

https://doi.org/10.1093/ismejo/wraf053 Advance access publication: 16 March 2025 Review Article

Metabolism of CO and H₂ by pioneer bacteria in volcanic soils and the phyllosphere

Nicola Fantom¹, Robin A. Dawson¹, Edina Prondvai², Philippe Constant³, Gary M. King⁴, Hendrik Schäfer², Marcela Hernández^{1,*}

¹School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom

²School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom

³Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada ⁴Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States

*Corresponding author. School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom. E-mail: marcela.hernandez@uea.ac.uk

Abstract

Trace gas degradation is a widespread metabolic adaptation in microbial communities, driving chemosynthesis and providing auxiliary energy that enhances persistence during nutrient starvation. In particular, carbon monoxide and hydrogen degradation can be of crucial importance for pioneering microbial communities colonising new, oligotrophic environmental niches, such as fresh volcanic deposits or the aerial interface of the phyllosphere. After volcanic eruptions, trace gas metabolism helps pioneer colonisers to initiate soil formation in ash deposits and on recently solidified lava, a vital ecosystem service. Similarly, in the phyllosphere, bacteria colonising newly emerging leaves and shoots, and/or persisting on the oligotrophic surface of plants, also benefit from trace gas oxidation and, given the global size of this habitat, likely constitute a significant sink for these trace gases affecting atmospheric chemistry. Herein, we review the current state of knowledge surrounding microbial oxidation of carbon monoxide and hydrogen and discuss how this may contribute to niche colonisation in oligotrophic ecosystems.

Keywords: carbon monoxide; hydrogen; soil microbes; volcano; phyllosphere

Introduction

Carbon monoxide (CO) and hydrogen (H₂) are indirect greenhouse gases that react with hydroxyl radicals (•OH), which would otherwise oxidise the potent greenhouse gas methane (CH₄). Depending on several variables, such as latitude, season, and regional pollution levels, atmospheric mixing ratios of CO and H₂ can range from 40 ppb to over 10 ppm for CO [1] and ~500 ppb for H₂ [2]. Anthropogenic activities are responsible for the emission of 60% of total CO to the atmosphere [3]. The remaining 40% is produced by natural sources, including a relatively small contribution from volcanoes [4], and larger contributions from oceans [5] and plants. This production occurs in plants aboveground via photoproduction from live biomass (50–200 Tg CO yr^{-1} [3, 6]) and photo/thermal production from dead biomass (~60–90 Tg CO yr⁻¹ [7, 8]). Belowground production by roots contributes \sim 170 \pm 260 Tg CO yr^{-1} [9]; however, the production budget does not distinguish between gross and net budgets because the atmospheric budget reflects the net flux, whereas the belowground budget represents gross production, as very little of the belowground production reaches the soil-atmosphere interface. The main sources of atmospheric H₂ are fossil fuel utilization $(11 \pm 4 \text{ Tg H}_2 \text{ yr}^{-1})$, biomass burning $(15 \pm 6 \text{ Tg H}_2 \text{ yr}^{-1})$, nitrogen fixation $(8 \pm 5 \text{ Tg H}_2 \text{ yr}^{-1})$, photochemical oxidation from methane (23 \pm 8 Tg $H_2~yr^{-1}),$ and photooxidation from volatile organic compounds (18 ± 7 Tg H₂ yr⁻¹) [10]. CO sinks include reactions with •OH (~85%), diffusion into the stratosphere (~5%), and microbial consumption in soils

(~10%) [3, 11]. H₂ sinks include oxidation reaction with •OH (~20%) and microbial oxidation in soil (~80%) [10].

Bacterial trace-gas oxidation occurs in various environments, including marine environments, and has been reviewed extensively in marine settings [12-14] as well as other environments, such as forest soils and the rhizosphere (see Table 1 in [15] and Fig. 4 in [14]). Soil bacteria are estimated to consume ~250-300 Tg of CO [15, 16] and 60 Tg of H₂ from the atmosphere per year [14]. Understanding how microbes grow in post-volcanic environments provides a powerful, tractable model to determine how soil microbial communities can recover following disturbance. Another understudied but potentially highly significant sink for CO and H₂ is the phyllosphere microbiome as both H₂and CO-degrading bacteria have been found in association with plants (Table 1, Table 2) [17, 18]. The phyllosphere is functionally oligotrophic and exposes the microbiome to similar stresses as young volcanic soil systems. These include high UV radiation (especially in volcanic deposits), broad-range temperature fluctuations within a short time period, and considerable nutrient limitations.

In this review, we focus on how trace gas oxidation may contribute to successful colonisation of newly emerging and/or oligotrophic niches, focusing on understanding the roles of CO and H_2 oxidisers in volcanic deposits (initial soil development and maturation) and in the phyllosphere of terrestrial plants, particularly trees. The microbial communities colonising these

Received: 18 December 2024. Revised: 10 March 2025. Accepted: 14 March 2025

© The Author(s) 2025. Published by Oxford University Press on behalf of the International Society for Microbial Ecology.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Таха	Habitat (volcanic/plant)	CO-related genes	NCBI Reference Sequence	Reference
Dictyobacter vulcani strain W12 ^T	Soils, Mt Zao Volcano, Japan	coxL (form 2)	NZ_BKZW0000000.1	[19]
Thermogemmatispora carboxidivorans strain PM5 ^T	Geothermal biofilm, Kilauea Volcano, Hawaii (USA)	coxL (form 1)	NZ_JNIM0000000.1	[20]
Cupriavidus ulmosensis strain CV2 ^T	Tephra soils, Calbuco Volcano, Chile	coxL (forms 1 and 2)	NZ_JAVCPL00000000.1	[21]
Paraburkholderia terrae strain COX	Tephra soils, Calbuco Volcano, Chile	coxL (forms 1 and 2)	NZ_JAUYZV00000000.1	[21]
Kyrpidia spormannii strain FAVT5	Pantelleria Island, Italy (volcanic island)	coxL (form 2)	GCA_902829265	[22]
Phyllobacteriaceae bacterium strain CO17	Phyllosphere of Hawthorn trees, UK	coxL (forms 1 and 2)	JAFNIO00000000	[17]
Bradyrhizobium japonicum strain 110spc4	Root nodule	coxL (form 2)	AH010242.2	[23]
Labrenzia sp strain M4	Aquatic and terrestrial plants	coxL (forms 1 and 2)	AY307902* (form-1) AY307916* (form 2)	[24]
Stenotrophomonas sp. strain LUP		coxL (form 1)	AY307920*	
Labrenzia sp. strain M8		coxL (form 1 and 2)	AY307903* (form-1) AY307917* (form-2)	
Mesorhizobium sp. strain NMB1 Xanthobacter sp. strain COX		coxL (form 2) coxL (form 2)	AY307906* AY307911*	
Paraburknoiaeria sp. strain LUP		coxL (form 2)	AY30/90/*	

Table 1. Summary of key aerobic CO-oxidising taxa and their habitats.

