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ABSTRACT
Noting that the shocks in vector autoregressive models can be correlated if a number of shocks is identified
individually by multiple proxy variables, we propose a Generalized Method of Moments (GMM) approach
for estimation that enforces uncorrelated shocks. We point out that if each proxy identifies exactly one
shock and is uncorrelated with all other shocks, uncorrelatedness of the shocks provides over-identifying
restrictions that can be used in our approach to improve the estimation efficiency of the structural param-
eters. It also opens up the possibility to use Hansen’s J-test to check the model specification. Our method
generalizes other GMM proposals that work under more restrictive assumptions. We illustrate its usefulness
by two empirical examples from the recent literature.
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1. Introduction

In recent years it has become increasingly popular to identify
structural shocks in structural vector autoregressive (VAR) anal-
ysis by external instruments or proxies. In a number of studies,
more than one shock of interest is identified in this way. For
example, Hou (2024) analyses the response of a range of U.S.
macroeconomic variables to five shocks—an oil shock, a mone-
tary policy shock, a productivity shock, a liquidity and financial
risk shock, and a fiscal policy shock—which he identifies using
a set of proxies. It is well known that while multiple proxies
can identify linear combinations of structural shocks, further
information is required to disentangle the individual shocks of
interest (see Hou (2024), and the citations therein). In some
studies, it is assumed that a single proxy or a set of proxies is
correlated with a single shock only and is uncorrelated with
all other shocks and the shocks are identified one-by-one (e.g.,
Altavilla et al. 2019). However, it was pointed out by Stock
and Watson (2012) and emphasized more recently by other
researchers, including Gregory, McNeil, and Smith (2024), that
in this case the shocks may not be instantaneously uncorre-
lated any more, violating a standard assumption of structural
VAR analysis. This can happen even if the proxies are mutu-
ally uncorrelated and individually satisfy the standard relevance
and exogeneity conditions that the proxy VAR literature typi-
cally assumes for valid proxies. Having uncorrelated structural
shocks is, for example, important for the proper interpretation
of impulse responses and for performing forecast error variance
decompositions (FEVDs) (see also the related discussions in
Ramey (2016), Stock and Watson (2018), and Gregory, McNeil,
and Smith (2024)). Thus, it may be problematic that some of
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the shocks considered in recent structural VAR analyses are not
instantaneously uncorrelated.

Gregory, McNeil, and Smith (2024) present a generalized
method of moments (GMM) method that provides uncorrelated
shocks if the condition of each proxy being correlated with a
single shock only is satisfied. Their method requires that, in
a K-dimensional VAR, at least K − 1 proxies are available so
that all K shocks are identified. Unfortunately, that condition
is not satisfied in a range of proxy VAR studies (e.g., Lunsford
2015; Piffer and Podstawski 2017; Lakdawala 2019; Jarociński
and Karadi 2020; Känzig 2021; Fanelli and Marsi 2022). In these
papers typically just-identifying or set-identifying restrictions
are used for the structural parameters. Such restrictions cannot
be checked by statistical tests and, thus, have to be backed by
convincing subject matter arguments.

In this article, we propose a simple GMM method that
works more generally even when only a subset of the shocks
are identified and it can also take advantage of over-identifying
restrictions. The method focuses on the structural parameters of
interest in the GMM objective function and, hence, will typically
result in a computationally simple optimization problem. If
each proxy is only correlated with a single shock, it is shown
that uncorrelatedness of the shocks provides over-identified
structural parameters. A device proposed by Crepon, Kramarz,
and Trognon (1997) is used to ensure that in that case our
method also provides asymptotically efficient estimators under
standard assumptions. Using this device requires the optimal
weighting matrix in the GMM objective function for which we
derive a closed-form expression. It also ensures a valid J-test for
model misspecification if the moment conditions over-identify
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the structural parameters and opens up the use of this tool in
a proxy VAR context for assessing the identifying assumptions.
In our proposed setup, the J-test is focussed on the structural
parameters of interest instead of applying it to the whole set of
moment conditions related to all the parameters. Thereby the
test has good power even in small samples against alternatives
relevant in a proxy VAR analysis.

We will present examples of empirical studies, where using
the proxies one-by-one leads to correlated shocks while our
GMM approach fixes the problem and makes a difference for the
implied impulse responses and FEVDs. Thereby we show that
avoiding correlated shocks is not only a theoretical problem but
is relevant for applied work. In these examples we also show that
our J-test is a useful tool for model diagnostics in proxy VAR
studies.

Our approach is related to Hou (2024), who proposes a
Bayesian method that can be used when only a subset of shocks
are identified and ensures the identified shocks are uncorrelated.
Over-identification conditions can then be tested by comparing
the marginal likelihoods of the proxy-SVAR with and without
the over-identifying restrictions imposed. Our GMM approach
complements this existing work by introducing a method which
is applicable in similar contexts but lies instead within the fre-
quentist paradigm.

The remainder of the article is organized as follows. In the
next section we present the model setup formally and discuss
the GMM procedure that can be used for solving the problem
of getting correlated shocks. In Section 3, we present simulation
results showing that our proposed methods work in small sam-
ples and in Section 4 we consider empirical examples. Section 5
concludes. Some mathematical derivations as well as additional
results related to the simulations and empirical examples are
provided in an online supplement.

The following general notation will be used throughout. The
operator vec(·) is the usual column vectorization operator for
a matrix. vech(·) is the corresponding operator vectorizing a
square matrix from the main diagonal downwards, and vh(·) is
the vectorization operator that collects only the elements below
the main diagonal of a matrix in a vector. Moreover, we use the
( 1

2 m(m − 1)× m2) selection matrix Sm that selects the elements
below the main diagonal of an (m × m) matrix M from vec(M),
that is, vh(M) = Smvec(M).

2. Model Setup, Estimation, and Inference

2.1. The Model

Our basic model is a K-dimensional reduced-form VAR process,

yt = ν + A1yt−1 + · · · + Apyt−p + ut

= (ν, A1, . . . , Ap)Yt−1 + ut , (1)

where ut is a zero mean white noise process with nonsingular
covariance matrix �u, that is, ut ∼ (0, �u) and Yt−1 =
(1, y′

t−1, . . . , y′
t−p)

′ is a (Kp + 1)-dimensional column vector.
This model is assumed to be the data generating process (DGP).

The vector of structural shocks is denoted by wt =
(w1t , . . . , wKt)′. It is obtained from the reduced-form errors,
ut , by a linear transformation, wt = B−1ut . The (K × K) matrix
B = [bij] contains the impact effects of the structural shocks and

B�wB′ = �u, where �w is the covariance matrix of wt . As in
much of the structural VAR literature, the shocks are assumed to
be instantaneously uncorrelated and, hence, the transformation
matrix B is such that the covariance matrix �w is diagonal and
the structural shocks wt are instantaneously uncorrelated by
construction.

