
When children get the gist: The development of rapid scene categorisation☆

Elizabeth A.G. Watson * , Louise Ewing , George L. Malcolm
School of Psychology, University of East Anglia, Norwich, UK

A R T I C L E  I N F O

Keywords:
Scene perception
Cognitive development
Scene categorisation
Gist recognition

A B S T R A C T

Research surrounding adult recognition of scene gist is extensive; however, very little is known of its develop-
ment. Behavioural studies of scene processing tend to broadly support a protracted developmental trajectory, 
with a quantitative and perhaps also qualitative shift towards more adultlike processing across middle childhood. 
Here we sought to better understand the very early stages of children’s scene processing by targeting gist 
perception. Children aged 5–10 years categorised backwards-masked scenes presented at very brief durations. 
We drew inferences about the processing speed with which each age group extracted category-diagnostic infor-
mation by varying presentation durations, and the quality of information extracted by varying the level they were 
prompted to make their judgments (superordinate-level indicative of coarse global information, basic-level 
indicative of more detailed information). Children across all ages demonstrated a remarkably sophisticated 
ability to extract scene gist, with 5–6-year-old children performing above chance for scenes presented for as little 
as 32 ms for both superordinate and basic-level judgements. Categorisation performance also became more 
efficient with age. Overall, our novel findings indicate that young children possess an impressive ability to 
process a scene’s gist, which is followed by a protracted development towards expertise across middle childhood.

1. Introduction

Our world is comprised of complex and dynamic visual environ-
ments, and yet within milliseconds of encountering a novel scene we can 
piece together the essential features diagnostic of its category. This is 
referred to as recognising the gist of a scene (Greene & Oliva, 2009). 
People can efficiently recognise scenes presented for even very brief 
durations, from a single fixation (about 200 ms, see Tatler & Vincent, 
2008) to as little as 8 ms (e.g. Furtak et al., 2022). Encoding of scene gist 
is evident in our neural processes within the very earliest moments of 
perception, with EEG evidence revealing differences in brain activity 
within 100 ms of scene onset (Lowe et al., 2018). Since scenes are 
structured in statistically predictable ways (Kaiser & Cichy, 2021), 
knowledge of gist also facilitates access to knowledge of layout, 
including what objects to expect and their most likely locations (Carrigan 
et al., 2019; Greene et al., 2016; Võ et al., 2019). The ability to access 
this information enhances subsequent processing and is critical to acting 
within and navigating the world with ease.

Despite extensive research with adults, we know relatively little of 
how gist processing develops. Of those studies that have looked at scene 
processing more generally in children, emerging evidence supports a 

particularly protracted development. Quantitative and qualitative dif-
ferences exist in how children and adults view scenes, with younger 
children (<7 years) demonstrating longer fixations, and their gaze is 
also more likely to be captured by visual saliency (Helo et al., 2014). 
These developmental differences bring into question what information 
children can extract in a single fixation. Furthermore, research into 
children’s attention towards scenes has suggested the presence of bias 
towards objects, with 4-year-old children demonstrating difficulties 
directing attention away from task-irrelevant objects (Darby et al., 
2021). Young children have also been found to preferentially represent 
objects, but not walls, when drawing scenes (Dillon, 2021), and 
demonstrate a subjective preference for objects, viewing them as more 
useful and valuable than other scene features (Dillon & Spelke, 2017). 
This bias towards objects may direct children’s attention away from 
other important diagnostic information within scenes, such as more 
large-scale structures and overall layout. In the context of scene gist, a 
strategy that focuses on objects would be disadvantageous at brief du-
rations; diverting limited attentional resources away from the wider 
spatial distribution of the scene that is important for processing scene 
images efficiently (Kaiser & Cichy, 2021).