*coxL accession numbers.

Table 2.	Summar	y of key	aerobic H ₂	oxidising	taxa and	their	habitats
----------	--------	----------	------------------------	-----------	----------	-------	----------

Таха	Habitat (volcanic/plant)	H ₂ -related genes	NCBI Reference Sequence	Reference
Kyrpidia spormannii strain FAVT5 Methylacidimicrobium thermophilum AP8 Rhizobium meliloti strains A1* and A5* Rhodococcus strains A2* and A3*	Pantelleria Island, Italy (volcanic island) Pantelleria Island, Italy (volcanic island) Alfalfa root nodules	[NiFe] group 2a hydrogenases [NiFe] group 1b hydrogenase N.D.	GCA_902829265 LR797830 N.D.	[22] [25] [26]
Pseudomonas sp. strain A7* Bacillus sp. strains A8** and A9**				
Streptomyces speibonae strain CS12H Streptomyces thermocarboxydus strain AS13Y	Capsella bursa-pastoris shoot Arabidopsis thaliana shoot	hhyL (cluster-II) hhyL (cluster-II)	AB894412*** AB894413***	[18]
S. thermocarboxydus strain AS22T S. thermocarboxydus strain OS2C Streptomyces scabiei strain OR9T	Oryza sativa shoot O. sativa shoot	hhyL (cluster-II) hhyL (cluster-II) hhyL (cluster-I)	AB894414*** AB894415*** AB894417***	
Streptomyces koyangensis strain OR3C		hhyL (cluster-II)	AB894416***	
Streptomyces thermospinosisporus strain OR11H		hhyL (cluster-II)	AB894418***	

*H2 disappearance **H2 production ***hhyL accession numbers N.D: Not determined

environments provide key services, such as regulating the composition of the atmosphere through trace gas oxidation, carbon cycling, and maintaining the flow of reducing equivalents under nutrient limitation [15, 27].

CO- and H₂-oxidisers: phylogeny, enzymes, and habitats

Bacteria can oxidise highly variable CO concentrations. Hydrogenophaga pseudoflava (formerly Pseudomonas carboxydoflava [28]) oxidised CO from 10–50% (v/v) initial concentrations [29] down to ambient concentrations, whereas Thermomicrobium roseum [30] and various Labrenzia spp. [31] (formerly Stappia [32]) oxidised CO to sub-atmospheric levels from initial concentrations of 14 ppmv and 1000 ppmv, respectively. Additionally, COoxidising Cupriavidus ulmosensis CV2^T and Paraburkholderia terrae

COX can oxidise CO at concentrations up to 10000 ppmv [21]. CO-oxidation can occur as an oxygen-tolerant or true anaerobic process performed by distinct carbon monoxide dehydrogenases (CODH). Anaerobic Ni-dependent CODH, discussed in greater detail in previous reviews [33, 34], is encoded by cooS gene clusters in bacteria or *cdh* gene clusters in archaea [35]. These enzymes are widely distributed in forested, cultivated, and volcanic soils and sediments [36-39], and have the potential to catalyse the oxidation of CO to sub-atmospheric levels [37, 38, 40]. The aerobic Mo-Cu CODH is encoded by the genes coxS, coxM, and coxL. Of these, coxL encodes the large subunit bearing the active site of Mo-Cu CODH and is thus considered the functional marker gene for aerobic CO-oxidising bacteria [41]. Although mainly known for its aerobic activity, Mo-Cu CODH can catalyse the oxidation of CO to CO₂ under anaerobic conditions as well as using alternative terminal electron acceptors such as nitrate [40]. Oxygen-tolerant

CO oxidisers using Mo-Cu CODH (hereafter simply referred to as CODH) are divided broadly into two categories: carboxydovores and carboxydotrophs. Carboxydovores use CO only as a supplementary energy source [15], often at atmospheric levels [30, 31], supporting mixotrophic lifestyles in which trace gas oxidation fulfills maintenance energy requirements during periods of organic carbon starvation. In contrast, carboxydotrophs have typically been studied using much higher concentrations of CO [24, 42, 43] and can grow with CO as their sole source of carbon and energy, sometimes in parallel with H_2 oxidation [24, 44]. The significance of this is that CO-oxidising microorganisms help regulate atmospheric CO levels by consuming it, thereby influencing greenhouse gas dynamics. Additionally, their cooccurrence with hydrogen oxidation suggests metabolic flexibility [30], enabling survival in low-nutrient environments [45].

Assimilation of carbon from CO oxidation is possible only via CO₂-fixation pathways (e.g. Calvin-Benson-Bassham (CBB) cycle) that are present in carboxydotrophs but most likely absent in carboxydovores [44]. Furthermore, elevated concentrations of CO could result in inhibition of CO oxidation activity in carboxydovores with an assumed high-affinity CODH [24]. For example, carboxydovores C. ulmosensis CV2^T and Pb. terrae COX rapidly consumed 100 ppmv CO (within 96 hours), but C. ulmosensis CV2^T only consumed a significant quantity of CO from an initial concentration of 10000 ppmv CO after 210 hours, while Pb. terrae COX did not consume a significant quantity of CO from an initial concentration of 10000 ppmv over a 332-hour period. This suggested that CODH activity was inhibited or less effective at higher CO concentrations [21]. The current classification of COdegrading bacteria as either carboxydovores or carboxydotrophs likely does not fully capture the metabolic role of CO degradation in bacteria and further research is needed to assess the regulation and function of this process.

Mo-Cu CODH can be sub-categorized based on CoxL amino acid motifs: form 1 (AYRCSFR) and form 2 (AYRGAGR). Form 1 is typically recognised as the definitive CO-oxidising CODH, whereas form 2 is a related Mo-Cu dehydrogenase, which may use CO as a non-preferred substrate [15, 23, 24]. Challenging the position of form 2 as a non-canonical CODH, two strains from the genus Kyrpidia were reported to oxidise CO despite possessing only form 2 CODH [22]; however, Cunliffe [41] found that carboxydovores from the marine Roseobacter clade possessing either form 2 alone or both forms of CODH could only oxidise CO when both forms were present, suggesting that form 2 CODH alone cannot perform CO oxidation. Due to contradicting findings and the limited number and diversity of strains tested for CO degradation capability, there is currently no consensus on the CO degradation potential of form 2 CODH. Experimental testing with a broader selection of bacteria possessing only form 2 CODH, combined with gene knock-out experiments on strains containing both forms 1 and 2 CODH, could help clarify the functional potential of form 2 CODH in CO oxidation.