As we are also considering partially identified models, we
partition wt in K1- and (K − K1)-dimensional subvectors w1t =
(w1t , . . . , wK1t)′ and w2t = (wK1+1,t , . . . , wKt)′ such that w′

t =
(w′

1t , w′
2t). The first K1 shocks, w1t , are the structural shocks

of interest. They have to be identified properly, while w2t con-
tains shocks which are not in the focus of the analysis and are,
hence, not necessarily identified as proper economic shocks.
The matrix of impact effects, B, is partitioned accordingly as
B = [B1 : B2], where B1 is (K × K1) and B2 is (K × (K − K1)).
In other words, Bi contains the impact effects of the shocks wit ,
i = 1, 2.

The impact effects, B, are the structural parameters of the
model. The shocks w1t are identified if the B1 matrix is identified.
Having the matrix B1, we can compute the structural impulse
responses to the w1t shocks for propagation horizon h as

�1h = �hB1, (2)

where the �h are reduced-form quantities obtained recursively
from the VAR slope coefficients as �h = ∑h

j=1 �h−jAj, with
�0 = IK , for h = 0, 1, . . . , and Aj = 0 for j > p (see, e.g.,
Lütkepohl 2005, sec. 2.1.2).

Each column of B contains the impact effects of a single shock
on all the K variables. Denoting by bk the k-th column of B, the
k-th shock can be obtained from the reduced-form residuals as

wkt = b′
k�

−1
u ut/b′

k�
−1
u bk (3)

(see, e.g., Stock and Watson (2018) and Bruns and Lütkepohl
(2022, Appendix A.1)).

2.2. Identification via Proxy Variables

Identification of the structural parameters and, hence, the struc-
tural shocks is assumed to be based on a set of N instrumental
variables (proxies) zt = (z1t , . . . , zNt)′ satisfying

E(w1tz′
t) = �w1z �= 0, �w1z (K1 × N),

rk(�w1z) = K1 (relevance); (4)
E(w2tz′

t) = 0 (exogeneity). (5)

These conditions imply that

E(utz′
t) = BE(wtz′

t) = B1�w1z. (6)

Obviously, there must be at least as many proxies as there are
identified shocks such that N ≥ K1, to satisfy the rank condition
for �w1z which ensures that the N proxies contain identifying
information for all shocks in w1t . As we can estimate B1�w1z by
the usual covariance matrix estimator

ûz = 1
T

T∑
t=1

ûtz′
t , (7)

where the ût are reduced-form least squares (LS) residuals,
the proxies contain identifying information for the first K1
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structural shocks collectively but the shocks are not necessarily
individually identified. The usual techniques for identifying B1
have been used in the related literature. For example, Mertens
and Ravn (2013) place just-identifying zero restrictions on
the impact effects and Jarociński and Karadi (2020) use sign
restrictions to disentangle the shocks.

Alternatively, restrictions can be imposed on �w1z. For exam-
ple, the proxies may be constructed such that each proxy is
correlated with just one shock and �w1z is a diagonal square
matrix. In that case the shocks will be identified individually
because the right-hand side of (6) will consist of multiples of the
impact effects of the shocks that will provide multiples of the
shocks via the relation (3). In general, the proxies may be such
that zero restrictions can be imposed on �w1z without being
a diagonal matrix. For example, Lakdawala (2019) considers a
triangular �w1z matrix.

If the impact effects of the kth shock are estimated as
T−1 ∑T

t=1 ûtzkt , we will refer to this approach as the one-by-
one proxy VAR approach to estimating the impact effects of
the shocks of interest. Obviously, this estimator is identical
to the one obtained by using the estimator in equation (7)
and thereby estimating the impact effects of all K1 shocks of
interest jointly. The shocks obtained in this way may, however, be
instantaneously correlated, as pointed out recently by Gregory,
McNeil, and Smith (2024), because there is no mechanism that
enforces uncorrelatedness.

Gregory, McNeil, and Smith (2024) propose a GMM
approach that ensures uncorrelated (orthogonal) shocks. They
use moment conditions obtained from the assumption that each
proxy is correlated with one shock only which implies that all
the other shocks are uncorrelated with the proxy, giving K − 1
moment conditions for each proxy. In addition, they use that
all the shocks are mutually uncorrelated. Thereby they obtain
1
2 K(K −1) further moment conditions. Finally, they standardize
the B matrix to have a unit diagonal. In other words, they
assume that each shock has a unit impact effect for one of the
variables. Thereby they have to estimate just K(K −1) structural
parameters in the B matrix. A drawback of the Gregory, McNeil,
and Smith (2024) approach is that it works only if at least
K − 1 shocks are identified by proxies. Otherwise they do not
have enough moment conditions to identify all the parameters.
Clearly, there are many examples of proxy VAR studies where
fewer than K − 1 shocks are identified by proxies and, hence,
their approach does not work any more. It is also a disadvantage
of their approach that, for each shock, they have to take a
stand on a specific variable having a nonzero instantaneous
response. There are many studies where the response of the
variables to the shocks is not known before the analysis is
conducted.

In the following, we present a GMM method that works more
generally also if K1 < K − 1 because we use a different set of
moment conditions. Our moment conditions are focussed on
the first K1 shocks of interest that are identified by proxies and
do not involve moment conditions related to other shocks.

From (6) we get KN moment conditions

E(utz′
t − B1�w1z) = 0. (8)

Moreover, using ut = Bwt and, hence, �u = B�wB′, where �w
is the covariance matrix of the wt shocks, we have

E(B′
1�

−1
u utu′

t�
−1
u B1) = B′

1B′−1�−1
w B−1B1

= [IK1 : 0]�−1
w

[
IK1
0

]
. (9)

Uncorrelated shocks imply that �w is a diagonal matrix. Hence,
considering only the elements below the main diagonal of the
left-hand side matrix, we get a further set of 1

2 K1(K1 − 1)

moment conditions

E[vh(B′
1�

−1
u utu′

t�
−1
u B1)] = 0. (10)

Note that there are KK1 + K1N free parameters in B1 and �w1z
and we have KN + 1

2 K1(K1 − 1) moment conditions in (8)
and (10). Thus, in general there are fewer moment conditions
than parameters to estimate. Hence, we have an under-identified
estimation problem. However, it may be possible to construct
the proxies such that restrictions can be imposed on �w1z. For
example, one may construct proxies which are correlated only
with a subset of the shocks in w1t . Then we can impose zero
restrictions on �w1z.

If we have enough restrictions such that the moment condi-
tions in (8) and (10) at least just-identify B1 and �w1z we can use
GMM estimation. For example, for the case of specific interest
in the following, where each proxy is correlated with a single
shock only such that N = K1 and �w1z is a diagonal matrix,
the moment conditions over-identify the parameters if K1 > 1.

