignment (BA) [84] scores for each system calculated with respect to the ground truth test
dataset.

8.6 Comparison Against State-Of-The-Art

The previous study has shown that a significant performance improvement was achieved

by integrating LLM features into gesture-generation models. Additional experiments are

performed to compare the best performing LLAniMAtion and LLAniMAtion-+ approaches

against both ground truth and the current state-of-the-art method. This broader evaluation

aims to assess performance across the field.

LLAniMAtion is compared against the state-of-the-art Contrastive Speech and Motion

Pretraining Diffusion (CSMP-Diff) diffusion method [30], which achieved the highest human-

likeness and speech appropriateness rating among the entries to the 2023 GENEA challenge.

This method uses a CSMP-Diff module, which learns a joint embedding for speech and

gesture with the aim of learning a semantic coupling between these modalities. The output

from this method is used as a feature in a diffusion model based on the Listen Denoise Action

method by Alexanderson et al. [8].

Objective performance metrics are shown in Table 8.3. CSMP-Diff performs better in

FGD and FDk scores. Minimal differences are found in the BA score, with LLAniMAtion

marginally outperforming CSMP-Diff. This difference in performance is likely explained

by the observed motion from CSMP-Diff looking more human-like and, therefore, scoring

higher in FGD and FDk. However, when considering the appropriate timing of gestures, the

timings are very similar, and therefore, the BA scores remain similar.
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vs GT vs LLAniMAtion vs LLAniMAtion-+ vs CSMP-Diff
Merit Score Win Rate Tie Rate Win Rate Tie Rate Win Rate Tie Rate Win Rate Tie Rate

GT 1.16±0.05 - - 78.6% 8.9% 74.8% 8.9% 68.9% 11.1%
LLAniMAtion 0.34±0.04 12.5% 8.9% - - 34.2% 33.6% 31.4% 16.1%
LLAniMAtion-+ 0.36±0.04 16.4% 8.9% 32.2% 33.6% - - 35.6% 14.4%
CSMP-Diff 0.58±0.05 20% 11.1% 52.5% 16.1% 50.0% 14.4% - -

Table 8.4 User study results. Merit scores [109] with 95% confidence intervals, win and tie
rates for each comparison.

The user study is repeated following the protocol as described in Section 8.5.3, and the

results are summarised in Table 8.4. In terms of merit score, the ground truth was perceived

as significantly better than any other method (p < 0.001), underscoring the current challenge

in consistently generating human-realistic gesturing. CSMP-Diff was considered superior to

both LLAniMAtion methods (p < 0.001). Despite this difference, when examining the win

rates against CSMP-Diff, the LLAniMAtion method wins 31.4% of the time and ties 16.1%.

Meanwhile, the LLAniMAtion-+ method won 35.6% of the time and ties 14.4%. In each

case, LLAniMAtion and LLAniMAtion-+ are rated as good or better than CSMP-Diff 47.5%

and 50% of the time, respectively.

CSMP-Diff incorporates both diffusion and contrastive speech and motion pre-training,

representing two advanced and complex techniques. Despite these sophisticated methods, the

evidence indicates that LLAniMAtion, even in the absence of any audio input, can perform as

well as or better than CSMP-Diff nearly half the time. This suggests that LLAMA2 features

serve as incredibly valuable feature encodings for gesture animation.

8.7 Discussion

The use of LLAMA2 features for speech-to-gesture generation has been explored using the

proposed LLAniMAtion method. With the use of LLAMA2 features it is possible to generate

well timed and contextually rich gestures even without the inclusion of any audio feature

embedding. The use of combining both audio and text modalities through concatenation and
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cross-attention is explored and found that there was no significant difference in the inclusion

of PASE+ features when compared to using LLAMA2 features in isolation. The performance

improvements when incorporating the LLAMA2 features into a gesture-generation model has

been demonstrated through both objective and subjective measures. Given this finding, it can

be suggested that human speech-related gesture animation is heavily related to the semantic

encoding that is present in the LLAMA2 embeddings and that these embeddings additionally

capture a notion of prosody from the language context. This is a somewhat surprising finding,

and a result may have great practical impact on future content-aware animation systems.

The LLAniMAtion approach is additionally compared to ground truth as well as the

state-of-the-art CSMP-Diff approach. The evaluation revealed that both LLAniMAtion and

CSMP-Diff have areas where improvement is possible as they are unmatched against ground

truth. While CSMP-Diff remains state-of-the-art, it is a complex model necessitating both

diffusion and contrastive pre-training. Conversely, the introduced LLAniMAtion method does

not require the computationally expensive diffusion method or any pre-training and was still

rated as good or better than CSMP-Diff 50% of the time. Integrating LLM features into

state-of-the-art systems will be a step towards bridging the gap between machine-generated

and natural gesturing.