When encountering a new scene, understanding is possible at 
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different levels of specificity. For example, we can categorise places at a 
superordinate (e.g., indoors) or basic level (e.g., a kitchen; Tversky & 
Hemenway, 1983). Conceptualisation at a superordinate level predom-
inantly utilises the coarse, global information available within scenes 
(Schyns & Oliva, 1994), emerging early in perception (Fei-Fei et al., 
2007; Kadar & Ben-Shahar, 2012; Sun et al., 2016). Conceptualisation at 
the basic-level requires further extraction of detail (Malcolm et al., 
2014), suggested by the increased time taken to make basic judgments 
(Kadar & Ben-Shahar, 2012; Loschky & Larson, 2010). Recent work 
investigating the development of the scene-selective neural network, a 
system of regions characterised by their role in scene processing, sug-
gests that the parahippocampal place area (PPA) develops around 5 
years of age (see Dilks et al., 2022 for review). This element of the 
network is particularly sensitive to scene category (Walther et al., 2009) 
and openness (Kravitz et al., 2011). Regarding basic-level processing, 
the development of the lateral occipital cortex (LOC), which some sug-
gest supports an object-based channel for scene recognition compli-
menting the PPA (MacEvoy & Epstein, 2011) continues to develop into 
adolescence (Nishimura et al., 2015). However, findings surrounding 
the development of the scene selective network remain notably incon-
sistent across studies (see Dilks et al., 2023 for review). Here, the 
theoretical basis behind neuroimaging research for scene categorisation 
is wanting, i.e., it is not clear how or if these observed patterns of neural 
development align with behavioural milestones.

The current study is the first of its kind to explore the extraction of 
scene gist during development. Characterisation of these early percep-
tual processes constitutes a challenge for researchers even when work-
ing with adult participants. One way to investigate these mechanisms is 
to present backwards-masked scenes at brief durations in a scene gist 
recognition task. Manipulating the presentation time of scenes offers an 
accessible way to address the temporal dynamics of scene catego-
risation, without relying on potentially unreliable measures of response 
time from children. To investigate the quality of information processing, 
we manipulated the level at which participants were required to make 
category judgments. We hypothesised that across all durations, perfor-
mance in scene recognition would improve with age following a gradual 
transition toward more expert and adultlike processing (Helo et al., 
2014). We further predicted basic-level categorisation would be rela-
tively less sophisticated than at the superordinate-level, due to the 
protracted development of attentional mechanisms (Darby et al., 2021) 
and object-selective neural structures (Nishimura et al., 2015) that are 
recruited for the latter, more detail-oriented judgments.

2. Methods

2.1. Participants

The final sample comprised 102 participants: 31 children aged 5–6 
years, 35 children aged 7–8 years, and 36 children aged 9–10 years 
(Table 1). An additional sample of 31 adults was collected (see Sup-
plementary Table 1) but excluded from analyses due to ceiling effects 
(see Supplementary Table 1). Children were recruited from local science 
outreach events: 76% at a community science festival, and 24% in a 
‘pop-up laboratory’ at a local library. Adults were recruited and tested 
from the psychology student population at the host institution. Children 
received stickers and a certificate, and adults received course credit. The 
final sample did not include 4 participants (1 × 5–6 years, 1 × 8–9 years 

& 2 × 9–10 years) who answered no to a question at the end of the 
session asking if we could use their data in our research project. All 
participants performed above 75% on catch trials included to ensure 
they were paying close attention to the tasks (Table 1). The study was 
approved by the School of Psychology Ethics Committee at the Uni-
versity of East Anglia (project ref. ETH2223-0854). Informed consent 
was provided by the adult participants and parents/legal guardians of all 
children through an online form (Qualtrics, Provo, UT), and all children 
provided converging verbal assent.

2.2. Materials and procedures

Visual stimuli consisted of 48 high-definition photographs of natural 
scenes (see Fig. 1b), taken by the researchers, or from the internet (size: 
800 × 600 pixels). These included 24 indoor scenes anticipated to be 
familiar to children in all age groups (bathroom, bedroom, living room, 
kitchen) and 24 outdoor scenes (garden, beach, city, playground). 48 
unique masks were created from these scene images using MATLAB 
(v2021B) with Portilla and Simoncelli’s (2000) texture synthesis 
toolbox. Masks were pseudo-randomly assigned to trials and were never 
assigned to the scene they had been created from. Stimuli were pre-
sented using E-Prime 3.0 (Psychology Software Tools, Pittsburgh, PA) on 
a 52.7 × 29.8 cm monitor (resolution: 1920 × 1080 pixels), with par-
ticipants sitting at a comfortable distance from the screen.