Note, however, that the moment conditions depend on the
reduced-form VAR parameters α = vec(ν, A1, . . . , Ap) via
ut(α) = yt − (Y ′

t−1 ⊗ IK)α and σ = vech(�u). Thus, if
we focus on estimating β = vec(B1) and the unrestricted
elements of �w1z, which we collect in the vector δ, we still have
to account for nuisance parameters γ = (α′, σ ′)′. The standard
moment conditions for LS estimation of the reduced-form VAR
parameters are

E[(Yt−1 ⊗ IK)yt − (Yt−1Y ′
t−1 ⊗ IK)α] = 0 (11)

and

E(�u − utu′
t) = 0. (12)

The empirical moments corresponding to the moment con-
ditions for the structural parameters (8) and (10) are

m̄η(η, γ ) = 1
T

T∑
t=1

mη
t (η, γ )

(
KK1 + 1

2 K1(K1 − 1)
) × 1,

where η = (δ′, β ′)′ with

mη
t (η, γ ) =

[
vec

(
ut(α)z′

t − B1�w1z
)

vh
(
B′

1�
−1
u ut(α)ut(α)′�−1

u B1
) ]

(13)

and for the reduced-form parameters we get empirical moments

m̄γ (γ ) = 1
T

T∑
t=1

mγ
t (γ )

(
K(Kp + 1) + 1

2 K(K + 1)
) × 1

with

mγ
t (γ ) =

[
(Yt−1 ⊗ IK)yt − (Yt−1Y ′

t−1 ⊗ IK)α

vech(�u − ut(α)ut(α)′)

]
. (14)
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Using a result by Crepon, Kramarz, and Trognon (1997,
Proposition 1), we can set up an efficient GMM procedure by
specifying the GMM objective function as

J(η) = Tm̄η(η, γ̂ )′�(η̂, γ̂ )−1m̄η(η, γ̂ ), (15)

where �(η, γ ) is a suitable GMM weighting matrix, η̂ is a con-
sistent first-stage estimator of η and γ̂ is a consistent estimator
of γ that satisfies the condition

m̄γ (γ̂ ) = 0. (16)

In the present setup, we can use the LS estimator γ̂ LS as estimator
for γ because it satisfies condition (16).

An asymptotically efficient estimator for η, denoted by η̂GMM

in the following, is obtained if the weighting matrix �(η, γ ) is
chosen as

�(η̂, γ̂ LS) = 1
T

T∑
t=1

ωt(η̂, γ̂ LS)ωt(η̂, γ̂ LS)′, (17)

where η̂ is some consistent first-stage estimator of η and

ωt(η, γ ) = mη
t (η, γ ) −

(
1
T

T∑
t=1

∂mη
t (η, γ )

∂γ ′

)
(

1
T

T∑
t=1

∂mγ
t (γ )

∂γ ′

)−1

mγ
t (γ ) (18)

(see Crepon, Kramarz, and Trognon 1997). It is shown in Section
OS.1 of the online supplement that

ωt(η, γ̂ LS) = mη
t (η, γ̂ LS)

−
⎡⎢⎣

(
( 1

T
∑T

t=1 ztY ′
t−1)( 1

T
∑T

t=1 Yt−1Y ′
t−1)−1Yt−1 ⊗ IK

)
ût

−2SK1 vec
(

B′
1�̂−1

u (�̂u − ût û′
t)�̂

−1
u B1

)
⎤⎥⎦ (19)

is a closed-form of the correction term for our model if γ is
replaced by the LS estimator γ̂ LS. Here ût denotes again reduced-
form LS residuals and �̂u = T−1 ∑T

t=1 ûtû′
t . For η we may

choose a consistent first-stage estimator obtained, for example,
by minimizing the GMM objective function (15) with �(η, γ )

replaced by an identity matrix. The procedure can also be iter-
ated, using the latest estimate of η and γ̂ LS in each step.

Of course, there is no need for determining the optimal
weighting matrix in a just-identified case, where the GMM
estimator is invariant to the weighting matrix. Such a case is,
for instance, considered by Lakdawala (2019). Suppose there are
N = K1 proxies and we order the shocks such that the first proxy
is correlated with the first shock, the second proxy is correlated
with the second shock, etc.. Then, without loss of generality,
we can scale the shocks such that the covariance matrix �w1z
has ones on its main diagonal. If it is triangular, it has then
1
2 K1(K1 − 1) free elements and δ is a 1

2 K1(K1 − 1)-dimensional
vector. As β is KK1-dimensional, we have 1

2 K1(K1 − 1) + KK1
parameters in η and this is precisely the number of moment
conditions in (8) and (10). They just-identify η.

There can also be further zero restrictions on �w1z if some
of the proxies are uncorrelated with some of the w1t shocks.
As mentioned earlier, some authors assume that each proxy is
correlated with one shock only (e.g., Altavilla et al. 2019). In

other words, the proxies individually satisfy the relevance and
exogeneity conditions (4)/(5). In that case, �w1z is a (K1 × K1)
identity matrix under our assumption that it has ones on its main
diagonal. Thus, η consists of β only and the moment conditions
are over-identifying. In the following we will primarily deal with
that case.

Using this approach, we estimate the impact effects of the first
K1 structural shocks, scaled versions of which can be obtained
as �−1

w1 w1t = B′
1�

−1
u ut from the reduced-form residuals. The

GMM approach aims at estimating the structural shocks of
interest in such a way that they are instantaneously uncorrelated.
It should be clear that, if there are over-identifying moment
conditions, the empirical correlation between the components
of the estimated w1t may be nonzero because J(η̂GMM) > 0.
This feature can also be used to set up Hansen’s J-test for mis-
specification using that, under standard GMM assumptions,

J(η̂GMM)
d→ χ2(df), (20)

where df stands for the number of over-identifying moment
conditions. If �w1z = IK1 , df = 1

2 K1(K1 − 1). Note that
the asymptotic χ2-distribution relies on the use of the optimal
weighting matrix derived in Section OS.1 of the online supple-
ment which corrects for the nuisance parameters. It assumes that
the model and the moment conditions are correctly specified.
Thus, it can be used as usual for checking for misspecification.
The diagonality of �w1z is one assumption that may not hold
in practice and, diagnosing model misspecification by a Hansen
test may be a signal of incorrect moment conditions. Of course,
not rejecting the model specification by the J-test may be due to
lack of power of the test. However, in the simulations in Section 3
we demonstrate that the J-test has good power in small samples
against violations of the diagonality of �w1z. Moreover, our
GMM approach enables the user to estimate �w1z and also use
other tools for assessing its diagonality, as we show in Section 4.

If the moment conditions are rejected, other, possibly less
restrictive identification conditions may be considered. For
example, one may use triangularity of �w1z as in Lakdawala
(2019) or exclusion restrictions on the impact effects as in
Mertens and Ravn (2013). Of course, such just-identifying
restrictions should only be used if there are good reasons for
their validity, as they cannot be checked by statistical tests.

If we have standardized the shocks such that �w1z is an iden-
tity matrix as in the previous discussion of the GMM approach,
we can, of course, rescale the shocks to have the desired size
for an empirical analysis. For example, if a monetary policy
shock is identified that moves an interest rate on impact, we can
rescale the column of B̂1 corresponding to the shock such that
the interest rate changes by, say, 25 basis points on impact.