The use of only text-based features may prove useful in future as automatic Text-To-

Speech (TTS) performance increases. The use of TTS could be considered cheaper and

more flexible than audio recording as the speaker voice and style can be directly controlled

without complicated recording and actor requirements. This work has also experimented

with the use of generating gestures from TTS audio. Speech was generated using Bark [5],

with word utterance timings extracted using OpenAI Whisper [118]. Using these automated

methods, it is possible to go from text to audio speech and gesture automatically and produce
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human-like and appropriate gestures. An example of this can be seen in the supplementary

video4 associated with this work.

4 https://youtu.be/jBXpWocXvZ8
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Chapter 9

Conclusions and Future Work

9.1 Discussion

This work has reviewed the gesture generation landscape, analysed co-speech gesture data and

introduced multiple novel approaches for automatic speech-to-gesture animation. Specifically,

several models have been developed and evaluated to generate gesture animation from speech

audio and text, a combination of both, or each independently. With each development, a key

research question underpinned the motivation for each approach.

This work initially delved into a co-speech gesture dataset in Chapter 4, focusing on

lateral symmetry to further understand co-speech gestures and whether lateral mirroring is

an appropriate data augmentation approach. This work, published in Speech Communication

[147], analyses arm motion’s positional, temporal and informational symmetry. The discus-

sion of the efficacy of lateral mirroring of the human body for data augmentation concludes

that lateral mirroring is unsuitable as a generic approach. Instead, this work suggests that

including laterally mirrored poses as a new identity is a suitable data augmentation method.

This work also introduces statistically derived gesture spaces, which may be helpful for

further analysis and evaluation methods in future.
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With complete data analysis and an adequate understanding of the co-speech gesture data,

the work focuses on deep-learning approaches for animated gesture generation from speech.

The initial approach discussed in Chapter 5 and published in the International Conference on

Multimodal Interaction [145] compares a single decoder against a multiple decoder method.

The method here explores whether several decoder experts, each focusing on decoding a

specific body part, might be better served than decoding the entire body simultaneously.

Each model consists of a backbone of a Bi-Directional Long Short Term Memory (BLSTM)

model using Problem Agnostic Speech Encoding (PASE+) audio features and FastText text

embeddings. Each model performed competitively in the Generation and Evaluation of

Non-verbal Behaviour for Embodied Agent (GENEA) challenge 2022, but some issues with

the multiple decoder method were found. Notably, there is a disparity in leg motion for the

rest of the body, likely due to a weak correlation between leg motion and speech. Despite

this, the hand and arm motion did appear to improve when using an expert decoder for each,

and therefore, with further work, this method may be effective.

Due to the physical aspect of motion, physiology can influence future motion. For

example, what the body does in the past will impact the future motion based on position,

acceleration and velocity of motion. Chapter 6 introduces a novel gesture diffusion network

which generates style-conditioned gestures from PASE+ audio features with knowledge of

an extended historical context using the Transformer-XL [29] architecture. This experiment

produced state-of-the-art gesture generation and explored the impact of varying historical

context lengths. This method found that increasing the context produced smooth motion,

reduced repetitive behaviours such as repeated weight shifting from one leg to another

and enabled the model to disambiguate between periods of inactivity and short pauses in

the speech. This is an example of a probabilistic approach which is desirable in gesture

generation due to the many-to-many mapping of speech and gesture. By using a probabilistic

approach, this gives animators more flexibility and diversity in their gesture control, being
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able to produce many gesture sequences for the same speech and choose the most appropriate

depending on their needs. Probabilistic models are, however, dependent on large datasets that

encapsulate the data distribution that is generalised to the problem, which may not always be

available and are expensive to capture.

Co-speech gesture often occurs in a dyadic context. While a person is listening and

interacting with the second, interlocutor speaker, this can often influence motion. The work

in Chapter 7 and published in the International Conference on Multimodal Interaction [146]

modifies the Transformer-XL attention mechanism to introduce the interlocutor speech via

cross-attention. This model was evaluated during the GENEA challenge 2023 and performed

competitively, ranking third in human-likeness and second in appropriateness to speech out

of 14 other generative methods. Introducing the interlocutor did not drastically improve

performance; however, it did subtly improve these results. For example, reactive head nods

during listening portions of the interaction and gesture turn-taking are evident during periods

where the second speaker is attempting to take the speech turn. These characteristics were

not present in a model without the interlocutor included.

Large-Language Models (LLMs) are currently state-of-the-art natural language process-

ing models. These models are being applied to various tasks that include natural language.

Given the close relationship between natural language and gesture, Chapter 8 explores using

LLM features for gesture generation. This method uses the same model as in Chapter 7 as a

solid baseline model and explores using LLAMA2 [136] as a language feature extractor. This

introduces the LLAniMAtion model approach and evaluates the performance impact of using

LLAMA2 features in combination with PASE+ audio features and in isolation. This work

demonstrated that LLM features contribute more to the perceived quality of the resulting

gesture animations than audio features. The use of LLAMA2 features was able to generate

well-timed and contextually rich gestures even without the inclusion of any audio feature

embedding. The work explored combining audio and text modalities through concatenation
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and cross-attention and found no significant difference in the inclusion of PASE+ features

when compared to using LLAMA2 features in isolation. This work suggests that integrating

LLM features into state-of-the-art systems will be a step towards bridging the gap between

machine-generated and natural gesturing.