Participants made 24 superordinate-level and 24 basic-level judg-
ments in two separate blocks. The researcher manually initiated the start 
of each trial after ensuring children were paying attention. Each trial 
began with a 500 ms fixation cross, followed by a scene that was pre-
sented for one of four randomly assigned durations, 32 ms, 64 ms, 100 
ms, 200 ms (balanced within blocks), and then by a visual mask for 50 
ms to prevent retinal persistence of the image (see Fig. 1a). Within each 
block, an additional four oddball “outer-space” catch-trials (highly 
visually distinct ‘space’ scenes) were presented for 100 ms to keep 
participants engaged and serve as an attentional check. Participants had 
three response options on each trial: two scene labels (one target, one 
foil) and one for “space”. In the superordinate task, the options were 
always “indoors”, “outdoors” and “space”. In the basic task, the three 
options were two basic-level category labels (one of which was correct) 
and “space”. The two basic-level category labels were always from the 
same superordinate category (i.e., both indoor scenes or both outdoor 
scenes) and the order of scenes (correct/incorrect) and pairing of scenes 
were counterbalanced. Participants verbalised their response which was 
then recorded by the researcher, who sat beside them in a one-on-one 
interaction and provided effort-based praise and encouragement 
throughout.

Before each block, five practice trials were completed wherein the 
presentation durations gradually decreased (1500 ms > 1000 ms > 500 
ms > 250 ms) with one additional catch trial (‘space’ scene) example 
also included (500 ms). These practice trials used basic-level categories 
different to the main task (dining room, office, mountain, and lake). 
Four versions of the experiment were created, in which the order of 
tasks, and images assigned to each condition were counterbalanced.

3. Results

Considering the exploratory nature of the study, a broad range of 
durations were applied. Within the superordinate task, children 

Table 1 
Participant information.

Age Group M Age (SE) Age Range Gender (N) Neurodevelopmental Condition Status (N) M Catch Trial Accuracy (SE)

Min Max Female Male Non-Binary No Yes Unsure Superordinate Basic

5–6 years 6.08 (0.12) 5.09 6.91 18 13 0 29 1 1 0.96 (0.02) 0.93 (0.02)
7–8 years 8.16 (0.09) 7.16 8.92 17 18 0 34 1 0 0.96 (0.01) 0.96 (0.02)
9–10 years 9.99 (0.08) 9.17 10.90 25 11 0 30 2 4 1.00 (0) 0.96 (0.02)
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performed exceedingly well at 200 ms, demonstrating a notable ceiling 
effect (see Supplementary Table 2). For this reason, analyses of the 
superordinate-level categorisation task data were restricted to the 32, 64 
and 100 ms durations. No ceiling effects were observed in the basic-level 
categorisation task data, thus all four durations were included in the 
analysis. These analyses were conducted using R Studio (RStudio Team, 
2024). For both tasks, one sample t-tests (IBM SPSS Statistics, v29.0.2.0) 
confirmed that all age groups performed significantly above chance at 
all durations, ps < 0.001 (see Supplementary Table 2). These basic tests 
confirmed that by 5 years, children are capable of extracting the gist of a 
scene (both basic and superordinate level) following viewing times as 
short as 32 ms.

3.1. Superordinate-level categorisation task

Firstly, we sought to investigate developmental changes in the su-
perordinate-level categorisation task (Fig. 2a). We analysed children’s 
task accuracy scores using a binomial, logistic mixed-effects regression 
model with duration (32 ms, 64 ms, 100 ms) and age group (5–6 years, 
7–8 years and 9–10 years) as predictors and subject number as a 
random-effects intercept, applying forward difference coding (lme4, 
v1.1–36). Residuals for each model were checked via QQ plots using the 
DHARMa package (v0.4.7). Model BIC scores were compared using 
Wald Chi-square tests (car package, v3.1–3; See Supplementary 
Table 3), which was also used to compare the predictors within the final 
model. Our final model included both duration and age group as pre-
dictors (χ2 (2) = 15.16, p < 0.001). Here, we observed a significant effect 

Fig. 1. (a) Overall schematics for task procedure (b) Example stimuli used within the experiment, organised into superordinate- and basic-level categories.

Fig. 2. (a) Superordinate-level Response Accuracy (b) Basic-level Response Accuracy. Mean accuracy scores at each duration, organised by age group with error bars 
indicating 1 SE of the mean. The dashed red line reflects chance at 0.33.
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of duration (χ2 (2) = 30.47, p < 0.001) and age group (χ2 (2) = 16.42, p 
< 0.001; see Supplementary Table 4). Including the interaction between 
duration and age group did not significantly improve the fit of the model 
(χ2 (4) = 8.10, p = 0.088), suggesting the developmental effect observed 
was consistent regardless of participant’s access to the scene information 
(presentation duration).