Our method is related to recent work by Hou (2024), who
develops a Bayesian method which can accommodate the partial
identification case we focus on here. In the frequentist paradigm,
another approach for estimating the structural parameters B1 is
discussed by Angelini and Fanelli (2019). These authors assume
a parametric model for the proxies and augment the VAR model
by the proxies. Then they set up a minimum distance procedure
that minimizes the distance of the structural parameters from
the reduced-form parameters. Their approach also works for
proxy VAR models where less than K − 1 shocks are identified
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by proxies. However, in addition to the B1 matrix, the mini-
mum distance method also estimates parameters of the model
for the proxies. Given the way some proxies are constructed
in the recent literature, their model is not a universally good
approximation of the generating mechanism of the proxies.
In particular, their model does not match the situation where
observations for the proxy are only available at infrequent event
dates and the proxy is set to zero on all other dates as, for exam-
ple, in Piffer and Podstawski (2017), Wright (2012), Boer and
Lütkepohl (2021), Gertler and Karadi (2015) and many other
studies. Our GMM approach has the advantage of focussing on
the parameters of interest, B1, and it does not assume a specific
model for the generating mechanism of the proxies and therefore
also accommodates proxies with many zero values during the
sample period.

3. Monte Carlo Study

3.1. Setup

An attractive feature of the orthogonality conditions introduced
in the previous section is that they provide over-identifying
moments, which are testable with the J-statistic. Unless the
nuisance parameters are properly accounted for, however, this
test will not follow the expected distribution. One might also
expect the over-identified model to yield more precise estimates
compared with the one-by-one proxy SVAR procedure since it
incorporates additional information to estimate the same num-
ber of parameters. That both of these points are observed in
finite samples is demonstrated with the following small Monte
Carlo experiment.

The DGP is a VAR(1) process, yt = A1yt−1 + Bwt , with
wt ∼ N (0, �w), where yt and wt are (3 × 1) vectors and �w is
a diagonal matrix. We fit VAR(4) models with a constant term
and consider sample sizes, exclusive of pre-sample values, of
T = 100 and 500 and the parameter matrices are

A1 =
⎡⎣ 0.9 0 0

1/3 1/3 1/3
1/3 1/3 1/3

⎤⎦ , B =
⎡⎣ 1 0.2 0.2

0.2 1 0.2
0.2 0.2 1

⎤⎦ ,

�w =
⎡⎣ 1 0 0

0 1 0
0 0 σ 2

w3

⎤⎦ .

The matrix A1 has a maximum eigenvalue of 0.9 and, thus,
the VAR process is stable but quite persistent. We set σ 2

w3 =
0.01 or 1 and simulate 5000 Monte Carlo replications. The low
value of σ 2

w3 = 0.01 reflects an environment in which the
two identified shocks account for a majority of the variation
in all three variables. This case may be of practical interest as
macroeconomists often study the most important sources of
economic variation. When σ 2

w3 = 1 all three shocks are equally
important.

There are K1 = 2 instruments available to identify the first
two shocks. These two shocks are related to the vector of proxies,
zt , according to

zt =
[

1 λ

0 1

]
w1t + vt , vt ∼ N (0, �v), (21)

where vt is independent of w1t and �v is a diagonal matrix. We
set the value of λ to zero initially such that the proxies are inde-
pendent and each is correlated with one shock only. We will later
vary λ to study the power of the J-test. The strength of the prox-
ies as instrumental variables is determined by the correlations
between the two identified shocks and their respective proxy
variables, corr(wit , zit) = √

var(wit)
/√

var(wit) + var(vit), for
λ = 0. Since the two identified shocks have unit variance, we
adjust the diagonal elements of �v to achieve an intermediate
correlation of 0.5 between the instruments and their associated
shocks.

For each simulation we produce four estimates of the first
two columns of B, that is for B1. First, we apply the one-by-
one proxy VAR procedure, which uses the two instrumental
variables (proxies) but places no restriction on the correlation
between the two identified shocks. Thus, it uses the moment
conditions (8) such that the estimator for the impact effects
is B̂1(PVAR) = T−1 ∑T

t=1 ûtz′
t . Second, we apply the GMM

method outlined in the previous section, which incorporates the
over-identifying moment condition based on the orthogonality
of the estimated shocks, and uses the adjusted GMM weighting
matrix (17). The moment conditions for this estimator are (8)
and (10). As first stage estimates for β and γ we use β̂ =
vec(B̂1(PVAR)) and γ̂ LS, respectively. The resulting estimator
will be referred to as the adjusted GMM estimator in the follow-
ing. Third, we again use the moments (8) and (10) but use as
GMM weighting matrix

1
T

T∑
t=1

mβ
t (β̂ , γ̂ LS)mβ

t (β̂ , γ̂ LS)′, (22)

which would be the standard estimator of the weighting
matrix if the nuisance parameters α and �u are ignored.
The corresponding estimator will be called the unadjusted
GMM estimator. Finally, we compare to an estimator based
on just-identifying moment conditions that assumes an upper-
triangular �w1z matrix and, hence, may be less efficient than our
over-identified adjusted GMM. Its closed-form representation
for the case where �w1 = I2 is

B̂1= 1
T

T∑
t=1

ûtz′
t

[
chol

((
1
T

T∑
t=1

ztû′
t

)
�̂−1

u

(
1
T

T∑
t=1

ûtz′
t

))]′−1

(23)

(see Section OS.2 of the online supplement for a detailed deriva-
tion of this estimator). We refer to this as the just-identified
estimator in the following.

3.2. Estimation Precision

Figure 1 shows kernel densities for the estimates of the six
identified parameters of B1 = [bij] for each of the four estimators
when we set σ 2

w3 = 0.01. The vertical black lines correspond to
the true values of the parameters. The following observations
emerge from the figure:

1. The adjusted and unadjusted GMM estimators have very
similar small sample densities. Therefore they cannot really
be distinguished in the figure. In other words, for our limited
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Figure 1. Monte Carlo kernel densities of estimates of B1 = [bij] when σ 2
w3 = 0.01.

simulation designs, the small sample properties of the esti-
mators do not depend much on the adjustment of the GMM
weighting matrix.

2. The two GMM estimators clearly dominate the one-by-one
proxy VAR estimator and the just-identified estimator in
that their densities are generally more or at least not less
concentrated than the densities of the one-by-one proxy
VAR estimates and, hence, the GMM estimators have smaller
variances.

3. For some of the parameters the densities of all four estima-
tors are concentrated around values different from the true
parameter value in small samples. In other words, they are
biased. The bias is similar for all four estimators and declines
quickly with growing sample size.

4. There is no clear ranking of the one-by-one and just-
identified estimators. For example, for b12 the just-identified
estimator has a slightly more concentrated density for T =
500 than the one-by-one estimator while the situation is
reversed for b22.

