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 A B S T R A C T

Visual Language Identification (VLID) is concerned with using the appearance and movement of the mouth to 
determine the identity of spoken language. VLID has applications where conventional audio based approaches 
are ineffective due to acoustic noise, or where an audio signal is unavailable, such as remote surveillance. The 
main challenge associated with VLID is the speaker-dependency of image based visual recognition features, 
which bear little meaningful correspondence between speakers.

In this work, we examine a novel VLID task using video of 53 individuals reciting the Universal Declaration 
of Human Rights in their native languages of Arabic, English or Mandarin. We describe a speaker-independent, 
five fold cross validation experiment, where the task is to discriminate the language spoken in 10 s videos 
of the mouth. We use the YOLO object detection algorithm to track the mouth through time, and we employ 
an ensemble of 3D Convolutional and Recurrent Neural Networks for this classification task. We describe a 
novel approach to the construction of training batches, in which samples are duplicated, then reversed in time 
to form a distractor class. This method encourages the neural networks to learn the discriminative temporal 
features of language rather than the identity of individual speakers.

The maximum accuracy obtained across all three language experiments was 84.64%, demonstrating that the 
system can distinguish languages to a good degree, from just 10 s of visual speech. A 7.77% improvement on 
classification accuracy was obtained using our distractor class approach compared to normal batch selection. 
The use of ensemble classification consistently outperformed the results of individual networks, increasing 
accuracies by up to 7.27%. In a two language experiment intended to provide a comparison with our previous 
work, we observed an absolute improvement in classification accuracy of 3.6% (90.01% compared to 83.57%).
1. Introduction

Automatic identification of spoken language relates to classifying
which language is being spoken, rather than understanding what is 
being said (Van Segbroeck, Travadi, & Narayanan, 2015). Language 
identification using audio speech is a process that usually precedes 
the selection of a language-dependent subsystem, such as a speech 
recogniser, call router, or public information terminal. Visual Language 
Identification (VLID) relies on the appearance and motion of the mouth 
to determine language (Newman & Cox, 2009). This has potential 
applications in noisy environments, where conventional approaches 
that rely on acoustic data are largely ineffective. For example, a system 
that can lip read language could be used to automate the selection of 
the appropriate language on a public information terminal. It could 
also have security applications, such as for long distance surveillance or 
for the analysis of CCTV footage with application to forensics (Preethi 
et al., 2023; Rothkrantz, 2017). The author is particularly interested in 
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this topic in light of recent work by others (Afouras, Chung, & Zisser-
man, 2020; Cascone, Nappi, & Narducci, 2023), and having published 
the first work in VLID prior to 2011.

Lip reading is a challenging task for humans (Altieri, Pisoni, & 
Townsend, 2011). The positioning of the tongue, velum, vocal tract 
and vocal folds are crucial for determining the sounds produced during 
speech, and much of this information is hidden from view (Bernstein, 
Tucker, & Demorest, 2000). Specifically, only the shape of the mouth 
and the front most speech articulators are visible, limiting our ability 
as humans to determine which sounds and words have been spo-
ken (Bernstein, Jordan, Auer, & Eberhardt, 2022). Finding the identity 
of a spoken language using audio speech is a generally easier task 
than identifying individual spoken words. Languages differ in terms of 
their vocabulary, phonemes, and critically, their phonotactics: the order 
of permitted phonemes (Jannah, Mashalani, Lubis, & Amaro, 2023). 
Exploiting phonotactic differences, computers can achieve language 
discrimination accuracies of over 98% from short extracts of audio 
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Table 1
A comparison between this study and all other known works related to VLID.
 Study Task Method Results  
 This study 3 languages (English, Arabic and 

Mandarin) from studio video 
data. 10 s utterances.

The mouth region is used as input to an ensemble of DNNs 
comprising 3D CNN and GRU layers. Network training 
includes a distractor class. Maximum likelihood classifies the 
speech.

84.6% speaker-independent 
classification accuracy.

 

 (Cascone et al., 2023) (2023) 8 languages, 10 s utterances. The mouth region is used as input to DNNs (ConvLSTMs 
with BLSTMs) and a separate SVM.

37.5% speaker-independent 
classification accuracy.

 

 (Afouras et al., 2020) (2020) 14 languages from TEDx and 
YouTube videos. 10 s utterances.

Embeddings from ResNet18 as input features into DNNs 
comprising Time-Delay Neural Networks and bi-directional 
LSTMs (BLSTMs). Unknown if the whole face is used.

76.3% speaker-independent 
classification accuracy.

 

 (Špetlík, Čech, Franc, & 
Matas, 2017) (2017)

2 languages (English and French) 
from YouTube videos. 20 s 
utterances.

Facial landmarks used in a soft-assignment variant of 
bag-of-words, followed by a linear classifier. Landmarks from 
the mouth region produce the best results.

73% speaker-independent 
classification accuracy.

 

 (Chandrasekhar, Sargin, & 
Ross, 2011) (2011)

25 languages from YouTube 
music videos. Each song is an 
utterance.

Quantised features derived from a hue-saturation histogram, 
and motion characteristics from Motion Cuboids. Back end 
SVM classifier. Visual-only and audio-visual experiments are 
presented.

14.3% classification 
accuracy. Unknown if the 
experiment is 
speaker-independent.

 

 (Newman & Cox, 2012) 
(2011)

2 languages (English and Arabic) 
from UN2. 7 s utterances.

Active Appearance Model features used in hidden Markov 
models of triphones. Language models of trigram sequences 
are built. Back end SVM classifier.

86.4% speaker-independent 
classification accuracy.

 

speech (Biswas, Rahaman, Ahmadian, Subari, & Singh, 2023; Hera-
cleous, Takai, Yasuda, Mohammad, & Yoneyama, 2018). With just 6 s of 
representative speech, humans too can use audio speech to accurately 
discriminate 10 languages with 69.4% accuracy (Komatsu, 2007). It 
has also been shown that babies can tell languages apart (Zacharaki & 
Sebastian-Galles, 2021). However, the performance of language identi-
fication using lip reading is harder for both humans (Soto-Faraco et al., 
2007) and computers.