The pattern of differences underlying these main effects were 
examined via post-hoc tests using the emmeans packages (v1.10.7; test 
performed on the log scale, odds ratios reported, p values adjusted using 
Bonferroni method). All post-hoc test results can be found in Table 2. As 
expected, performance improved with longer durations, with significant 
improvement observed from 32 to 64, and 32 to 100 ms, but not between 
64 and 100 ms. Performance also improved with age across middle 
childhood, with both 7–8- and 9–10-year-old children performing 
significantly better than 5–6-year-old children. No further improvement 
in accuracy was seen between 7–8 and 9–10 years.

3.2. Basic-level categorisation task

A similar approach was taken to analyse the data from the basic-level 
categorisation task (Fig. 2b). Once again we compared accuracy scores 
using a binomial, logistic mixed-effects regression model, this time 
including 200 ms within our duration predictor (i.e., 32 ms, 64 ms, 100 
ms, and 200 ms) in addition to age group, with subject number as a 
random intercept, applying forward difference coding. Model BIC scores 
were compared using Wald Chi-square tests (see Supplementary 
Table 5). Our final model included duration, age group, and the inter-
action between duration and age group as predictors (χ2 (6) = 20.7203, 
p = 0.002). Here, we observed significant main effects of duration (χ2 

(3) = 122.443, p < 0.001) and age group (χ2 (2) = 122.443, p < 0.001), 
in addition to a significant interaction between the two (χ2 (6) = 19.835, 
p = 0.003; see Supplementary Table 6).

This significant interaction was explored further with post-hoc tests 
(performed on the log scale, odds ratios reported, p values adjusted 
using Bonferroni method). All post-hoc test results can be found in 
Table 3. Notably, while accuracy improved in the youngest group from 
32 to 64/100 ms, they were unable to utilise longer durations more 
effectively (i.e. no improvement from 64 to 100/200 ms). 7–8-year-old 
children were also somewhat inconsistent in their improvement across 
duration, with no improvement in accuracy between the shortest du-
rations (32 and 64 ms) but notable improvement with later durations, 
between 32 and 100/200 ms, and 64 and 200 ms. By contrast, 9–10- 
year-old children demonstrated clear improvement between all dura-
tions, apart from between 100 and 200 ms.

While each age group’s effectiveness in utilising extended durations 
differed, we were surprised to find no improvement in accuracy with age 
for stimuli presented at both 32 and 64 ms. Age differences only became 
notable at 100 ms, with 9–10-year-old children performing significantly 
better than 5–6-year-olds. At 200 ms, 9–10-year-old children performed 
better than both the 5–6- and 7–8-year-old groups.

4. Discussion

In the current study, we compared performance in scene gist cate-
gorisation across middle childhood (ages 5–10 years). Our main aims 

were to evaluate children’s ability to extract scene gist, varying the 
presentation time of scenes to infer the processing speed with which 
children can extract category-based information. We analysed this per-
formance by level of categorisation; first examining children’s abilities 
to extract the broad and coarse information associated with making 
superordinate-level (inside/outside) judgments, followed by their abil-
ity to extract more detailed information diagnostic of the basic-level (e. 
g. kitchen/bathroom, garden/playground etc.). Previous research has 
suggested that children undergo significant developmental changes 
within their perception and understanding of scenes across the targeted 
age range (Dilks et al., 2022; Helo et al., 2014). Our findings reveal for 
the first time that young children possess a sophisticated ability to 
rapidly extract key features of scene images and can accurately cate-
gorise scenes at both the superordinate and basic levels even at very 
short presentation durations. This ability becomes more refined with 
age, with older children able to extract more information in less time 
than younger children.

When prompted to categorise scenes at the superordinate level, all 
children were shown to be proficient. Even 5–6-year-olds performed 
well above chance from our shortest presentation durations, 

Table 2 
Post-hoc tests of significant effects within final superordinate model.

Contrast Odds Ratio SE p Cohen’s d

duration 32 ms/duration 64 ms 0.46 0.08 <.001 0.77
duration 32 ms/duration 100 ms 0.41 0.08 <.001 0.90
duration 64 ms/duration 100 ms 0.88 0.18 1.000 0.13
5–6 years/7–8 years 0.51 0.12 0.012 0.67
5–6 years/9–10 years 0.40 0.10 <.001 0.92
7–8 years/9–10 years 0.78 0.19 0.907 0.25

Table 3 
Post-hoc tests of significant effects within final basic model.