9.2 Application in Industry

Speech-to-gesture is a highly applicable topic in the animation and games industry. Current

animation solutions rely on expensive and slow processes such as motion capture or hand

animation. The automatic nature of the approaches described in this thesis are explicitly

designed to fit into pre-existing animation pipelines. The generated animations may be used

as is or provide animators a starting point to control or finely adjust. Non-Playable Characters

and background characters are a notable application where these methods may be used.

These characters often use pre-recorded lines and therefore the motion can be generated in

advance. With the work described in this thesis, these approaches can help companies scale

their animation efforts where they cannot afford the number of animations desired. This

work can also allow artists to be more flexible with scene composition as many animators

will choose camera positions that crop most of the body in order to limit the amount of body

animation effort required. With the inclusion of automatic gesture generation in the pipeline,

this limitation may be avoided.

When deploying these methods in industry, research and clear expectations need to be

considered. In any of the methods mentioned in this thesis, there are limitations, and when

applying any of the methods, there is a balance of gesture quality, efficiency in training and

inference, latency of approaches and gesture diversity. Diffusion models and LLM based

models such as those described in Chapter 6 and 8 respectively produce the overall best

gesture quality in this work. However, these are computationally very expensive and may

not be appropriate to run client-side. The windowing approaches in most of the introduced
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methods mean that there is an inherent latency in these approaches as they rely on some

frames of look-ahead to perform effectively. The LSTM approach described in Chapter 5

could be adapted to work without a look-ahead and may be appropriate for a lower latency

option at the risk of lower-quality animation. If the goal is to have a diverse range of outputs

for a single speech utterance, then a computationally expensive method such as Diffusion

would be beneficial, however, at the cost of computational efficiency.

9.3 Further Work

While this thesis covers multiple aspects of automatic co-speech gesture generation, further

work is always needed. This section discusses potential further work regarding speech

features, particularly text embeddings. It also considers the application of generation in a

streaming capability. Finally, additional work on dyadic interaction is discussed.

9.3.1 Speech Features

The extracted speech features can be particularly critical to gesture generation from speech.

Chapter 8 found that semantic understanding is as important if not more important than the

prosodic elements of speech. Models like that used in Chapter 6 lack speech semantics,

so they cannot produce gestures relating directly to the utterance’s meaning. More work

is required to determine the potential improvement that may be gained by extending the

model to utilise additional conditioning features on verbal content to improve semantic

understanding [27, 153].

While using LLM features is powerful for generating contextually and semantically

correct gestures, more work is required to get performance closer to ground truth gestures.

Due to hardware constraints, only the 7-billion parameter release of LLAMA2 has been used
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in Chapter 8. The larger 70-billion parameter could be utilised with more resources, which

may produce more nuanced and varied gesturing.

LLMs continue to gain greater performance in language tasks; therefore, a complete

comparison of the multitude of released LLMs would be helpful. The LLAMA2 model is

not fine-tuned for the gesture domain. LLMs are known to perform well with prompting and

in-context learning [150] to fine-tune the model. Therefore, there are many opportunities for

further performance gain, such as whether fine-tuning these models for gesture generation is

beneficial or if the models are fine-tuned for a different conversational downstream task.

9.3.2 Real Time Streaming Models

Each model in this work did not focus on algorithm run-time complexity and was not

developed with latent-free streaming in mind. Most approaches described in this thesis rely

on a windowing requirement for prediction. This means the model can only be applied in an

offline environment and is unsuitable for real-time gesture generation. The window size of

the generation defines the latency of these models. In future work, these approaches could be

applied to a streaming context with a shorter buffer of frames to be predicted. This, however,

leads to a potential increase in the compute required due to the increase in model calls. More

work is needed to determine the performance would change when applying these methods to

a streaming context. While Chapter 6 describes an increase in historical context as beneficial

for gesture generation, it may also be beneficial for a model to predict a window of motion as

the model has some future context, too. This future context means the model may be aware

of when speech is ending and, therefore, when to reduce the gestures promptly or include

turn-taking hints in the motion. This knowledge could be lost in a streaming context, so more

work is needed to investigate the repercussions of a real-time streaming method.
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9.3.3 Dyadic Interaction

This work has explored the concept of the main speaker and interlocutor in a dyadic inter-

action, predicting the main speaker from both dyadic speakers’ speech. This inclusion of

the second speaker may still be improved with future methods of data inclusion. However,

future work may also explore the ability to generate both the main-agent and the interlocutor

speakers simultaneously. By predicting all agents involved, a model using this approach may

be particularly effective at turn-taking and mimicking.
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