The corresponding results for σ 2
w3 = 1 are depicted in Figure

OS.1 in the online supplement and convey very similar results.
In summary, if each proxy is correlated with one shock only,

the simulation results suggest that the over-identified GMM
estimators should be used in applied work for estimating the
structural parameters because they generally dominate the one-
by-one and just-identified proxy VAR estimators in terms of
small sample precision. In the examples in Section 4, we use
the adjusted GMM procedure throughout because it has a clear

advantage over the unadjusted GMM estimator when it comes
to inference, as will be shown in Section 3.3.

Of course, in practice, researchers are not only interested
in the impact effects of the shocks but perform, for example,
impulse response analysis and, thus, the relative performance of
our estimators in such an analysis is of interest. For comparing
the one-by-one and adjusted GMM approaches in this context,
we analyze coverage rates and confidence interval lengths for
the impulse response functions. As the impact effects are part of
the impulse responses at higher propagation horizons (see (2)),
one might expect that also these impulse responses are estimated
more efficiently with our GMM procedure.

Confidence intervals are calculated using the moving block
bootstrap. That method was proposed by Jentsch and Lunsford
(2019) and produces intervals that are robust to conditional
heteroskedasticity. We use exactly the implementation described
in Bruns and Lütkepohl (2023). It is also used in Section 4 where
safeguarding against volatility changes in the residuals is desir-
able. For computational reasons, we consider only the adjusted
GMM estimator and the one-by-one proxy SVAR estimator for
the specification σ 2

w3 = 0.01 with sample sizes T = 100 and
T = 500. We simulate 2000 Monte Carlo replications and 500
bootstrap replications.

It turns out that the coverage frequencies of both estimation
methods are very similar (see Figure OS.2 in the online sup-
plement) although the performance varies quite a bit for the
different shocks, propagation horizons and sample sizes. The
coverage rates are typically closer to the nominal 90% level for
the larger sample size, as expected. Given that both estimation
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Figure 2. Monte Carlo relative average confidence interval lengths of the adjusted GMM over the one-by-one estimator.

methods achieve very similar coverage rates we can compare
them on the basis of the confidence interval lengths.

Figure 2 shows ratios of the average bootstrap confidence
interval lengths of the two estimators, where values less than
one indicate narrower intervals for the adjusted GMM estimator.
The GMM estimator achieves narrower confidence intervals at
all horizons, as expected. The efficiency gains are largest at short
horizons, in some cases as large as 30%, although in several
cases these gains extend well out into the larger impulse response
horizons. That is particularly so for the responses to the second
shock, the effects of which are much less persistent than the
first shock. At short impulse response horizons the efficiency
gain for the GMM estimator is similar for the two sample sizes,
indicating that our proposed estimator can provide more precise
estimates even for larger sample sizes. Recall also that these
results are obtained although in our simulation design there is
only one over-identifying moment condition.

3.3. Small Sample Properties of the J-test

We will now explore the small sample properties of the J-test
and its suitability for checking our assumed over-identifying
moment conditions, based on the adjusted and unadjusted
GMM estimators. Clearly, the J-test can be used only if there
are over-identifying moment conditions and is not available for
the other estimators. Table 1 shows rejection frequencies for the
J-test calculated for the two GMM estimators at three popular
significance levels. If the test statistic has the correct size, we
would expect it to exceed the 10% critical value approximately

10% of the time, and likewise for any other critical value. We
see that this is the case even for a relatively small sample size
of T = 100 for the adjusted GMM but the test is severely
undersized for the unadjusted GMM, indicating that a test of the
over-identifying restrictions based on the latter estimator would
under-reject. The rejection frequencies for the unadjusted GMM
do not improve as the sample size increases and it is found for
both values of σ 2

w3 . This illustrates that the adjustment for the
GMM procedure outlined in the previous section is crucial for
obtaining a reliable J-test.

To study the power of the J-test against incorrectly assuming
diagonality of �w1z we use a range of nonzero λ values in
the DGP of zt in (21) and show the corresponding rejection
frequencies of the J-test for T = 100 in Table 2. While the
adjusted estimator performs very well and has substantial small
sample power even for samples as small as T = 100, the
unadjusted estimator performs quite poorly. This is consistent
with Table 1, which shows that the test statistic based on the
unadjusted GMM is considerably undersized. The adjusted J-
test has the advantage that it is performed conditionally on the
reduced-form moment conditions to be satisfied and focusses on
the over-identifying moment conditions for B1. That may be one
reason for its excellent small sample power against violations of
the moment conditions related to B1.

Overall our simulations show that if each proxy is correlated
with one shock only, the adjusted GMM procedure should be
used for estimating the structural parameters. Using the optimal
GMM weighting matrix is crucial for taking full advantage of the
inference possibilities that come with the GMM approach.
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Table 1. Monte Carlo rejection frequencies of J-test under H0.

T = 100 T = 500

10% 5% 1% 10% 5% 1%

σ 2
w3 = 0.01 adjusted GMM 11.38% 5.72% 1.24% 11.22% 5.72% 1.32%

unadjusted GMM 2.30% 0.68% 0.04% 1.84% 0.60% 0.02%

σ 2
w3

= 1 adjusted GMM 11.38% 5.80% 1.18% 11.22% 5.70% 1.22%
unadjusted GMM 2.24% 0.72% 0.06% 1.8% 0.60% 0.02%

Table 2. Monte Carlo rejection frequencies of the J-test at 10% level.

λ

0 0.1 0.25 0.5 0.75 1

σ 2
w3 = 0.01 adjusted GMM 12.86% 13.70% 24.96% 54.24% 80.46% 93.04%

unadjusted GMM 2.60% 2.92% 7.76% 24.76% 50.02% 74.62%

σ 2
w3 = 1 adjusted GMM 11.32% 14.16% 25.78% 55.66% 82.06% 93.74%

unadjusted GMM 2.20% 2.86% 7.32% 24.80% 52.62% 76.44%

4. Empirical Examples

If a number of structural shocks are to be identified by multiple
proxies and it can be defended that each proxy is correlated with
a single shock only, then the adjusted GMM procedure offers a
powerful tool for estimating the structural parameters and the
corresponding J-test provides a way of checking the underlying
identification assumptions. In the following we will illustrate by
two examples how these tools work in practice.

4.1. U.S. Macroeconomic Shocks

Hou (2024) revisits the empirical analysis by Stock and Watson
(2012) and investigates the response of U.S. macroeconomic
variables to five shocks: An oil shock (wOil

t ), a monetary pol-
icy shock (wMP

t ), a productivity shock (wProd
t ), a liquidity and

financial risk shock (wRisk
t ), and a fiscal policy shock (wFiscal

t ).
Hou (2024) employs nine proxies to identify these shocks in a
30-variate Bayesian SVAR model. As such a high-dimensional
model would be a challenge for a frequentist analysis such as
ours, we reduce the dimensionality and aim to identify the
same five shocks using a seven-variate model with five proxies
(zOil

t , zMP
t , zProd

t , zRisk
t , zFiscal

t ). The variables we include repre-
sent standard macroeconomic variables that have been used in
empirical macro models. Specifically, we include the oil price,
the Fed Funds rate, output per hour of all persons, the S&P 500,
real government consumption expenditures and gross invest-
ment, real GDP growth, and the CPI. Table OS.1 in the online
supplement presents the variables and their transformations as
well as the proxies. The sample runs from 1959q2 till 2011q2,
implying T = 209 quarterly observations. Following Hou (2024)
we employ four lags and an intercept term in the VAR model.