Contrast Odds Ratio SE P Cohen’s d

Within Age Group
5–6 years
duration 32 ms/duration 64 ms 0.45 0.10 0.003 0.81
duration 32 ms/duration 100 ms 0.49 0.11 0.010 0.72
duration 32 ms/duration 200 ms 0.33 0.08 <.001 1.12
duration 64 ms/duration 100 ms 1.09 0.26 1.000 0.09
duration 64 ms/duration 200 ms 0.73 0.18 1.000 0.32
duration 100 ms/duration 200 ms 0.67 0.17 0.634 0.40

7–8 years
duration 32 ms/duration 64 ms 0.70 0.15 0.627 0.35
duration 32 ms/duration 100 ms 0.44 0.10 0.002 0.81
duration 32 ms/duration 200 ms 0.27 0.07 <.001 1.29
duration 64 ms/duration 100 ms 0.63 0.15 0.289 0.46
duration 64 ms/duration 200 ms 0.39 0.10 0.001 0.94
duration 100 ms/duration 200 ms 0.62 0.16 0.405 0.48

9–10 years
duration 32 ms/duration 64 ms 0.42 0.09 0.001 0.88
duration 32 ms/duration 100 ms 0.20 0.05 <.001 1.62
duration 32 ms/duration 200 ms 0.09 0.03 <.001 2.46
duration 64 ms/duration 100 ms 0.48 0.13 0.036 0.74
duration 64 ms/duration 200 ms 0.21 0.07 <.001 1.58
duration 100 ms/duration 200 ms 0.43 0.15 0.112 0.84

Between Age Groups
Duration 32 ms
5–6 years/7–8 years 0.73 0.19 0.696 0.32
5–6 years/9–10 years 0.81 0.21 1.000 0.22
7–8 years/9–10 years 1.11 0.29 1.000 0.10

Duration 64 ms
5–6 years/7–8 years 1.15 0.32 1.000 0.14
5–6 years/9–10 years 0.75 0.22 0.944 0.29
7–8 years/9–10 years 0.65 0.18 0.376 0.426

Duration 100 ms
5–6 years/7–8 years 0.66 0.19 0.464 0.41
5–6 years/9–10 years 0.33 0.10 0.001 1.12
7–8 years/9–10 years 0.49 0.16 0.072 0.71

Duration 200 ms
5–6 years/7–8 years 0.61 0.19 0.360 0.49
5–6 years/9–10 years 0.21 0.08 <.001 1.56
7–8 years/9–10 years 0.34 0.13 0.016 1.07
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demonstrating an impressive ability to extract coarse, spatial informa-
tion from scenes. Overall, we observed significant improvement in 
ability to extract the superordinate-level scene gist from 5–6 years to 7–8 
and 9–10 years. No further improvement was seen between 7–8 and 
9–10 years, suggesting a potential plateau in children’s efficiency to 
extract scene gist at the superordinate level. This pattern of development 
across middle childhood is consistent with past research suggesting that 
these ages reflect a key time for scene processing development, e.g., 
other studies have reported a shift towards adultlike eye movement 
when viewing scenes (Helo et al., 2014).

Considering the limited number of neuroimaging studies in this area, 
it is difficult to say if our behavioural findings complement existing 
knowledge surrounding scene-selective network development. For 
example, some have proposed that scene categorisation undergoes an 
accelerated development in childhood, from infancy to 5 years, relative 
to navigation abilities in line with early presentations of adultlike 
selectivity to scenes in the PPA (Dilks et al., 2022). Our behavioural 
findings support this early emergence of categorisation abilities, but also 
suggest a potentially lengthy course towards scene expertise, mirroring 
research that has observed later development of the PPA and white 
matter tracts connecting scene-selective regions, with maturation 
extending into adolescence (Meissner et al., 2019, 2021).