Oxygen-tolerant [NiFe]-hydrogenase catalyses chemolithotrophic energy acquisition across diverse bacterial taxa (see review in [14]). Higher- and lower-affinity hydrogenases have been identified [30, 46–48], with high-affinity variants oxidising atmospheric H₂ down to sub-ambient concentrations [48]. This provides supplementary energy to meet cellular requirements during mixotrophy and persistence, similar to carboxydovory, but can also promote anabolism by driving assimilation of CO_2 through processes such as the Calvin-Benson-Bassham cycle [49]. The latter process is linked to moisture- and nutrientlimited environments, including Arctic and Antarctic soils [49]. H₂ oxidation is widespread in the actinomycetes [50], and genetics experiments in the model soil-dwelling hydrogenotroph Streptomyces avermitilis demonstrated that H₂ uptake was catalysed by spores, highlighting the importance of H₂ oxidation during starvation. Deletion of hydrogenase-encoding genes drastically reduced survival of the spores [51], an effect also observed in the survival of Mycobacterium smegmatis mc²155 [52]. M. smegmatis possesses two [NiFe]-hydrogenases, each of which can oxidise H₂ to sub-ambient concentrations [48], with group 2a [NiFe]hydrogenase Huc expressed at the initial onset of stationary phase to promote mixotrophy, whereas group 1 h [NiFe]-hydrogenase Hhy activity was observed during long-term persistence [53], demonstrating the ability of soil bacteria to perform metabolic switches to effectively use trace gases during starvation. Similarly, T. roseum substantially changed its metabolism during the shift to stationary phase to take advantage of trace gases such as H₂ and CO [30].

Genetics- and activity-based studies have indicated the global significance of CO- and H₂-oxidisers in low-nutrient ecosystems, including marine ecosystems [54], Antarctic deserts [55, 56], and non-polar deserts such as those near hot springs in Chile [57], biological soil crusts in Israel [58], and Australian deserts [59]. Additionally, the ability to use both CO and H₂ has been observed in bacteria from many clades [24, 30, 44, 48, 60–63]. This widespread distribution suggests that both CO and H₂ oxidation play a crucial role in niche colonisation [20, 30, 54, 64, 65].

Adaptations for colonising extreme environments

Oligotrophic conditions, such as those found in fresh and pristine volcanic deposits or on the surface of newly emerging plants and their compartments, pose significant challenges to many microbial processes. Some organic carbon is provided to these environments via aeolian deposition and precipitation, supporting some heterotrophic activity, but trace gas metabolism has been shown to be a key and consistent source of carbon and energy in early soil formation, particularly preceding colonisation by plants [66, 67].

The regulation of trace gas oxidation in isolated bacteria provides much insight into the conditions driving environmental fluxes. Studies have demonstrated that, in some isolates and soil microcosms, CO and H₂ oxidation occur during organic carbon starvation, with the presence of organic carbon often repressing trace gas metabolism [16, 30, 31, 48, 61, 68, 69]. The significance of trace gas oxidation to oligotrophic ecosystems was clearly indicated when King [66] demonstrated that up to 25% of reducing equivalent flow in recent and developing volcanic deposits were due to CO and H₂ oxidation, which may be sufficient to meet the maintenance requirements for long-term survival of cells. In another study, M. smegmatis was shown to use H₂ and CO to meet its energy requirements under hypoxic and carbon limited conditions [61]; however, this is not always the case as the carboxydotroph Mycobacterium sp. JC1 grows mixotrophically using both CO and organic carbon with no inhibition of either process by either substrate [43], demonstrating that starvation is not the only condition that triggers CO-oxidation in bacteria. Similarly, H. pseudoflava, a carboxydotroph capable of oxidising ambient levels of CO [29], oxidised both CO and H₂ whilst growing heterotrophically to drive greater assimilation of the organic substrate. The mixotrophic use of CO/H₂ and organic carbon [65, 70], or the alternative use of CO/H₂ as supplementary energy sources to support survival in the absence of organic carbon [30,

48, 50, 56, 61], offers significant advantages for bacteria colonising oligotrophic ecosystems. This extends to other environments, as *Armatimonadota* MAGs retrieved from marine sediments contain a NiFe group 4b hydrogenase, which is associated with CODHs, highlighting their potential ecological roles in carbon cycling [71]. King and Weber [67] postulated that CO and H₂ oxidation are selected for during soil succession to meet microbial maintenance requirements, and Bay et al. [45] found that trace gas oxidation exceeded the minimum requirements for population maintenance in energy-limited soils.

Trace gas oxidisers in volcanic soils

The use of trace gases is thought to be a driver of microbial community development [66], a key aspect of re-establishing a thriving ecosystem following a volcanic eruption. After lava solidifies, early microbial colonisers use light and/or chemical energy (e.g. H₂, CO, and CH₄) to persist (Fig. 1A) [67, 72]. Some autotrophs, including chemolithoautotrophs, can utilise CO as readily available energy sources, supporting the assimilation of CO₂ into organic carbon, which in turn can support heterotrophs and more complex life. King [66] has predicted minor net contributions of CO and H₂ to CO₂ fixation on unvegetated Hawaiian volcanic deposits, with H₂ contributing substantially more than CO and rivalling inputs from wet deposition of organic matter, but highlighted the importance of trace gas oxidation to energy acquisition in organic carbon-limited sites. Many trace gas-oxidising microorganisms are also heterotrophs [20, 21, 29, 30, 73], likely facilitating growth using transient carbon depositions whereas long-term persistence is supported by trace gases, as observed in axenic cultures [16, 48, 53]. Evidence suggests that trace gas metabolism is fundamental to maintenance of healthy mature soils [27, 74] and CO oxidation is an important and widespread property of soil bacteria with CODH form 1 coxL genes identified in several genera belonging to seven phyla that dominate soil environments (Pseudomonadota, Actinomycetota, Acidobacteriota, Chloroflexota, Bacillota, Gemmatimonadota, and Bacteroidota) [16]. Some CO oxidisers containing form-1 coxL genes, isolated from volcanic and phyllosphere environments include Dictyobacter vulcani strain W12^T, Thermogemmatispora carboxidivorans strain PM5^T, Cupriavidus ulmosensis strain CV2^T, Paraburkholderia terrae strain COX, Phyllobacteriaceae bacterium strain CO17, "Labrenzia carboxidovorans strain M4", Stenotrophomonas sp. strain LUP, and Labrenzia sp. strain M8 (Table 1).