There are two significant challenges associated with computer lip 
reading: as described above, a lack of speech information visible on 
the mouth, and secondly, the speaker-dependency of visual recognition 
features. As with human lip reading, the lack of information presented 
on the face limits the capability of computer lip reading to distinguish 
spoken phonemes. It is generally accepted that there is a many-to-
one mapping between phonemes and their visual equivalent, visemes. 
However, visemes are neither well defined, nor consistent (Bear & 
Harvey, 2019; Taylor, Theobald, & Matthews, 2015), and they are 
strongly affected by speech context (Taylor, Theobald, & Matthews, 
2014). For any given lip shape, a multitude of different sounds could 
be expressed, greatly complicating the task of discriminating spoken 
language from visual information.

Compared to language identification using acoustic features, VLID 
remains an immature field of research with very few studies focussing 
on this task. However, of the limited number of previous studies 
involving computer lip reading, most have focused on developing 
multispeaker speech recognition systems. A multispeaker system uses 
models that are trained on the same set of speakers as exists in the 
testing dataset (Cox, Harvey, Lan, Newman, & Theobald, 2008). The 
multispeaker testing framework masks the speaker-dependency issue 
affecting visual recognition features. In Cox et al. (2008), we showed 
that image based recognition features are unique to each speaker, 
with little observable relationship or meaningful overlap in the feature 
space. Thus, if a system is tested on different speakers than those 
presented during training, recognition accuracy is poor. The issue 
of speaker-dependency remains significant as, firstly, speech has not 
evolved to be discriminative from a visual perspective, and because 
computer lip reading is a far less mature research domain compared 
to audio speech recognition.

All known previously published works relating to VLID are sum-
marised in Table  1. We will describe these studies in turn. In our 
own previous VLID work, we applied conventional machine learning 
techniques to both speaker-dependent language identification involving 
multilingual speakers (Newman & Cox, 2009), and a two language 
2 
speaker-independent problem (Newman & Cox, 2010). We adapted 
approaches for audio language identification that exploit the phono-
tactic differences between languages (Mohapatra, Dash, & Majhi, 2016; 
Ulbrich, Alday, Knaus, Orzechowska, & Wiese, 2016). In our speaker-
independent study, language models of viseme sequences were built 
from training data, with test data assigned to the class whose language 
model produced the highest likelihood. We achieved an error rate of 
4.6% for a two language problem, with 30 s of representative test 
speech data. Using 7 s of test data, the accuracy was much lower, with 
7 of the speakers producing an error rate of between 20% and 45%, 
and a mean error rate of 16.43%.

In Špetlík et al. (2017), researchers trained classifiers to discrimi-
nate between the English and French languages using a histogram of lip 
shapes detected during speech—this was based on the idea that there 
are key mouth shapes that are unique to particular languages. While 
this work is a novel and intuitive approach to identifying language, it 
ignores the temporal features of speech and considers only shape-based 
features. They achieved a comparatively low accuracy of 73%, which 
was close to the results they obtained performing the same experiment 
with human participants. In a related language task, In Chandrasekhar 
et al. (2011), the language of singing in music videos from YouTube 
was classified using image and motion based features, and SVMs. 
Classification accuracies of 14.3% were obtained for a 25 language task.

More recently, Deep Neural Networks (DNNs) have been widely 
applied to the field of acoustic speech recognition (Fenghour, Chen, 
Guo, Li, & Xiao, 2021; Mehrish, Majumder, Bharadwaj, Mihalcea, & 
Poria, 2023), and also to VLID (Afouras et al., 2020; Cascone et al., 
2023). In Afouras et al. (2020), DNNs were used to discriminate be-
tween 14 different languages using computer lip reading. The system 
was trained using over 1700 h of TEDx talk videos, and achieved 
an accuracy of 76.3% with 10 s test data segments. The quantity of 
data used to achieve these results suggests that an increased diver-
sity of speakers may have provided a better coverage of the feature 
space, helping to overcome the speaker-dependency of image based 
recognition features. However, Afouras et al. (2020) also reported a 
control experiment in which a network pretrained for face recogni-
tion, ResNet50, was fine-tuned to the VLID task. They achieved above 
chance language discrimination (40.8%), suggesting that a feature of 
the YouTube videos was providing an unintended indication of the 
geography of the recording or some other biasing factor.

In Cascone et al. (2023), an eight language task was considered 
as part of a wider system to perform speaker identification. A custom 
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dataset of YouTube videos from 256 individuals was constructed, com-
prising 1280 10 s speech samples. They explored the use of machine 
learning and deep learning for a speaker-independent classification 
task, achieving a peak mean accuracy of 37.5% using Support Vector 
Machines. As far as the authors are aware, there are no other studies 
specifically addressing the challenge of VLID. Therefore, there is an 
opportunity to revisit this classification problem, applying contempo-
rary machine learning methods to a simpler task in order to focus on 
improving speaker-independent classification performance.

This article extends our previous work involving a two language 
classification task, by applying DNNs to a three language task. In this 
work, we conduct a speaker-independent, five fold cross validation 
experiment to classify the identity of Arabic, English and Mandarin 
speech, from 10 s test segments of video. The novelty of the work pre-
sented here firstly lies in the classification problem itself. We perform a 
constrained classification task in which three very different languages 
are considered, using video captured in studio conditions. Despite this, 
the problem remains challenging. We use an unconventional approach 
to mouth-tracking using a near real time, object detection algorithm, 
which is shown to work remarkably well across multiple speakers. 
We use ensemble classifiers with a 3D Convolutional Neural Network 
baseline architecture and extend the baseline by incorporating different 
types of Recurrent Neural Networks.