When categorising scenes at the basic level, children again impres-
sively performed above chance at all durations, and all age groups 
demonstrated improvement with extended presentation duration. Sur-
prisingly, age differences were only observed when scenes were pre-
sented at 100 and 200 ms; the expertise we expected to see in older 
children was absent when presentation duration was restricted. Our 
findings further suggested that each age group was able to utilise in-
creases in presentation time to a different extent. Children aged 5–6 
years did not benefit from further viewing time after 64 ms, 7–8-year old 
children did not improve across the shorter durations (32–64 ms), while 
9–10-year-old children showed clear improvement across almost all 
durations. Here, young children’s attentional bias towards objects did 
not prove advantageous (Darby et al., 2021). Instead, differences in 
children’s ability to modulate and distribute attention may have affected 
their ability to recognise scenes at the basic level. When categorising 
objects, infants and younger children typically distribute their attention 
more diffusely as opposed to selectively attending to the most diagnostic 
features (Best et al., 2013; Huang-Pollock et al., 2011). Additionally, 
research suggests that children’s visual working memory (VWM) ca-
pacity improves and becomes adult-like around 6–8 years (see Pailian 
et al., 2016 for review). These differences in attention and working 
memory capacity may be further amplified when viewing scenes, which 
are often more visually complex compared to individual objects.

It is possible that children’s processing and understanding of scenes 
at the basic and superordinate level may profoundly differ. Unfortu-
nately, methodological differences between the design of the tasks 
administered here mean that we cannot directly compare children’s 
superordinate-level versus basic-level gist recognition. Nevertheless, it is 
important to consider the possibility that these categorisation abilities 
could develop following separate trajectories, which would align with 
past research in adults. Distinctions have been observed between su-
perordinate- and basic-level categorisation, with many studies providing 
evidence for an early superordinate advantage (Greene & Oliva, 2009; 
Kadar & Ben-Shahar, 2012; Sun et al., 2016). Different developmental 
trajectories in childhood could support theories of distinctive but com-
plementary superordinate and basic processing routes within the brain, 
the latter incorporating more typically object-selective regions. This 
developmental trajectory supports existing theories that object selective 
regions such as the LOC work to support scene selective regions 
including the PPA in scene recognition (Baldassano et al., 2013; Harel 
et al., 2013; Iordan et al., 2015). For now, our findings suggest in-
vestigations of scene categorisation should avoid generalising across 
these different levels of abstraction if we want to achieve a true un-
derstanding of children’s scene categorisation abilities.

We have broadly suggested here that the age-related changes in 
children’s performance reflects improved visual processing with age. 
However, it may alternatively, or additionally, be a result of an 
improvement in children’s conceptualisations of scene categories with 
age. There is limited information available about changes in children’s 
conceptualisation of scenes with age because the literature thus far has 
primarily focused on objects (see Owen & Barnes, 2021; Poulin-Dubois 
& Pauen, 2017 for review). Still, such work reports a gradual shift in 
children’s conceptualisation of objects, from a dependency on superfi-
cial, physical aspects (4 years; Keil, 2006) towards a more abstract, 
flexible understanding of taxonomy, as older children (10 years) 
demonstrate the ability to apply different levels of categorisation at 
which objects can be understood (Blaye et al., 2006). If the con-
ceptualisation of scenes develops in a similar way with age, then it may 
be that younger children struggle to consider scenes at multiple levels of 
abstraction and are thus more rigid in their understanding of scene 
categories. This flexibility may be particularly relevant to scene pro-
cessing where the rules surrounding diagnostic features are ambiguous. 
For example, some scenes belonging to different basic-level categories 
may share similar objects and/or layouts (e.g. the presence of food in a 
kitchen/pantry/dining room, or countertops in a kitchen/bathroom/ 
utility room). It is also true that some scenes belonging to the same basic- 
level category may not share any of the same objects and layouts, yet are 
recognised the same by their function (Greene et al., 2016; see Malcolm 
et al., 2016 for review). Highly efficient scene categorisation requires a 
degree of flexibility and experience that younger children may not yet 
possess, and this likely becomes particularly relevant when we restrict 
the amount of information/processing time children have when making 
such judgements.

5. Conclusions

The current study provides novel evidence for the relatively early 
emergence, but protracted developmental course, of scene gist recog-
nition in childhood. By 5 years of age, children can accurately extract 
and categorise scene gist when scenes are presented for as little as 32 ms. 
Across 5–10 years, children experience a shift towards more expert 
processing of scene gist with older children extracting more information 
at short durations. Furthermore, older children showed more sensitivity 
to viewing time and were better able to utilise longer viewing times to 
extract information required to make accurate category judgments. 
While a similar pattern of development was observed across both su-
perordinate- and basic-level scene categorisation, children performed at 
a more advanced level when making superordinate-level judgments. 
Taken together, these findings support the view that early scene pro-
cessing and subsequent categorisation follows a protracted trajectory 
towards expertise across childhood.
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