The empirical correlations of the proxies for our sample
period are presented in Table OS.2 of the online supplement,
where it can be seen that the proxies either have a statistically
insignificant or a low correlation. Although this absent or low
correlation among the proxies is no guarantee that each proxy
is correlated with a single shock only, we follow Stock and Wat-
son (2012) and use the proxies one-by-one to identify the five
shocks. The correlations between the estimated shocks and the
proxies and the shocks are presented in Table 3. The confidence
intervals are generated by the bootstrap method presented in

the online supplement, Section OS.3. Apparently, the result-
ing estimated shocks have a correlation of up to 0.633 for the
case of ŵFiscal

t (PVAR) and ŵProd
t (PVAR) (see the upper panel of

Table 3). In other words, they are partly highly correlated. The
correlations between the proxies and the shocks in the lower
panel of Table 3 do not provide a case for the assumption of a
diagonal �w1z matrix because, for example, zProd

t is significantly
correlated with ŵFiscal

t (PVAR).
As, strictly speaking, the relevant �w1z matrix to look at is

the covariance matrix between the proxies and the orthogonal
(uncorrelated) shocks, we have also determined shocks with
our GMM procedure and present their correlations and corre-
lations with the proxies in Table 4. (In our GMM algorithm, the
weighting matrix �(β , γ̂ LS) of equation (17) used in the GMM
objective function (15) is chosen iteratively, using as stopping
rule a relative change of the objective function of less than 5%.)
Not surprisingly, there is no significant correlation between the
GMM shocks. Recall, however, that the GMM approach is based
on the assumption of a diagonal �w1z matrix which may not
hold in this case. Therefore, it is useful to take a look at the
estimated �w1z matrix for the GMM shocks shown in the lower
panel of Table 4. That matrix does not look exactly like a diagonal
matrix since, for instance, the correlation between zFiscal

t and
ŵProd

t (GMM) is significantly different from zero. However, we
can use the J-test to formally test the diagonality assumption for
�w1z. The J-statistic takes a value of 38.879 which corresponds
to a p-value of less than 1% of the relevant χ2(10) distribution.
Hence, the J-test clearly rejects a proper specification.

These results indicate that additional assumptions are nec-
essary for identifying the five shocks properly as uncorrelated
shocks based on the present proxies. We are not trying to come
up with such assumptions because it is our intention to illustrate
how our GMM approach and the corresponding J-test work in
practice. The next example also serves that purpose.

4.2. U.S. Monetary Policy

Jarociński and Karadi (2020) investigate the impact of monetary
policy in the United States and the euro area. They consider two
relevant shocks, a monetary policy shock which we denote by
wmp

t and a central bank information shock, denoted by wcbi
t in

the following. The first one captures conventional monetary pol-
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Table 3. Empirical correlations of one-by-one proxy VAR shocks and proxies for the Hou (2024)/Stock and Watson (2012) example, sample period 1959q2 - 2011q2, with
95% bootstrap confidence intervals.

ŵOil
t (PVAR) ŵMP

t (PVAR) ŵProd
t (PVAR) ŵRisk

t (PVAR) ŵFiscal
t (PVAR)

ŵOil
t (PVAR) 1 −0.586

(−0.763, −0.342)

−0.257
(−0.392, −0.010)

0.167
(0.032, 0.300)

−0.166
(−0.329, −0.001)

ŵMP
t (PVAR) 1 −0.051

(−0.210, 0.110)

−0.037
(−0.165, 0.111)

−0.034
(−0.160, 0.099)

ŵProd
t (PVAR) 1 0.234

(0.089, 0.367)

0.633
(0.540, 0.711)

ŵRisk
t (PVAR) 1 0.134

(−0.005, 0.270)

ŵFiscal
t (PVAR) 1

ŵOil
t (PVAR) ŵMP

t (PVAR) ŵProd
t (PVAR) ŵRisk

t (PVAR) ŵFiscal
t (PVAR)

zOil
t 0.222

(−0.049, 0.476)

−0.130
(−0.452, 0.211)

−0.057
(−0.158, 0.056)

0.037
(−0.119, 0.166)

−0.037
(−0.142, 0.060)

zMP
t −0.432

(−0.604, −0.238)

0.737
(0.601, 0.827)

−0.038
(−0.201, 0.121)

−0.028
(−0.173, 0.128)

−0.025
(−0.145, 0.099)

zProd
t −0.190

(−0.345, −0.030)

−0.038
(−0.203, 0.140)

0.739
(0.656, 0.806)

0.173
(0.034, 0.307)

0.468
(0.369, 0.559)

zRisk
t 0.047

(−0.073, 0.167)

−0.010
(−0.101, 0.084)

0.066
(−0.053, 0.181)

0.281
(0.167, 0.386)

0.038
(−0.099, 0.172)

zFiscal
t −0.041

(−0.182, 0.121)

−0.008
(−0.098, 0.084)

0.155
(0.020, 0.291)

0.033
(−0.084, 0.164)

0.245
(0.102, 0.397)

Table 4. Empirical correlations of GMM shocks for the Hou (2024)/Stock and Watson (2012) example, sample period 1959q2 - 2011q2, with 95% bootstrap confidence
intervals.

ŵOil
t (GMM) ŵMP

t (GMM) ŵProd
t (GMM) ŵRisk

t (GMM) ŵFiscal
t (GMM)

ŵOil
t (GMM) 1 −0.059

(−0.286, 0.168)

−0.053
(−0.235, 0.136)

−0.013
(−0.141, 0.118)

0.019
(−0.147, 0.179)

ŵMP
t (GMM) 1 −0.007

(−0.169, 0.158)

−0.051
(−0.188, 0.105)

0.032
(−0.091, 0.159)

ŵProd
t (GMM) 1 −0.010

(−0.145, 0.125)

−0.029
(−0.169, 0.112)

ŵRisk
t (GMM) 1 −0.107

(−0.251, 0.045)

ŵFiscal
t (GMM) 1

ŵOil
t (GMM) ŵMP

t (GMM) ŵProd
t (GMM) ŵRisk

t (GMM) ŵFiscal
t (GMM)

zOil
t 0.158

(−0.037, 0.358)

−0.126
(−0.436, 0.202)

−0.056
(−0.157, 0.057)

0.032
(−0.128, 0.166)

−0.029
(−0.168, 0.099)

zMP
t −0.105

(−0.313, 0.102)

0.732
(0.596, 0.823)

−0.036
(−0.199, 0.122)

−0.051
(−0.203, 0.117)

0.015
(−0.092, 0.125)

zProd
t −0.045

(−0.201, 0.116)