The significant novel contributions of this work are as follows:

• We use a novel neural network configuration involving GRU 
layers, which has not previously been applied to language dis-
crimination through lip reading.

• We introduce a simple, yet novel and effective method of combin-
ing the classification output from an ensemble of neural networks.

• The most significant contribution of this work lies in the training 
of the neural networks. We significantly improve the classification 
accuracy of our models by supplementing each training batch 
with distractor samples, designed to discourage the networks from 
relying on the identity of each speaker to determine their spo-
ken language. Effectively, this improves the speaker-independent 
performance of the system.

The remainder of this article is organised as follows: In Section 2 
we describe the dataset used in these experiments. In Section 3, we 
outline the classification problem and experimental framework. Our 
language identification system is presented in Section 4, including the 
recognition features used (Section 4.1), the neural network architec-
tures explored (Section 4.2) and our novel method for constructing 
training batches (Section 4.3). Results, Discussion and Conclusion are 
presented in Sections 5, 6 and 7, respectively.

2. Dataset

In this section, we describe details of the dataset used in this work. 
The data capture process, the nature and content of the data, and the 
size of the dataset are provided.

The dataset used in these experiments is the United Nations 2 (UN2) 
dataset introduced in our previous work (Newman & Cox, 2010), plus 
an additional twenty-three Mandarin speakers (Table  2). This dataset 
comprises individuals reciting the first sixteen articles of the United 
Nations Declaration of Human Rights in one of three languages: Arabic, 
English and Mandarin. The speakers have native language proficiency. 
The distribution of sex per language is also presented in the table, 
showing that there are more male speakers overall.

This data was recorded using a Sanyo Xacti VPC-FH1 video camera, 
captured at 1920 by 1080 pixels, at 60 frames per second. The video 
was recorded in a studio environment and includes the bottom half of 
the face only, maximising the resolution of the mouth region (Fig.  1).
3 
Table 2
Details of the UN2 dataset. The dataset contains videos of speakers reading the first 
sixteen articles of the UN Declaration of Human Rights.
 Speaker IDs Language Male/Female Total Duration 

(hh:mm:ss)
 

 1, 2, 3, 4, 5, 6, 7, 8, 12, 14, 
15, 16, 17, 18, 20, 21, 23, 24, 
26, 29

English 16/4 4:08:50  

 32, 33, 34, 35, 36, 37, 38, 39, 
40, 41

Arabic 8/2 2:13:00  

 42, 43, 44, 45, 46, 47, 48, 49, 
50, 51, 52, 53, 54, 55, 56, 57, 
58, 59, 60, 61, 62, 63, 64

Mandarin 13/10 4:45:10  

Fig. 1. Example framing of the face during recordings of the UN2 dataset.

3. Experimental setup

This section provides a broad overview of the approach adopted for 
the development and evaluation of our language identification system. 
We explain the specific classification task undertaken, and give details 
of the separate experimental configurations explored.

We designed our experimental setup to evaluate language iden-
tification in a speaker-independent mode. The speakers used to test 
the system were not included in the training set and we used five 
fold cross validation, in which the total pool of speakers was divided 
into five testing folds. Each speaker appears in only one test fold. For 
each testing fold, the remaining speakers were used as training and 
validation data, with the latter formed by randomly selecting 3 speakers 
from the training data. In this way, for each fold, the speakers in the 
test data were not present in the training or validation data. The full 
details of this experimental setup are presented in Table  3.

Video data from each speaker was processed to give 10 s, non-
overlapping speech segments (See Section 4.1 for more information).

We undertook four main experiments. Firstly, starting from a base-
line neural network, we compared three configurations of neural net-
work layers. These networks are described in Section 4.2. Next, using 
the best performing architecture from the first experiments, we ex-
amined the effect on VLID performance of using a novel approach 
to neural network training in which speech samples are modified to 
create a distractor class (Section 4.3). Finally, we explored the use of an 
ensemble approach to classification, comparing results from individual 
networks to those produced by an ensemble of networks. Finally, we 
used the same system to conduct an experiment using 7 s test utterances 
and a two language (English and Arabic) classification task, to provide 
a comparison with our previous work.

4. Language identification system

This section illustrates the language identification system developed 
for this work. We start by providing the overall system design, and then 
subsequent subsections clarify each component of the system in turn: 
the feature extraction process is discussed in Section 4.1, the neural 
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Table 3
Details of the speakers included in each of the folds of the five fold cross validation experiments.
 Fold Training Speaker IDs Validation Speaker IDs Testing Speaker IDs  
 1 Eng: 1, 4, 6, 7, 12, 14, 16, 18, 20, 21, 23, 24, 29 Eng: 5 Eng: 2, 3, 8, 15, 17, 26  
 Ara: 33, 34, 35, 37, 38, 39, 40, 41 Ara: Ara: 36  
 Man: 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 55, 56, 58, 60, 61, 62, 63, 64 Man: 52, 59 Man: 46, 54, 57  
 2 Eng: 2, 3, 4, 5, 6, 7, 8, 12, 15, 16, 17, 18, 20, 21, 24, 26, 29 Eng: Eng: 1, 14, 23  
 Ara: 34, 36, 38, 39, 40, 41 Ara: 33 Ara: 35, 37  
 Man: 44, 45, 46, 47, 50, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63 Man: 42, 54 Man: 43, 48, 49, 51, 60, 64  
 3 Eng: 1, 2, 3, 4, 5, 7, 8, 14, 15, 16, 17, 18, 21, 23, 24, 26, 29 Eng: Eng: 6, 12, 20  
 Ara: 33, 34, 35, 36, 37, 38, 39, 40 Ara: Ara: 41  
 Man: 43, 44, 46, 48, 51, 54, 55, 58, 60, 61, 62, 63, 64 Man: 49. 52, 57 Man: 42, 45, 47, 50, 53, 56, 59 
 4 Eng: 1, 2, 3, 6, 7, 12, 14, 15, 18, 20, 23, 24, 26, 29 Eng: 8, 17 Eng: 4, 5, 16, 21  
 Ara: 35, 36, 37, 39, 40, 41 Ara: Ara: 33, 34, 38  
 Man: 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64 Man: 56 Man: 44, 55, 58  
 5 Eng: 1, 2, 3, 4, 5, 6, 8, 12, 14, 15, 16, 20, 21, 23, 26 Eng: 17 Eng: 7, 18, 24, 29  
 Ara: 33, 34, 35, 36, 37, 41 Ara: 38 Ara: 39, 40  
 Man: 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 64 Man: 56 Man: 52, 61, 62, 63  
network architecture used in Section 4.2, and our novel approach to 
augmentation of training batches is explained in Section 4.3.