When soils and plant life are established, trace gas oxidisers remain abundant and continue to play a significant role in trace gas oxidation [67]. Studies of lava flows at different successional stages, with or without vegetation, indicate that in situ CO uptake rates are highest in recent, bare deposits [67]. Additionally, CO and H₂ contribute more significantly to community respiration in these environments compared to mature, vegetated sites, where organic matter-likely provided through root exudates-is more prevalent [66, 67]. This demonstrates the impact of trace gas oxidation in nutrient-depleted environments. King and Weber [67] demonstrated that, within sites of the same depositional age, vegetated areas had a higher uptake capacity for atmospheric CO compared to bare sites, which reflects the interplay between biotic and abiotic factors driving CO production and consumption in situ. Factors to consider that may influence observed flux include, but are not limited to, higher in situ CO production, a greater abundance of CO oxidisers in situ, and the availability of organic matter. Trace gas oxidising microorganisms may continue to play important roles in vegetated soils through plant-microbe

interactions, as CO oxidisers may contribute to N₂ fixation on vegetated volcanic cinders [66, 67], supporting plant succession. Following plant development, roots emit CO, which can be consumed by root-associated microorganisms [9, 67] such as the CO-oxidising, nitrogen-fixing endophyte Bradyrhizobium japonicum [23] and several other CO oxidisers, including two nitrate-respiring isolates, Paraburkholderia xenovorans LB400 (formerly Burkholderia xenovorans LB400 [75]) and Xanthobacter sp. str. COX, as well as two denitrifying isolates, Bradyrhizobium sp. str. CPP and Labrenzia aggregata IAM 12614 [40]). Additionally, anaerobic CO oxidation was also widespread in lava flows of different ages, occurring under mesophilic (25°C) and thermophilic (60°C) conditions between 10 ppm and 25% (v/v) [38]. Furthermore, while H₂ is present only as trace gas in the atmosphere, those possessing high affinity hydrogenases can oxidise it to sustain metabolism under energy-limited conditions. This is especially relevant in young volcanic deposits, where extreme oligotrophy, mineralogical constraints, and fluctuating environmental conditions create challenges for microbial survival, making trace gas oxidation a crucial metabolic strategy (Table 2).

The phylum Chloroflexota are of particular interest for trace gas metabolism in volcanic ecosystems due to its global prevalence [62, 76-80], dominance in recent, bare deposits [62, 76, 81, 82], and the isolation of CO- and H2-oxidising members from volcanic and geothermal environments (Table 1) [20, 73, 83]. Chloroflexota colonise diverse oligotrophic niches alongside other putative COand H2-oxidisers [84-87]. Previously, we examined bacterial diversity along a chrono-sequence path (i.e. soils of different ages) on Llaima Volcano, Chile, and found that a specific order of Chloroflexota, Ktedonobacterales, dominated the young (1957) soil [76]. Very little is known about Ktedonobacterales but our metagenomic analysis revealed that some metagenome-assembled genomes contain genes encoding CODH and hydrogenases [62]. Islam et al. [30] demonstrated the ability of two members of the Chloroflexota (including one member of the class Ktedonobacteria) to persist during starvation by oxidising atmospheric levels of H₂ and CO. Further studies on chemolithoautrophy in isolates from this phylum may provide valuable insight into the colonisation of oligotrophic niches by pioneering Bacteria, as well as how their activity, distribution, and ecological role vary across soil carbon content gradients. This can enhance our understanding of the advantages provided by trace gas metabolism under nutrient stress conditions experienced in situ.

Trace gas oxidisers in plant microbiomes

Despite the atmospheric and plant-derived sources of carbon and energy, colonisers of the aerial interface of the phyllosphere are generally exposed to oligotrophic conditions combined with fluctuating temperature, limited water availability and UV light (Fig. 1B) [88]. Still, phyllosphere communities are taxonomically and functionally diverse [89]. Photoproduction of CO and H_2 by plants is well-known [90, 91] and largely linked to the leaf internal compartment with emission from the stomata [7]. The notion that this may provide an important and extensive niche for COdegrading bacteria is supported by the estimate that ~25% of phyllosphere bacteria possess cox genes, and by the experimental finding that bacteria filtered from leaf washes consume CO [17]. For comparison, in soil microbial communities, the fraction of microorganisms able to consume H₂ and CO was estimated to make up an average of 39% and 56%, respectively, based on short read sequence assemblies, and 26 to 31% based on metagenome assembled genomes [45]. Additionally, for marine environments,

Figure 1. Microbial succession and carbon cycling in volcanic and plant ecosystems. A. A chronosequence approach to potential trace gas oxidisers in pioneer and established soil ecosystems, using a volcanic land formation model. Bacterial taxonomy (pie charts: 16S rRNA gene abundance) was adapted from [76]. B. Trace gas cycling in plant ecosystems, divided between rhizosphere (e.g. root nodules) and phyllosphere (above ground parts, e.g. leaves and bark). Trace gas flux from the bark ecosystem was summarized from ([92]). Numbers below the pie charts represent the year of the eruption at Llaima volcano.