−0.006
(−0.173, 0.173)

0.738
(0.656, 0.806)

0.002
(−0.134, 0.145)

−0.026
(−0.154, 0.104)

zRisk
t 0.044

(−0.085, 0.170)

0.001
(−0.093, 0.097)

0.063
(−0.057, 0.179)

0.265
(0.135, 0.384)

−0.021
(−0.183, 0.133)

zFiscal
t 0.039

(−0.113, 0.226)

0.007
(−0.082, 0.105)

0.156
(0.022, 0.292)

−0.015
(−0.128, 0.113)

0.175
(0.046, 0.328)

icy action such as changes in interest rates, while wcbi
t captures

the impact of the assessment of the economic outlook conveyed
by the central bank. Jarociński and Karadi (2020) construct dif-
ferent sets of proxies zmp

t and zcbi
t to identify the shocks. Further-

more, they use sign restrictions to properly identify their shocks
of interest and Bayesian methods to perform their analysis. We
will focus on one of their U.S. models, a specific pair of proxies
and frequentist methods, thereby deviating from Jarociński and
Karadi (2020), to illustrate some of the points we have made in
Section 2.

Our model involves five U.S. variables, the one-year constant-
maturity Treasury yield, log S&P 500, log real GDP, the log GDP
deflator, and the excess bond premium (EBP) as a measure for

the recession risk in the next 12 months. We use monthly data
from 1984m2 till 2016m12 from Jarociński and Karadi (2020),
where further details on their construction are provided. The
model fitted is a VAR(12) with intercept term.

The two proxies are constructed as follows: A series of Federal
Funds futures surprises at the time of FOMC announcements is
constructed and aggregated to monthly frequency. That monthly
series is split up in two proxies by taking into account S&P 500
changes. When the S&P 500 moves in opposite direction to the
Fed Funds futures, the Fed Funds futures surprise is classified
as a value of zmp

t , while it is classified as a value of zcbi
t for all

other periods. For all periods where no value is available, the
proxies are set to zero. Thus, zmp

t zcbi
t = 0 by construction and,
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Table 5. Empirical correlations of proxies and one-by-one proxy VAR shocks for
Jarociński/Karadi (2020) example with 95% bootstrap confidence intervals.

ŵcbi
t (PVAR) ŵmp

t (PVAR)

zcbi
t 0.203

(0.067, 0.299)

0.089
(−0.090, 0.242)

zmp
t 0.101

(−0.018, 0.218)

0.232
(0.121, 0.335)

ŵcbi
t (PVAR) 1 0.436

(0.338, 0.534)

ŵmp
t (PVAR) 1

Table 6. Empirical correlations of proxies and GMM shocks for Jarociński/Karadi
(2020) example with 95% bootstrap confidence intervals.

ŵcbi
t (GMM) ŵmp

t (GMM)

zcbi
t 0.172

(−0.016, 0.338)

0.068
(−0, 115, 0.242)

zmp
t 0.023

(−0.095, 0.138)

0.230
(0.123, 0.331)

ŵcbi
t (GMM) 1 −0.025

(−0.163, 0.124)

ŵmp
t (GMM) 1

as the proxies have nonzero means, their correlation is nonzero
but small by construction.

In the upper panel of Table 5, we show the empirical cor-
relations between the shocks and the proxies when the shocks
are estimated using the one-by-one proxy VAR approach. The
correlation between zcbi

t and ŵmp
t (PVAR) and between zmp

t and
ŵcbi

t (PVAR) is small and not significantly different from zero.
Given that the estimated �w1z matrix is thus nearly diagonal,
one may conclude that identifying the two shocks one-by-one
may be justified. However, the resulting shocks have a significant
correlation of 0.436 if the one-by-one proxy VAR approach is
used for estimating them.

As it may be reasonable to assume in the present case
that each of the proxies is only correlated with a single shock
(�w1z is diagonal), we can use our GMM procedure to obtain
uncorrelated shocks. We have used an iterated weighting matrix
�(β , γ̂ LS) in the GMM objective function (15) and obtained
shocks similar to those from the one-by-one estimation. More
precisely, ŵcbi

t (PVAR) and ŵcbi
t (GMM) are not quite as similar

as ŵmp
t (PVAR) and ŵmp

t (GMM) (see Figure OS.3 in the online
supplement).

The correlations of the GMM shocks and their correlations
with the proxies are presented in Table 6. In this case, the
empirical correlation between the estimated ŵcbi

t (GMM) and
ŵmp

t (GMM) is −0.025 and, hence, very small and not signifi-
cantly different from zero. The fact that the estimated correlation
matrix corresponding to �w1z based on the one-by-one proxy
VAR shocks in Table 5 is diagonal is, of course, no insurance for
getting also a diagonal �w1z for the GMM shocks. Thus, we also
present the estimated correlation matrix corresponding to �w1z
for these shocks in the upper panel of Table 6 and find that the
assumption of a diagonal �w1z matrix is supported by the very
small and insignificant off-diagonal elements of the estimated
correlation matrix. Thereby we also support the use of our GMM

approach for estimation in this case. We have also performed the
J-test and obtained a test value of J = 1.346 and a p-value of 0.25
of the corresponding χ2(1) distribution which indicates that our
test provides no evidence against the moment conditions being
correct.

Given that an argument against using correlated shocks is that
the corresponding impulse responses may reflect a distorted pic-
ture of the actual responses of the variables as isolated shocks are
not likely to occur in practice, we present the impulse responses
of the central bank information shock obtained with the one-by-
one proxy VAR approach and the GMM approach in Figure 3.
The shocks are scaled such that they increase the interest rate
by 25 basis points on impact to make them comparable in size
despite having potentially different variances. The confidence
intervals around the impulse responses in Figure 3 are computed
by the moving block bootstrap that was also used in the simula-
tions in Section 3.2.

In Figure 3, the one-by-one proxy VAR impulse responses
with 68% confidence intervals are shown on the left-hand
side of the figure and the GMM confidence intervals are
presented on the right-hand side. The point estimates obtained
with both approaches are shown on the left-hand as well as
the right-hand side to facilitate the comparison. In Figure 3,
the confidence intervals of the GMM approach are overall
somewhat smaller than the corresponding one-by-one proxy
VAR intervals. Most point estimates of one approach are covered
by the confidence intervals of the other approach. However,
the responses of the stock index estimated by the one-by-one
proxy VAR approach for the first 12 months after the shock
do not fall inside the GMM confidence intervals and are much
closer to zero than the responses estimated by GMM. In other
words, for the orthogonalized central bank information shock,
the impact effect is estimated to be much stronger on the
stock market than indicated by the corresponding correlated
shock. It is in fact quite plausible that the information released
by the central bank is closely monitored by the stock market
participants and, hence, the stock market response estimated
by the GMM approach may be the more realistic one. Another
striking difference is the response of EBP to the GMM shock
compared to the shock estimated by the one-by-one approach.
The confidence interval of the EBP response on impact to a
GMM central bank information shock does not cover zero and,
hence, one may conclude that the central bank can successfully
reduce the risk of a recession by its communication despite
increasing the interest rate. In contrast, relying on the one-by-
one proxy VAR approach, zero is well inside the confidence
intervals of propagation horizons of up to more than one year.
Hence, in this case, one may underestimate the impact of the
central bank communication shocks when using the correlated
shocks.