The language identification system we evaluated in our experiments 
is shown in Fig.  2. The system shown was configured as an ensemble 
classifier, but we also determined the classification performance of each 
network individually. At the front end, there is a feature extraction 
module which extracts the mouth region through time, constructs 
10 s sequences of speech and normalises the data. This subsystem is 
described fully in Section 4.1. Next, five end-to-end neural networks 
take the 600 frame video samples as input. Their outputs are combined 
and input to an ensemble classifier, and the final output is either 3 or 
4 classes, depending on whether the experiment performed includes a 
distractor class (Section 4.3).

When used as an ensemble classifier, the system combines the 
output of five networks to predict the identity of the spoken language 
in each 10 s speech utterance. In this approach, the outputs from the 
networks are combined by summing the confidence scores for each 
sample and then selecting the class with the highest resulting score. 
For experiments including a distractor class, only the confidences for 
the genuine language classes are used in this calculation.

The formal description of this process is as follows: let 𝐶 represent 
the 3 language classes (𝐶 = {𝐶1, 𝐶2, 𝐶3}), and 𝑁 the number of 
networks trained (𝑁 = 5). For each network 𝑖 = {1, 2, 3, 4, 5}, let 𝑆𝑖,𝑗
be the confidence score assigned by network 𝑖 to class 𝐶𝑗 .

The confidence score 𝐶𝑆𝑗 for class 𝐶𝑗 is therefore given as:

𝐶𝑆𝑗 =
𝑁
∑

𝑖=1
𝑆𝑖,𝑗

The predicted class �̂� for a given utterance is determined by the class 
with the maximum confidence score:
�̂� = arg max

𝐶𝑗∈𝐶
𝐶𝑆𝑗

4.1. Recognition features

Extracting visual features for language identification requires the 
localisation and extraction of the mouth region in successive video 
frames. We initially considered two different approaches to tracking 
the mouth region in this work: Active Appearance Models (AAMs)
(Matthews & Baker, 2004) and a Viola Jones cascade classifier (Wang, 
2014). As well as providing a method to track the contour of the lips, 
AAMs provide shape and appearance-based recognition features (Lan, 
Harvey, & Theobald, 2012) which can be used for computer lip reading. 
However, AAMs used for tracking are subject-dependent, meaning that 
a unique model must be trained for each speaker, which is both time 
consuming and impractical for a generalisable lip reading system. Cas-
cade classifiers are more generally applicable and can be used to extract 
a bounding box containing the mouth region. However, they rely on 
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first detecting the whole face, which is not possible in our dataset, as 
the video only contains the lower portion of the face. Instead, we chose 
to use the YOLOv8 object detection algorithm to extract a bounding box 
for each frame of video (Al-obidi & Kacmaz, 2023).

We hand-labelled the mouth region in 2713 random video frames 
from across all speakers in our dataset. See Fig.  3 for example labels. 
2580 frames were used as training data to fine-tune a pre-trained 
YOLOv8x model, and data from three speakers, comprising 133 frames, 
were used as validation data. The trained model detected mouths 
regions in the validation data with a Mean Average Precision (MAP) of 
0.995, using an Intersection Over Union (IOU) threshold of 0.5. With 
an IOU of between 0.5 and 0.95, the MAP obtained was 0.931. After 
training, we applied this model to the complete video data from all 
53 speakers. Visual inspection of the resulting classifications revealed 
impressive tracking accuracy across all speakers. Fig.  4 shows examples 
of mouth detections from three separate individuals.

The mouth regions detected in each image were cropped and re-
sized to fit within a box of 150 pixels wide by 90 pixels high. The 
aspect ratios of the mouth regions were maintained during the resiz-
ing, meaning that they were usually a different overall shape to the 
target box. The resized regions were placed centrally in the target box 
and unoccupied pixels were assigned a value of 0. Each image was 
converted to grayscale, to mitigate skin tone (Fig.  5). Consecutive, non-
overlapping sequences of 600 frames (or 10 s) were stacked into a four 
dimensional feature array. The resulting array for each speaker was of 
shape (𝑥, 600, 90, 150, 1), where 𝑥 was the number of 10 s samples for 
that speaker. The pixel intensities within each 600 frame sample were 
normalised to have a maximum value of 1.

4.2. Neural networks

In this work, we use a baseline Neural Network architecture consist-
ing of 3D CNNs, which are commonly applied to video classification 
problems (Wang, Pu, & Chen, 2022). They have also been used in 
computer lip reading (Exarchos et al., 2024; Margam et al., 2019). 
The network we use was developed using TensorFlow (Singh, Manure, 
Singh, & Manure, 2020) and is illustrated in Fig.  6. The hyperparame-
ters used in this network were determined through manual optimisation 
during early experiments using the validation data.