it has been estimated that ~2% of bacteria oxidise H₂, whereas 21% oxidise CO [14]. Further evidence is provided by the Phyllobacteriaceae strain CO17, a CO oxidiser isolated from leaf washes, which possesses both forms of CODH, RuBisCO, and a hydrogenase linked to hydrogenogenic fermentation [17]. Other plantassociated processes support trace gas-oxidising bacteria, as N₂fixation generates ~9 Tg yr⁻¹ H₂ (Fig. 1B) [14] which may then be oxidised by rhizobia, endophytes, or epiphytes. Work by Kanno et al. [18] demonstrated that H₂-oxidising bacteria with high affinity [Ni-Fe] hydrogenases colonise various plant species and can take up H₂ at ambient levels. Their findings suggest that plant-associated H₂ oxidation could represent a significant sink for atmospheric H₂. Further studies are required to evaluate the significance of vegetation and phyllosphere-associated bacteria in global CO and H₂ cycling. Estimates of global leaf surface area of terrestrial vegetation vary, ranging from satellite-based measurements of 2×10^8 km² to ground-based estimates of 6.4 $\times 10^8$ km² [93]. With average bacterial densities of 10^6 – 10^7 per cm², the terrestrial leaf habitat alone could host up to 10^{26} cells [89, 93]. These estimates focus on leaf epiphytic bacteria and thus provide a conservative estimate of the global aboveground plant-associated microbial population, excluding those associated with shoots, stems, and woody surfaces. Compared to soil bacteria (with an estimated global population 3×10^{29} cells [94]), the phyllosphere population may be small; however, unlike soil microorganisms, those in the phyllosphere are in direct contact with the atmosphere, and their role and significance in trace gas cycling require further study. Additionally, very few tree species have been surveyed for CO oxidation to date [17, 92]. As alluded to above, analyses need to be expanded to investigate the potential role of bark-dwelling bacteria and assess fluxes at ambient CO levels, particularly since H_2 -oxidising and CO-oxidising bacteria are abundant and active members of bark microbiomes [92]. Studying the phyllosphere of other species, including vascular and non-vascular plants would provide valuable insight into the ecosystem-wide dynamics of trace gas oxidation, as soils and marine CO oxidation have long been the focus. Furthermore, understanding how deforestation, changes in land management, and wildfires might influence future atmospheric CO levels is crucial.

Challenges and future directions

Microbial trace gas metabolism is a significant activity of microbial communities with global impacts relating to soil formation, pollutant degradation, and climate regulation. The role of trace gases in driving microbial colonisation of newly emerging, temporary, and oligotrophic niches, such as fresh volcanic deposits or the phyllosphere of developing and established vegetation displaying changes in leaf and shoot phenology, is yet to be explored in greater depths by interdisciplinary approaches, including microbial ecology, biogeochemistry, and molecular biology. The limited work done so far indicates that these environments are rich in COand H₂-oxidising bacteria, marking these ecosystems as ones with great and unexplored potential to understand their ecological roles in soil formation and plant resistance to biotic and abiotic stress. Additionally, a more detailed understanding of the role of plants and CO-oxidising bacteria is needed to determine how trace gas metabolism may offer competitive advantages to the pioneering bacteria which initially colonise these habitats, potentially by providing them with energy and driving chemosynthesis. Improving the understanding of regulation of trace gas-degrading organisms and enzymes will be critical for modelling the impact of environmental degradation on CO and H₂ concentrations in the atmosphere. It may also enhance the prospects of their targeted application in mitigation of air pollution and greenhouse gases.

Author contributions

MH: Supervision. MH and HS: Resources, Investigation, and Visualisation. MH and HS: Conceptualisation and Funding Acquisition. RAD and MH: Developed and designed the figs. NF, EP, RAD, MH and HS: Writing—original draft. NF, EP, RAD, GMK, PC, MH, and HS: Writing—review & editing. All authors read and approved the final manuscript.

Conflicts of interest

The authors declare no conflict of interest.

Funding

NF was supported by NERC ARIES-DTP studentship (NE/S007334/1). RAD was supported by Royal Society Research Fellows Enhanced grant awarded to MH (RF\ERE\231066). EP was supported by a NERC CENTA-DTP studentship (NE/S007350/1). HS was supported by a UK-NERC project grant (NE/X001245/1).

MH was supported by a Royal Society Dorothy Hodgkin Research Fellowship (DHF\R1\211076).

Data availability

No data were used for the research described in the article.

References

- Novelli PC. CO in the atmosphere: measurement techniques and related issues. Chemosph—Glob Change Sci 1999;1:115–26. https:// doi.org/10.1016/S1465-9972(99)00013-6
- 2. Derwent R, Simmonds P, O'Doherty S. *et al*. Global environmental impacts of the hydrogen economy. *Int J Nucl Hydrog Prod Appl* 2006;**1**:57–67. https://doi.org/10.1504/IJNHPA.2006.009869
- Khalil MAK, Rasmussen RA. The global cycle of carbon monoxide: trends and mass balance. Chemosphere 1990;20:227–42. https://doi.org/10.1016/0045-6535(90)90098-E
- Martínez-Alonso S, Deeter MN, Worden HM. et al. First satellite identification of volcanic carbon monoxide. Geophys Res Lett 2012;39:L21809. https://doi.org/10.1029/2012GL053275
- Stubbins A, Uher G, Law CS. et al. Open-ocean carbon monoxide photoproduction. Deep-Sea Res II Top Stud Oceanogr 2006;53: 1695–705. https://doi.org/10.1016/j.dsr2.2006.05.011
- Seiler W, Giehl H. Influence of plants on the atmospheric carbon monoxide. Geophys Res Lett 1977;4:329–32. https://doi. org/10.1029/GL004i008p00329
- Tarr MA, Miller WL, Zepp RG. Direct carbon monoxide photoproduction from plant matter. J Geophys Res Atmos 1995;100: 11403–13. https://doi.org/10.1029/94JD03324
- Schade GW, Crutzen PJ. CO emissions from degrading plant matter (II). Estimate of a global source strength. *Tellus B* 1999;51: 909–18. https://doi.org/10.1034/j.1600-0889.1999.t01-4-00004.x
- 9. King GM, Crosby H. Impacts of plant roots on soil CO cycling and soil–atmosphere CO exchange. *Glob Change Biol* 2002;**8**:1085–93. https://doi.org/10.1046/j.1365-2486.2002.00545.x
- Ehhalt DH, Rohrer F. The tropospheric cycle of H₂: a critical review. Tellus Ser B Chem Phys Meteorol 2009;61:500–35. https:// doi.org/10.1111/j.1600-0889.2009.00416.x
- Badr O, Probert SD. Sinks and environmental impacts for atmospheric carbon monoxide. *Appl Energy* 1995;**50**:339–72. https:// doi.org/10.1016/0306-2619(95)98803-A
- Beerling DJ, Nicholas Hewitt C, Pyle JA. et al. Critical issues in trace gas biogeochemistry and global change. Phil Trans R Soc A 2007;365:1629–42. https://doi.org/10.1098/rsta.2007.2037
- Liss PS. Trace gas emissions from the marine biosphere. Phil Trans R Soc A 2007;365:1697–704. https://doi.org/10.1098/ rsta.2007.2039
- Greening C, Grinter R. Microbial oxidation of atmospheric trace gases. Nat Rev Microbiol 2022;20:513–28. https://doi.org/10.1038/ s41579-022-00724-x
- King GM, Weber CF. Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nat Rev Microbiol 2007;5:107–18. https:// doi.org/10.1038/nrmicro1595
- Cordero PRF, Bayly K, Man Leung P. et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J 2019;13:2868–81. https://doi. org/10.1038/s41396-019-0479-8
- Palmer JL, Hilton S, Picot E. et al. Tree phyllospheres are a habitat for diverse populations of CO-oxidizing bacteria. Environ Microbiol 2021;23:6309–27. https://doi.org/10.1111/1462-2920.15770