The responses to ŵmp
t (PVAR) and ŵmp

t (GMM) shocks are
presented in Figure OS.4 in the online supplement. They are
also rather similar but display some noteworthy differences.
For example, considering the point estimates, a 25 basis points
interest rate shock is estimated by the GMM approach to have
a stronger impact on the S&P 500 and the GDP deflator than
the shock estimated by the one-by-one proxy VAR approach.
Thus, considering uncorrelated shocks makes a difference for
the impulse responses.
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Figure 3. U.S. monetary policy example: comparison of impulse responses of a wcbi
t shock estimated by the one-by-one proxy VAR approach (dotted lines, light grey

confidence intervals) and with the GMM approach (solid lines, dark grey confidence intervals). The impulse responses are normalized to yield a 25 basis points increase in
the one-year government bond yield on impact. The confidence intervals around the impulse responses are based on 5000 bootstrap samples.

This also holds for FEVDs. We present them for the PVAR
and GMM shocks in Tables 7 and 8. In particular, the forecast
error shares of the central bank information shock in Table 7
depend on the estimation method. For example, the share of
forecast error variance of the log S&P 500 accounted for by
ŵcbi

t (PVAR) shocks is much smaller than that accounted for by
ŵcbi

t (GMM) shocks for all horizons shown in the table. A similar
observation can be made for the forecast error shares of EBP.

These results are, of course, well in line with the results for the
impulse responses of these variables. Given the similarity of the
ŵmp

t (PVAR) and ŵmp
t (GMM) in Figure OS.3, it is not surprising

that the FEVDs of the two monetary policy shocks in Table 8 are
rather similar.

It is perhaps worth drawing attention to one serious drawback
of the correlated one-by-one proxy VAR shocks seen in Tables 7
and 8. The sum of the 1-step ahead forecast error variance shares
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Table 7. Forecast error variance accounted for by Central Bank Information Shocks.

Forecast horizon

Shock Variable 1 2 3 4 5 6 12

ŵcbi
t (PVAR) 1 y gov. bond yield 0.910 0.863 0.832 0.827 0.821 0.812 0.810

log S&P 500 0.000 0.002 0.004 0.003 0.003 0.002 0.007
log real GDP 0.083 0.144 0.147 0.150 0.142 0.135 0.099
log GDP deflator 0.044 0.023 0.014 0.012 0.012 0.010 0.007
EBP 0.039 0.045 0.037 0.036 0.033 0.031 0.027

ŵcbi
t (GMM) 1 y gov. bond yield 0.699 0.701 0.710 0.749 0.769 0.774 0.754

log S&P 500 0.279 0.251 0.233 0.235 0.243 0.248 0.267
log real GDP 0.079 0.141 0.167 0.196 0.211 0.219 0.242
log GDP deflator 0.083 0.045 0.030 0.023 0.020 0.017 0.010
EBP 0.120 0.172 0.164 0.173 0.169 0.166 0.141

Table 8. Forecast error variance accounted for by Monetary Policy Shocks.

Forecast horizon

Shock Variable 1 2 3 4 5 6 12

ŵmp
t (PVAR) 1 y gov. bond yield 0.195 0.148 0.111 0.094 0.084 0.075 0.060

log S&P 500 0.315 0.355 0.374 0.381 0.386 0.392 0.346
log real GDP 0.075 0.065 0.106 0.132 0.168 0.196 0.293
log GDP deflator 0.075 0.098 0.103 0.123 0.131 0.138 0.177
EBP 0.430 0.455 0.461 0.456 0.446 0.434 0.401

ŵmp
t (GMM) 1 y gov. bond yield 0.114 0.079 0.054 0.042 0.035 0.030 0.020

log S&P 500 0.399 0.439 0.457 0.466 0.475 0.483 0.436
log real GDP 0.083 0.077 0.128 0.163 0.206 0.241 0.358
log GDP deflator 0.056 0.083 0.091 0.112 0.120 0.128 0.177
EBP 0.507 0.545 0.550 0.546 0.535 0.522 0.479

accounted for by ŵcbi
t (PVAR) and ŵmp

t (PVAR) (0.910 and 0.195,
respectively) is greater than one which, by definition, is not
possible for the actual shares of two shocks. Recall that the shares
for all shocks should sum up to one. The reason is, of course, that
the forecast error variance shares are computed conditional on
the shocks being uncorrelated. Hence, performing an analysis
with correlated shocks can lead to serious bias for the FEVDs.
The problem does not occur when the shocks are estimated by
our GMM approach (see Tables 7 and 8).

We emphasize again that Jarociński and Karadi (2020) use
quite different identification and estimation methods. Therefore
it is not surprising that their impulse responses differ from those
obtained by our estimation approaches. We have deviated from
their analysis to illustrate some of the theoretical points made in
Section 2 of our paper.

5. Conclusions

This study shows that using proxies to identify structural shocks
in a VAR analysis can lead to unintentionally correlated shocks.
Such shocks are usually ruled out by assumption in structural
VAR analysis because correlated shocks may lead to distorted
impulse responses and FEVDs. When several proxies are used to
identify a set of shocks and no further identifying information
is available, in general, the proxies will identify only linear com-
binations of the impact effects. However, if the proxies satisfy
the usual relevance and exogeneity conditions for valid proxies
individually, in other words, if each proxy is correlated with
exactly one shock only, using that feature and also imposing
uncorrelatedness of the shocks implies even over-identifying
restrictions for the shocks of interest. We have proposed a sim-

ple, efficient GMM approach that takes full advantage of the
over-identifying restrictions and ensures uncorrelated shocks
if each proxy is correlated with exactly one shock only. Our
approach also provides a J-test with asymptotically valid χ2

distribution. It also has good small sample properties and can
be used to check the validity of the over-identifying moment
conditions.

We present examples of structural VAR studies where
multiple proxies identify more than one structural shock and
where the structural shocks are not instantaneously uncorrelated
if the proxies are used in the one-by-one way to identify the
shocks. Enforcing uncorrelated shocks by using our GMM
approach makes a difference for the impulse responses and
FEVDs. Thereby we show that the problem of correlated shocks
is relevant in practice and our GMM approach is a useful tool to
overcome the problem.

Proxies have also been used to identify structural shocks in
factor models (see, e.g., Stock and Watson 2012). Obviously, cor-
related shocks may also be obtained in that setting if the proxies
are used one-by-one. Therefore, extending our analysis in that
direction would be of interest. We leave it for future research
because identifying structural shocks in factor models involves
additional considerations (see, e.g., Kilian and Lütkepohl 2017,
chap. 16).
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