The input layer in this network performed a further rescaling of 
the pixel intensities within each batch, ensuring the samples were 
in the range of −1 to 1. The first two hidden layers, which can be 
considered as feature extraction layers, are 3D convolutional layers, 
each containing eight kernels. The convolutional kernels in the first of 
these layers operate only on each 2D image, as shown by the kernel 
size of (1, 3, 3). The kernels in the second layer apply a convolution 
through time and are of size (3, 1, 1). Separating a 3D convolutional 
operation into two separate 2D convolutions (known as 2D + 1) has 
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Fig. 2. Language identification system in an ensemble configuration. The mouth region is extracted through time, then five neural networks operate in parallel, followed by a 
module to combine the confidence scores from the networks to produce a final classification. Ara, Eng and Man refer to Arabic, English and Mandarin speech, respectively.
Fig. 3. Examples of hand labelled mouth regions (red boxes) in a selection of frames 
used for training a YOLOv8 object detection model. Note that the YOLO algorithm 
augments training samples by adjusting the size, hue, saturation and value of the 
training images, which is why the appearance of these images varies. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version 
of this article.)

Fig. 4. Example mouth region classifications on test data. Red bounding boxes indicate 
the detected mouth regions, alongside network confidence. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of 
this article.)
5 
Fig. 5. Examples of cropping and resizing mouth regions to a fixed image size of 150 
pixels wide by 90 pixels high. The resizing operation maintains the aspect ratio of the 
original mouth shape and the resulting image is placed centrally in the new image.

been shown to be a more memory and computationally efficient way 
to perform 3D convolutions than using a single 3D convolution kernel 
of size (3, 3, 3) (Kopuklu, Kose, Gunduz, & Rigoll, 2019). Three pairs 
of 3D convolutional layers are used, each followed by a max pooling 
layer, and a 10% dropout layer, to reduce overfitting.

Following the final 3D convolutional layer, we experimented with 
a selection of different layer types, including a fully connected layer, 
and two different types of RNNs: Long Short Term Memory (LSTM), 
and Gated Recurrent Units (GRU). Both LSTMs and GRU layers are 
commonly applied to time series classification problems (Nosouhian, 
Nosouhian, & Khoshouei, 2021). GRU layers have been applied to 
computer lip reading (Miled, Messaoud, & Bouzid, 2023), but not 
previously to VLID. The final layers of the network included two fully 
connected layers, the last of which had either three or four outputs, 
depending on the experiment performed. Categorical cross-entropy was 
the selected loss function and the Adam optimiser used. Our code is 
freely available so that all remaining hyperparameters can be identified 
by the reader.

All neural networks were trained using Graphical Processing Unit 
(GPU) resources on the University of East Anglia’s High Performance 
Computing cluster. Mixed precision training was employed, in which 
all network layers, except the final layer, used 16-bit floating point 
precision (Micikevicius et al., 2017). This reduces the time to train 
networks, as modern GPUs perform 16-bit calculations very efficiently, 
and also reduces the required memory footprint, which is notably larger 
for 3D CNNs. Separate networks were trained for each fold of the cross 
validation experiment, to a maximum of 50 epochs, each taking up to 8 
hours to train. The weights producing the lowest validation loss were 
retained. On occasion, a network would fail to train properly, which 
was evident by low training or validation classification accuracy. In 
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Fig. 6. Baseline neural network architecture and alternative configurations for later 
layers. The dotted lines highlight three separate architectures we compare in this work: 
A GRU layer (blue), an LSTM layer (green), and a fully connected (or Dense) layer 
(pink). (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)

cases where the training or validation accuracy did not exceed 80% 
during training, the model weights were reinitialised and the training 
process was restarted.

4.3. Training batch augmentation

In this work, we explore two approaches to the generation of train-
ing batches when training our neural networks. The first is a standard 
approach, in which samples are randomly selected from the training 
set. For our experiments using normal batch selection, a batch size of 
eight was used. The second approach was to augment each batch of 
eight samples with eight distractor samples (Fig.  7), thus the batch size 
in these experiments was sixteen. Distractor samples were created as 
follows: Firstly, we duplicated all eight genuine samples. Then, the 600 
video frames from each of these new samples were placed in reverse 
time order. These samples were labelled as a separate fourth class, 
which we term the distractor class. The distractor samples do not differ 
from genuine examples with respect to speaker identity, but they differ 
in that they contain reversed speech, which is not a genuine language. 
The motivation for using this technique is to encourage the network 
to identify the features of language, rather than using features specific 
to the appearance of the speaker. Further data augmentation was also 
used to reduce overfitting. Half of the sixteen samples within each batch 
were selected randomly and mirrored along the horizontal axis of each 
image (Shijie, Ping, Peiyi, & Siping, 2017).
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Table 4
Classification accuracies (%) for experiments testing different neural networks, and 
experiments using the distractor class. Results of a two language experiment is also 
presented. Results are shown for each cross validation fold, and for 5 separate models 
(Rep. 1 to 5). Bold type face is used to highlight the best repetition accuracy and mean 
accuracy for each testing fold. This is only shown for experiments 1 to 4, as experiment 
5 is not directly comparable.
 Fold Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Mean  
 Exp. 1: Neural Network with Dense Layer
 1 41.18 39.64 68.08 52.90 58.94 52.15  
 2 71.62 73.89 58.32 71.98 64.67 68.10  
 3 64.63 71.70 87.29 89.09 87.05 79.95  
 4 64.91 60.54 54.88 63.11 70.95 62.88  
 5 78.53 73.01 79.43 63.24 67.99 72.44  
 Exp. 2: Neural Network with LSTM Layer
 1 72.97 62.81 59.59 55.98 59.59 62.19  
 2 86.23 71.74 72.81 81.08 78.44 78.06  
 3 74.46 79.86 86.57 62.95 69.54 74.68  
 4 60.41 66.20 64.01 50.77 58.61 60.00  
 5 51.03 71.21 74.94 79.43 76.61 70.64  
 Exp. 3: Neural Network with GRU Layer
 1 67.44 56.76 60.88 63.96 72.07 64.22  
 2 76.17 70.78 65.15 79.52 70.90 72.50  
 3 81.06 84.77 87.17 71.94 93.29 83.65  
 4 60.28 62.34 77.12 64.65 55.53 63.98  
 5 60.28 72.62 73.01 84.19 75.19 73.06  
 Exp. 4: Neural Network with GRU Layer and Distractor Class
 1 78.25 80.82 86.74 85.20 76.96 81.60  
 2 61.92 75.93 75.69 74.25 73.29 72.22  
 3 92.33 88.25 86.93 85.49 86.45 87.89  
 4 83.42 72.88 74.16 64.14 81.88 75.30  
 5 72.88 85.22 84.45 80.33 73.39 79.25  
 Exp. 5: As in Exp. 4 but Testing Two Languages with 7 sec Utterances
 1 58.89 66.82 89.39 68.46 71.60 71.03  
 2 95.68 96.58 98.51 98.07 97.47 97.26  
 3 51.65 94.26 59.30 66.26 69.04 68.10  
 4 99.40 98.06 99.70 99.70 98.06 98.99  
 5 76.23 95.39 94.35 90.04 99.11 91.03  