- Kanno M, Constant P, Tamaki H. et al. Detection and isolation of plant-associated bacteria scavenging atmospheric molecular hydrogen. Environ Microbiol 2016;18:2495–506. https://doi. org/10.1111/1462-2920.13162
- Zheng Y, Wang CM, Sakai Y. et al. Dictyobacter vulcani sp. nov., belonging to the class *Ktedonobacteria*, isolated from soil of the Mt Zao Volcano. Int J Syst Evol Microbiol 2020;**70**:1805–13. https:// doi.org/10.1099/ijsem.0.003975
- 20. King CE, King GM. Description of Thermogemmatispora carboxidivorans sp. nov., a carbon-monoxide-oxidizing member of the class Ktedonobacteria isolated from a geothermally heated biofilm, and analysis of carbon monoxide oxidation by members of the class Ktedonobacteria. Int J Syst Evol Microbiol 2014;64: 1244–51. https://doi.org/10.1099/ijs.0.059675-0
- Dawson RA, Fantom N, Martin-Pozas T. et al. Carbon monoxideoxidising Pseudomonadota on volcanic deposits. Environ Microbiome 2025;20:12. https://doi.org/10.1186/s40793-025-006 72-y
- Hogendoorn C, Pol A, Picone N. et al. Hydrogen and carbon monoxide-utilizing Kyrpidia spormannii species from Pantelleria Island, Italy. Front Microbiol 2020;11:951. https://doi.org/10.3389/ fmicb.2020.00951
- Lorite MJ, Tachil JE, Sanjuán J. et al. Carbon monoxide dehydrogenase activity in Bradyrhizobium japonicum. Appl Environ Microbiol 2000;66:1871–6. https://doi.org/10.1128/AEM.66.5.1871-1876.2000
- King GM. Molecular and culture-based analyses of aerobic carbon monoxide oxidizer diversity. Appl Environ Microbiol 2003;69: 7257–65. https://doi.org/10.1128/AEM.69.12.7257-7265.2003
- Picone N, Blom P, Wallenius AJ. et al. Methylacidimicrobium thermophilum AP8, a novel methane- and hydrogen-oxidizing bacterium isolated from volcanic soil on Pantelleria Island, Italy. Front Microbiol 2021;12:637762. https://doi.org/10.3389/ fmicb.2021.637762
- Cunningham SD, Kapulnik Y, Phillips DA. Distribution of hydrogen-metabolizing bacteria in alfalfa field soil. Appl Environ Microbiol 1986;52:1091–5. https://doi.org/10.1128/aem.52.5.1091-1095.1986
- Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H₂, CO, CH₄, OCS, N₂O, and NO). Microbiol Rev 1996;60:609–40. https://doi.org/10.1128/mr.60.4.609-640.1996
- 28. Willems A, Busse J, Goor M, Pot B, et al. Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and "Pseudomonas carboxydoflava"), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int J Syst Bacteriol 1989;**39**:319–33. https://doi.org/10.1099/00207713-39-3-319
- Kiessling M, Meyer O. Profitable oxidation of carbon monoxide or hydrogen during heterotrophic growth of *pseudomonas carboxyd-oflava*. FEMS Microbiol Lett 1982;13:333–8. https://doi.org/10.1111/j.1574-6968.1982.tb08283.x
- Islam ZF, Cordero PRF, Feng J. et al. Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. ISME J 2019;13:1801–13. https:// doi.org/10.1038/s41396-019-0393-0
- Weber CF, King GM. Physiological, ecological, and phylogenetic characterization of Stappia, a marine CO-oxidizing bacterial genus. Appl Environ Microbiol 2007;73:1266–76. https://doi. org/10.1128/AEM.01724-06

- 32. Biebl H, Pukall R, Lünsdorf H. et al. Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov. and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense. Int J Syst Evol Microbiol 2007;57:1095–107. https://doi.org/10.1099/ijs.0.64821-0
- Ragsdale SW. Life with carbon monoxide. Crit Rev Biochem Mol Biol 2004;39:165–95. https://doi.org/10.1080/10409230490496577
- 34. Fukuyama Y, Inoue M, Omae K. et al. Chapter three—anaerobic and hydrogenogenic carbon monoxide-oxidizing prokaryotes: Versatile microbial conversion of a toxic gas into an available energy. In: Gadd G.M., Sariaslani S. (eds.), Advances in Applied Microbiology. Cambridge, MA: Academic Press, 2020, 99–148.
- Techtmann SM, Lebedinsky AV, Colman AS. et al. Evidence for horizontal gene transfer of anaerobic carbon monoxide dehydrogenases. Front Microbiol 2012;3:132. https://doi.org/10.3389/ fmicb.2012.00132
- Inoue M, Nakamoto I, Omae K. et al. Structural and phylogenetic diversity of anaerobic carbon-monoxide dehydrogenases. Front Microbiol 2019;9:3353. https://doi.org/10.3389/fmicb.2018.03353
- DePoy AN, King GM, Ohta H. Anaerobic carbon monoxide uptake by microbial communities in volcanic deposits at different stages of successional development on O-yama Volcano, Miyake-jima, Japan. *Microorganisms* 2020;**9**:12. https://doi. org/10.3390/microorganisms9010012
- DePoy AN, King GM. Putative nickel-dependent anaerobic carbon monoxide uptake occurs commonly in soils and sediments at ambient temperature and might contribute to atmospheric and sub-atmospheric carbon monoxide uptake during anoxic conditions. Front Microbiol 2022;13:736189. https://doi. org/10.3389/fmicb.2022.736189
- DePoy AN, King GM. Distribution and diversity of anaerobic thermophiles and putative anaerobic nickel-dependent carbon monoxide-oxidizing thermophiles in mesothermal soils and sediments. Front Microbiol 2023;13:1096186. https://doi. org/10.3389/fmicb.2022.1096186
- King GM. Nitrate-dependent anaerobic carbon monoxide oxidation by aerobic CO-oxidizing bacteria. FEMS Microbiol Ecol 2006;56:1–7. https://doi.org/10.1111/j.1574-6941.2006.00065.x
- Cunliffe M. Correlating carbon monoxide oxidation with cox genes in the abundant marine Roseobacter clade. ISME J 2011;5: 685–91. https://doi.org/10.1038/ismej.2010.170
- Conrad R, Meyer O, Seiler W. Role of carboxydobacteria in consumption of atmospheric carbon monoxide by soil. Appl Environ Microbiol 1981;42:211–5. https://doi.org/10.1128/ aem.42.2.211-215.1981
- Kim YJ, Kim YM. Induction of carbon monoxide dehydrogenase during heterotrophic growth of Acinetobacter sp. strain JC1 DSM 3803 in the presence of carbon monoxide. FEMS Microbiol Lett 1989;59:207–10. https://doi.org/10.1111/j.1574-6968.1989. tb03111.x
- Meyer O, Schlegel HG. Biology of aerobic carbon monoxideoxidizing bacteria. Ann Rev Microbiol 1983;37:277–310. https:// doi.org/10.1146/annurev.mi.37.100183.001425
- Bay SK, Dong X, Bradley JA. et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nat Microbiol 2021;6:246–56. https://doi.org/10.1038/ s41564-020-00811-w