5. Results

This section presents the results of experiments undertaken in order 
to evaluate the language identification system developed. We first 
present the results of experiments using different network architectures 
for later layers in our baseline network. Specifically, we examine GRU, 
LSTM and Fully Connected (or Dense) layers. Results from five repeat 
experiments are presented, for each of the five cross validation folds 
(Table  4). We also present average classification performance for these 
and later experiments in Fig.  8. These first experiments used normal 
training batch selection (i.e. They did not include a distractor class). 
The architecture including the GRU layer produced the highest mean 
test accuracy of 71.48%, followed by the LSTM layer (69.11%) and 
finally the Dense layer (67.10%). According to the error bars in Fig. 
8, the differences between these results are not statistically significant.

Following these results, we sought to examine the effect of using a 
distractor class with the best performing network. The results for Exp. 
4 in Table  4 relate to the network containing a GRU layer, and using a 
distractor class, as described in Section 4.3. As before, results are shown 
for 5 repeat experiments, for each of the 5 testing folds. The average 
accuracy of these experiments increased by 7.77% to 79.25%. A paired 
samples t-test was used to compare the 25 results from these two 
experiments, and the increase was found to be statistically significant 
(𝑡(24) = 3.54, 𝑝 = 0.0017). Compared to the experiment using normal 
batch selection, the average results for each fold were higher for all 
folds except fold 2, which was only 0.28% lower. The greatest improve-
ment was observed for fold 1, where the mean accuracy increased from 
64.22% to 81.60% by using the distractor class. The lowest accuracy 
obtained across all repeats was 6.39% higher for the experiments using 
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Fig. 7. Graphical illustration of the process for constructing training batches by augmenting with a distractor class. Eight genuine samples are selected and then duplicated. The 
new samples are reversed along the axis representing time. The final batch size is sixteen samples. Half of the samples are selected randomly and flipped (mirrored) along the 
longest image axis. Eng and Man refer to English and Mandarin speech, respectively.
Fig. 8. Mean accuracies for each experiment undertaken. For each network, a corre-
sponding ensemble result is also presented. Error bars indicate standard error of the 
mean. LSTM refers to a Long Short Term Memory network architecture, and GRU refers 
to a network containing Gated Recurrent Units.

the distractor class than for those without (61.92% versus 55.53%). 
Therefore, we can say with confidence that the speaker-independent 
classification performance improved by inclusion of the distractor class 
during training.

While training these networks, we noted a different pattern of 
learning between networks using the distractor class and those that 
did not use it. In Fig.  9, we show examples of the accuracy recorded 
across 50 training epochs for two separate networks. Fig.  9(a) relates 
to a network containing a GRU layer but not using the distractor class. 
This plot corresponds to repeat 5 from fold 1, which was the best 
performing repeat of this experiment. The figure shows that the training 
accuracy rises to over 90% after a single epoch. By the third epoch, the 
training accuracy is close to 100%. By contrast, the validation accuracy 
starts at close to 100% and then appears to fluctuate considerably over 
time. These results demonstrate that the network is overfitting to the 
training data, likely because the network quickly learns to discriminate 
the target classes by relying on speaker identity.

Fig.  9(b) shows data for the same network architecture and same 
testing fold, but this time trained using the distractor class. This data 
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Table 5
Classification accuracies for ensemble classifiers. Exp. 1 is the model with Dense layer. 
Exp. 2 uses an LSTM layer. Exp. 3 uses a GRU layer. Exp. 4 uses a GRU layer but is 
trained using the distractor class. Exp. 5 is the same as 4 except for a two language 
(English and Arabic) classification task using 7 s speech utterances. Bold type face 
is used to highlight the best results for each testing fold. This is only shown for 
experiments 1 to 4, as experiment 5 is not directly comparable.
 Fold Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5  
 % acc. % acc. % acc. % acc. % acc. 
 1 60.75 61.26 67.70 91.76 72.20  
 2 73.41 81.56 76.17 77.01 98.66  
 3 87.17 80.34 90.29 90.41 81.04  
 4 68.38 59.13 63.62 81.23 100.00 
 5 82.13 78.92 78.66 82.78 98.51  
 Mean % acc. 74.37 72.24 75.29 84.64 90.01  

comes from repeat 3 of fold 1, which was the best performing repeat of 
this experiment. In (b), it takes until epoch 20 to reach a high level of 
accuracy on the training data. The network’s accuracy on the training 
data is initially stable at around 50%, which represents the approximate 
probability of the network guessing whether a speech sample belongs 
to the correct language class or the distractor class. The validation 
accuracy increases along a similar trajectory, stabilising close to 100% 
after around 25 epochs and remaining stable for the final epochs.

The more gradual learning trajectory for the training data suggests 
that custom training batches may be steering the loss minimisation 
process towards an alternative minima, better suited to the task of 
discriminating language rather than speaker identity. Despite evidence 
of overfitting in both (a) and (b), (b) does show reduced overfitting 
as the validation data accuracy is very close to the training accuracy. 
While these plots are representative of the model behaviour across 
different repeats, sometimes the networks could achieve a similarly 
high level of validation accuracy without the use of a distractor class. 
This behaviour was unpredictable and inconsistent compared to the 
network training using the distractor class.

Next, we provide the results of using an ensemble of five networks 
including either a Dense layer, LSTM layer, or a GRU layer trained 
either with or without a distractor class (Table  5). We also present 
the result of a benchmark experiment, providing a comparison with 
our previous work. For every network configuration, the use of an 
ensemble classifier increased the classification performance (Fig.  8), 
with improvements from ranging from 3% to 7%. The same degree of 
improvement was observed for the two language (English and Arabic), 
benchmark experiment (Exp. 5). For the network including a GRU layer 
and normal batch selection, the use of an ensemble classifier increased 
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Fig. 9. Representative training and validation data accuracy plots for two experiments; 
one without the distractor class (a), and the other including it (b).

the mean classification accuracy by 3.81% to 75.29% (Exp. 3 in Table  5 
compared to Table  4). For the GRU network using the distractor class, 
the ensemble classifier increased the accuracy from 79.25% to 84.64%. 
This three language experiment also produced the cross validation fold 
with the highest classification accuracy (Fold 1 at 91.76%).

The two language benchmark experiment produced a mean clas-
sification accuracy of 90.01%, which is 6.44% higher in absolute 
terms than our previously published results for an equivalent experi-
ment (Newman & Cox, 2012).

In Fig.  10, we present a confusion matrix for the best three lan-
guage ensemble classification experiment, using GRU layers and the 
distractor class. The results shown represent the classifications of each 
10 s speech sample from across the five testing folds. For analysis 
purposes, classifications for all four classes are shown, even though the 
ensemble classifier only classifies utterances as one of the three genuine 
language classes. The matrix shows a good degree of discrimination 
is achieved for all languages. Mandarin and English speech samples 
achieve discrimination at close to 90% accuracy, with lower but still 
impressive performance observed for Arabic speech, at close to 66%. 
Some confusions are displayed for all language pairs, but the most 
prominent are for Mandarin and English, and Arabic and Mandarin. 
Few samples are misclassified as belonging to the distractor class, 
however Arabic has 38 more misclassifications than the next highest, 
English, at 5 misclassifications.

Next, we visualised a selection of the misclassifications made by the 
ensemble of networks containing GRU layers. Specifically, we examined 
the classifications generated for the best performing test fold, which 
was fold 1, in which ten speakers were tested. The results revealed that 
the spoken language of four speakers were discriminated with 100% 
accuracy. These four speakers comprised three English speakers and 
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one Mandarin speaker. A further five speakers each produced a small 
number of misclassification, and one subject produced a comparatively 
poor classification accuracy.

Of the five speakers giving a small number of misclassifications, 
three produced a single misclassified sample (See Videos 1, 2 and 3). 
Two of these samples (Videos 1 and 2) contained a period in which 
the tracking of the mouth was shown to have failed momentarily. 
Video 1 showed a short period of the mouth not moving followed by 
brief conversational English speech. This sample occurred at the end 
of the recording and was misclassified as Mandarin speech. Video 2 
shows Mandarin speech, which was misclassified as English speech. The 
third sample (Video 3), which also occurred at the end of a recording, 
displays almost no movement of the mouth throughout the sample, 
apart from a single word acknowledgement spoken in English. This 
sample was classified as Mandarin speech.

One speaker, reading in Arabic, was mostly classified correctly ex-
cept for two samples, which were classified as Mandarin speech (Videos 
4 and 5). Observing these samples provides no clear or consistent rea-
son for these misclassifications, except that both contain a brief pursing 
of the lips. Similarly, one English speaker achieved an accuracy of 
88.16%, with no observable issues in the misclassified samples, except 
that the motions of the mouth were not visibly distinctive (See Video 
6 for a representative sample). A single Mandarin speaker produced a 
comparatively poor classification accuracy of 52.83%. Observation of 
one of these misclassifications revealed that the video was not in focus 
for extended periods of the recording (See Video 7).

6. Discussion

In our first set of experiments we found that networks incorporating 
GRU and LSTM layers outperformed alternative networks using fully 
connected layers. RNNs have previously shown to be successful when 
applied to computer lip reading, most likely because they explicitly cap-
ture temporal information, and the discriminative features of language 
are primarily temporal in nature. Our work is the first to use GRU layers 
for VLID, although they have previously been applied to a general 
computer lip reading task (Miled et al., 2023). The networks using GRU 
layers outperformed the corresponding networks using LSTM layers. 
GRU layers are not as effective at learning long-term dependencies as 
LSTMs (Liu, Lin, & Feng, 2021), and they are less likely to overfit the 
training data. Therefore, it is possible that GRUs are more effective at 
modelling the short term, phonotactic variations in language, which 
were historically the focus of traditional machine learning approaches 
to language identification.

In our work, we observed most confusions occurring between Arabic 
and Mandarin speech. This might be because Arabic is under repre-
sented in the UN2 dataset, limiting the extent to which the networks 
can model the temporal characteristics of Arabic speech. We also con-
firmed that the use of an ensemble classifier outperformed individual 
networks, because this approach combines the strengths of multiple 
classifiers, in much the same way as human experts might improve their 
capabilities by combining their opinions (Song, Jiao, Yang, Zhang, & 
Shang, 2013).

The best mean accuracy we obtained across all experiments was 
84.64%, which is higher than the 83.57% accuracy we obtained for 7 s 
utterances in our previous work, a simpler, two-class problem (Newman 
& Cox, 2010). This result is also better than the 37.5% classification 
accuracy obtained for the 8 language task in Cascone et al. (2023), and 
the 73% accuracy for the 2 language task in Špetlík et al. (2017). It is 
also higher than the 76.3% accuracy reported by Afouras et al. (2020) 
for 10 s utterances, although that result is not directly comparable as 
it relates to a harder, 14-class problem. Similarly, the 14.3% accuracy 
obtained in Chandrasekhar et al. (2011) relates to a 25 language task, 
where each test sample consists of an entire music video.