- Schwartz E, Fritsch J, Friedrich B. H₂-metabolizing prokaryotes. In: Rosenberg E., et al. (eds.), *The Prokaryotes: Prokaryotic Physiology and Biochemistry*. Berlin, Heidelberg: Springer, 2013, 119–99 10.1007/978-3-642-30141-4_65.
- Berney M, Greening C, Hards K. et al. Three different [NiFe] hydrogenases confer metabolic flexibility in the obligate aerobe Mycobacterium smegmatis. Environ Microbiol 2014;16:318–30. https://doi.org/10.1111/1462-2920.12320
- Greening C, Berney M, Hards K. et al. A soil actinobacterium scavenges atmospheric H₂ using two membrane-associated, oxygendependent [NiFe] hydrogenases. Proc Natl Acad Sci USA 2014;111: 4257–61. https://doi.org/10.1073/pnas.1320586111
- 49. Ray AE, Zhang E, Terauds A. et al. Soil microbiomes with the genetic capacity for atmospheric chemosynthesis are widespread across the poles and are associated with moisture, carbon, and nitrogen limitation. Front Microbiol 2020;11:1936. https://doi.org/10.3389/fmicb.2020.01936
- Constant P, Chowdhury SP, Pratscher J. et al. Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high-affinity [NiFe]hydrogenase. Environ Microbiol 2010;12:821-9. https://doi. org/10.1111/j.1462-2920.2009.02130.x
- Liot Q, Constant P. Breathing air to save energy new insights into the ecophysiological role of high-affinity [NiFe]hydrogenase in Streptomyces avermitilis. MicrobiologyOpen 2016;5: 47–59. https://doi.org/10.1002/mb03.310
- Greening C, Villas-Bôas SG, Robson JR. et al. The growth and survival of Mycobacterium smegmatis is enhanced by cometabolism of atmospheric H₂. PLoS One 2014;9:e103034. https:// doi.org/10.1371/journal.pone.0103034
- Cordero PRF, Grinter R, Hards K. et al. Two uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence. J Biol Chem 2019;294: 18980–91. https://doi.org/10.1074/jbc.RA119.011076
- Lappan R, Shelley G, Islam ZF. et al. Molecular hydrogen in seawater supports growth of diverse marine bacteria. Nat Microbiol 2023;8:581–95. https://doi.org/10.1038/s41564-023-01322-0
- Ji M, Greening C, Vanwonterghem I. et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 2017;552:400–3. https://doi.org/10.1038/nature25014
- Ortiz M, Leung PM, Shelley G. et al. Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proc Natl Acad Sci USA 2021;118:e2025322118. https://doi.org/10.1073/pnas.2025322118
- 57. Garvin ZK, Abades SR, Trefault N. et al. Prevalence of trace gasoxidizing soil bacteria increases with radial distance from Polloquere hot spring within a high-elevation Andean cold desert. ISMEJ 2024;18:wrae062. https://doi.org/10.1093/ismejo/wrae062
- Meier DV, Imminger S, Gillor O. et al. Distribution of mixotrophy and desiccation survival mechanisms across microbial genomes in an arid biological soil crust community. mSystems 2021;6. https://doi.org/10.1128/msystems.00786-20
- Jordaan K, Lappan R, Dong X. et al. Hydrogen-oxidizing bacteria are abundant in desert soils and strongly stimulated by hydration. mSystems 2020;5. https://doi.org/10.1128/ msystems.01131-20
- King GM. Uptake of carbon monoxide and hydrogen at environmentally relevant concentrations by Mycobacteria. Appl Environ Microbiol 2003;69:7266–72. https://doi.org/10.1128/ AEM.69.12.7266-7272.2003
- Berney M, Cook GM. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia. PLoS One 2010;5:e8614. https://doi.org/10.1371/journal.pone.0008614