Analysis of the misclassifications in our best performing system 
suggested several plausible explanations for the errors observed. Firstly, 
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Fig. 10. Confusion matrix for the neural network incorporating a GRU layer and the distractor class during training.
classification performance is sensitive to mouth tracking errors, even 
if the error is only momentary. Poor camera focus was also shown to 
impact classification accuracy. It is reassuring that for one of the appar-
ent misclassifications (Video 3), the sample actually contained almost 
no speech at all. This result confirms that the dynamics of speech are 
integral to the classification decisions made by our system. However, 
this result also motivates a need to discard periods of visual ‘silence’ 
to avoid such misclassifications. Finally, some speakers were shown to 
perform less well than others, with little obvious explanation for this 
difference. It is possible that this difference reflects the physiological 
variability between individuals, and that a greater number of training 
subjects might help to overcome this limitation.

Training networks without using the distractor class resulted in 
neural networks that quickly overfitted to the training data. This was 
clear from the training data accuracy, which typically exceeded 90% 
after just a couple of training epochs. We suggest that this overfitting 
was the result of the neural network quickly learning to discriminate 
the languages based on the identity of each speaker, which would be 
correlated with language in the training dataset but is not a general 
feature of language. Whilst this occasionally produced models with 
some discriminative capabilities, as shown in our results, in most cases 
these models gave comparatively poor results when applied to unseen 
data.

By contrast, using our distractor class approach, a different trajec-
tory of learning was observed. Initially, training accuracy was stable, 
around the probability of guessing whether each sample belonged to 
a true language or the distractor class. Then, several epochs later, 
the training and validation accuracies would start to increase, before 
both settling close to 100%. Crucially, this was reflected in statisti-
cally significant improvements in the classification accuracy of the 
test data. By the nature of this speaker-independent testing frame-
work, this means that the training batch augmentation led to improved 
speaker-independent performance.

7. Conclusion

In this article, we have presented a novel lip reading system, using 
a unique combination of 3D Convolutional Neural Network layers 
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and Gated Recurrent Units, operating as an ensemble classifier. On 
a constrained language recognition task, we achieved a classification 
accuracy of 84.64% using 10 s test segments. We showed that the use 
of an ensemble classifier improved the results of all systems, including 
the best network, by a minimum of 3%. To assist the neural network 
in learning to discriminate languages rather than speaker identity, we 
developed a custom approach to the creation of batches used during 
the neural network training process. We augmented each training batch 
with a copy of each sample, reversing the speech in the new examples 
and labelling them as a distractor class. This approach improved the 
classification accuracy in comparable networks by more than 7%.

Another way to overcome the speaker-dependency of the recog-
nition features might be to include a broader range of speakers in 
the training dataset, in order to provide better coverage of the fea-
ture space, as in Afouras et al. (2020), whose dataset contains over 
1000 h of speech from several thousand speakers. The size of the UN2 
dataset is small in the context of training a DNN, and although it was 
useful to consider a simpler task in order to focus on the issue of 
speaker-dependency, the size of the dataset used here may have limited 
the accuracies obtained. Having established a baseline accuracy on a 
smaller task, next we will explore how this approach extends to a more 
complex classification task, involving a larger volume of training data 
and variety of speakers.

It is promising that the YOLOv8 object detection algorithm was 
capable of tracking the mouth region with an excellent degree of accu-
racy. It would be interesting to undertake a more detailed comparison 
between the performance of this approach and that of a cascade classi-
fier, especially with regard to diversity of individuals and variations in 
presentation (e.g. image cropping, image size, and perspective of the 
face). Another object detection algorithm, such as RetinaNet (Cheng 
et al., 2020), could also be considered. Given the apparent degradation 
of lip reading performance when mouth tracking fails, further work 
could focus on making the system robust to such errors.

Recent work into VLID has abandoned the previous phonotactic 
based approaches which persisted for many years (Zissman, 1996). 
We would like to explore whether viseme tokenisation followed by 
language modelling could be used to provide language discrimination 
capabilities beyond those reported here. A deep learning approach to 
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speech recognition, such as wav2vec 2.0 (Baevski, Zhou, Mohamed, & 
Auli, 2020), could be used to tokenise speech. In wav2vec 2.0, sub units 
of audio speech are learnt via a contrastive learning approach, in which 
short durations of speech are hidden and the network learns to guess 
the missing speech. Such an approach could be applied to visual speech 
and combined with language modelling for VLID.

We used a simple but effective approach to ensemble classification, 
but it might be more effective to explore the use of an integrated neural 
network, in which the outputs from parallel networks are combined 
into an output network, and all networks are trained concurrently. 
Also, instead of combining five networks with the same architectures, 
a combination of disparate networks could be used, each offering 
different strengths.

In summary of the advantages and limitations of this work com-
pared to other studies, the primary benefit of the system discussed here 
lies in the inclusion of the distractor class, which is an entirely novel 
approach not previously presented by other studies. Although the use 
of this approach during training did not entirely eliminate overfitting 
to the training data, reduced overfitting was evident through increased 
validation and test data accuracies.

The main limitation of this work lies in the size and constrained 
nature of the dataset used, which is considerably smaller than that used 
by some other studies. Thus, the narrower coverage of the feature space 
provides a plausible explanation for why a small number of speakers 
were very challenging to lip read, despite no obvious abnormalities 
with the data.

In conclusion, this study has confirmed findings from the literature, 
including our own work, that it is possible to distinguish spoken lan-
guage using computer lip reading. These results were shown to exceed 
those of our previous work, and that of other studies.
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