- Hernández M, Vera-Gargallo B, Calabi-Floody M. et al. Reconstructing genomes of carbon monoxide oxidisers in volcanic deposits including members of the class Ktedonobacteria. Microorganisms 2020;8:1880. https://doi.org/10.3390/microorgan isms8121880
- Tveit AT, Schmider T, Hestnes AG. et al. Simultaneous oxidation of atmospheric methane, carbon monoxide and hydrogen for bacterial growth. Microorganisms 2021;9:153. https://doi. org/10.3390/microorganisms9010153
- Myers MR, King GM. Isolation and characterization of Acidobacterium ailaaui sp. nov., a novel member of Acidobacteria subdivision 1, from a geothermally heated Hawaiian microbial mat. Int J Syst Evol Microbiol 2016;66:5328–35. https://doi.org/10.1099/ ijsem.0.001516
- Islam ZF, Welsh C, Bayly K. et al. A widely distributed hydrogenase oxidises atmospheric H₂ during bacterial growth. ISME J 2020;14:2649–58. https://doi.org/10.1038/s41396-020-0713-4
- King GM. Contributions of atmospheric CO and hydrogen uptake to microbial dynamics on recent Hawaiian volcanic deposits. Appl Environ Microbiol 2003;69:4067–75. https://doi.org/10.1128/ AEM.69.7.4067-4075.2003
- King GM, Weber CF. Interactions between bacterial carbon monoxide and hydrogen consumption and plant development on recent volcanic deposits. ISME J 2008;2:195–203. https://doi. org/10.1038/ismej.2007.101
- Greening C, Islam ZF, Bay SK. Hydrogen is a major lifeline for aerobic bacteria. Trends Microbiol 2022;30:330-7. https://doi. org/10.1016/j.tim.2021.08.004
- Baril X, Constant P. Carbon amendments in soil microcosms induce uneven response on H₂ oxidation activity and microbial community composition. FEMS Microbiol Ecol 2023;99:fiad159. https://doi.org/10.1093/femsec/fiad159
- Leung PM, Daebeler A, Chiri E. et al. A nitrite-oxidising bacterium constitutively consumes atmospheric hydrogen. ISME J 2022;16: 2213–9. https://doi.org/10.1038/s41396-022-01265-0
- Carlton JD, Langwig MV, Gong X. et al. Expansion of Armatimonadota through marine sediment sequencing describes two classes with unique ecological roles. ISME Commun 2023;3:64–12. https://doi.org/10.1038/s43705-023-00269-x
- King GM, Weber CF, Nanba K. et al. Atmospheric CO and hydrogen uptake and CO oxidizer phylogeny for Miyake-jima, Japan volcanic deposits. Microbes Environ 2008;23:299–305. https://doi. org/10.1264/jsme2.ME08528
- King CE, King GM. Thermomicrobium carboxidum sp. nov., and Thermorudis peleae gen. nov., sp. nov., carbon monoxide-oxidizing bacteria isolated from geothermally heated biofilms. Int J Syst Evol Microbiol 2014;64:2586–92. https://doi.org/10.1099/ijs.0.060327-0
- Conrad R, Seiler W. Role of microorganisms in the consumption and production of atmospheric carbon monoxide by soil. Appl Environ Microbiol 1980;40:437–45. https://doi.org/10.1128/ aem.40.3.437-445.1980
- 75. Sawana A, Adeolu M, Gupta RS. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 2014;5:429. https://doi.org/10.3389/fgene.2014.00429
- Hernández M, Calabi M, Conrad R. et al. Analysis of the microbial communities in soils of different ages following volcanic eruptions. *Pedosphere* 2020;**30**:126–34. https://doi.org/10.1016/ S1002-0160(19)60823-4
- 77. Cavaletti L, Monciardini P, Bamonte R. et al. New lineage of filamentous, spore-forming, gram-positive bacteria from soil.

Appl Environ Microbiol 2006;**72**:4360–9. https://doi.org/10.1128/ AEM.00132-06

- Tebo BM, Davis RE, Anitori RP. et al. Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica. Front Microbiol 2015;6:1–14. https://doi.org/10.3389/ fmicb.2015.00179
- Byloos B, Monsieurs P, Mysara M. et al. Characterization of the bacterial communities on recent Icelandic volcanic deposits of different ages. BMC Microbiol 2018;18:122. https://doi. org/10.1186/s12866-018-1262-0
- Kim J-S, Kim DS, Lee KC. *et al*. Microbial community structure and functional potential of lava-formed Gotjawal soils in Jeju, Korea. PLoS One 2018;13:e0204761. https://doi.org/10.1371/ journal.pone.0204761
- Weber CF, King GM. Distribution and diversity of carbon monoxide-oxidizing bacteria and bulk bacterial communities across a succession gradient on a Hawaiian volcanic deposit. Environ Microbiol 2010;12:1855–67. https://doi.org/10.1111/j.14 62-2920.2010.02190.x
- Dragone NB, Whittaker K, Lord OM. *et al*. The early microbial colonizers of a short-lived volcanic island in the Kingdom of Tonga. MBio 2023;**14**:e03313–22. https://doi.org/10.1128/mbio.03313-22
- Wu D, Raymond J, Wu M. et al. Complete genome sequence of the aerobic CO-oxidizing thermophile Thermomicrobium roseum. PLoS One 2009;4:e4207. https://doi.org/10.1371/journal.pone.0004207
- Pašić L, Kovče B, Sket B. *et al.* Diversity of microbial communities colonizing the walls of a karstic cave in Slovenia. FEMS Microbiol Ecol 2009;**71**:50–60. https://doi.org/10.1111/ j.1574-6941.2009.00789.x
- Ghezzi D, Sauro F, Columbu A. et al. Transition from unclassified Ktedonobacterales to Actinobacteria during amorphous silica precipitation in a quartzite cave environment. Sci Rep 2021;11:3921. https://doi.org/10.1038/s41598-021-83416-5

- Ray AE, Zaugg J, Benaud N. *et al*. Atmospheric chemosynthesis is phylogenetically and geographically widespread and contributes significantly to carbon fixation throughout cold deserts. ISME J 2022;**16**:2547–60. https://doi.org/10.1038/ s41396-022-01298-5
- Williams TJ, Allen MA, Ray AE. et al. Novel endolithic bacteria of phylum Chloroflexota reveal a myriad of potential survival strategies in the Antarctic desert. Appl Environ Microbiol 2024;90:e02264. https://doi.org/10.1128/aem. 02264-23
- Bringel F, Couée I. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front Microbiol 2015;06:486. https:// doi.org/10.3389/fmicb.2015.00486
- Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol 2012;10:828–40. https://doi.org/10.1038/nrmicro2910
- Wilks SS. Carbon monoxide in green plants. Science 1959;129: 964–6. https://doi.org/10.1126/science.129.3354.964
- Derendorp L, Quist JB, Holzinger R. et al. Emissions of H₂ and CO from leaf litter of Sequoiadendron giganteum, and their dependence on UV radiation and temperature. Atmos Environ 2011;45: 7520–4. https://doi.org/10.1016/j.atmosenv.2011.09.044
- Leung PM, Jeffrey L, Bay SK. *et al.* Wetland tree barks are dynamic hotspots for microbial trace gas cycling. 2024; bioRxiv, 2024. 2024.07.02.601631.
- Morris CE, Kinkel LL. Fifty years of phyllosphere microbiology: Significant contributions to research in related fields. In: Lindow S.E., Hecht-Poinar E.I., Elliott V.J. (eds.), Phyllosphere Microbiology. St. Paul, USA: American Phytopathological Society (APS Press), 2002, 365–75.
- 94. Flemming H-C, Wuertz S. Bacteria and archaea on earth and their abundance in biofilms. Nat Rev Microbiol 2019;**17**:247–60. https://doi.org/10.1038/s41579-019-0158-9