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Abstract

This thesis explores the application of Bayesian inference in the analysis of RNA-
Sequencing data. We discuss the foundational principles of science and the math-
ematical articulation of belief updating via probability theory. In the Introduction
we become familiar with the elegance and effectiveness of Bayesian approaches in
addressing both simple examples and experimental research problems (Chapter 1).
After introducing the RNA-Sequencing (RNA-Seq) technique and data (Chapter 2),
we examine two use cases of Bayesian inference in the analysis of such data. First,
we explore Bayes factors as a means of quantifying the evidence for gene expression
changes (Chapter 3). Second, we propose Bayes factors to evaluate the evidence
in RNA-Seq data for long-distance mobile messenger RNAs in plants (Chapter 6).
For both applications, we perform in-depth analyses of the data (Chapters 4 and 5),
test the methods and assumptions on simulated data, and compare it to currently
popular published solutions (Chapters 3 and 6). We could confirm the outstanding
performance of Bayes factors for the analysis of simulated and real data. Fur-
thermore, we present and propose further inquiries, that uncover limitations and
obstacles given by data collection and processing which cannot be addressed in
statistical analyses (Chapters 7 and 8). The work in this thesis underscores the
huge potential of Bayesian inference in enhancing scientific understanding and ad-
dresses the complexities involved in RNA-Seq data interpretation. The presented
findings provide concise solutions for two statistical problems in RNA-Sequencing
data analyses advancing our abilities to communicate new learnings from data in
this field.
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Preface

The research presented in this thesis is a collaborative effort of scientists, coming
together to improve data analysis and statistics in the field of molecular biology.
There were hundreds of discussions that have shaped the work and words in this
thesis. I would like to express my gratitude to all of them for their cooperation.
This thesis summarises my work and contributions but would not have been possi-
ble without them. This thesis contains my thoughts and words and my code, it has
been shaped, driven and written by me, but science is collaboration. Therefore, I
will use the plural ‘we’ in the biggest parts of the thesis and only switch to singular
form when the thoughts I am presenting are my own views.

Each chapter starts with a Transparency Note. They are informing about key
colleagues involved in the work presented in the chapter and which publications the
chapter is based on or came out of it. Even though I can mention who was involved
in the work, it is literally impossible to make statements about who exactly did
what. There are figures with data from one person, analysed by another, visualised
by a third with the comments of a fourth. There were hours, days and weeks of
parallel-coding efforts to minimise the chances for errors in our software.

Different chapters will read differently. Depending on the team of researchers shap-
ing the work and communication, the final work changes its form. The product is
a representation of all influences and philosophies. and, therefore.

For the first half of the thesis, where we introduce Bayesian inference into differen-
tial gene expression analysis, I would like to highlight, first and foremost, Richard
Morris, and all members of the Morris group, in particular Melissa Tomkins,
Gurpinder Singh Sidhu, and Thelonious Omori, together with our departmental
colleagues Pirita Paajanen, Ander Movilla-Miangolarra, and Burkhard Steuernagel.
I could sing many songs of praise about this wonderful research environment, for
now, I will just say thank you for or all the time we spent discussing this topic.

The second half of the thesis contains huge efforts of a big research collabora-
tion called PLAMORF. We bring biochemistry and structural biology together
with plant physiology and computational sciences to investigate mobile mRNA in
plants. We are a cooperation between the Research groups of Friedrich Kragler
(Max-Planck-Institut für Molekulare Pflanzenphysiologie, Golm, Germany), Julia
Kehr (Universität Hamburg, Hamburg, Germany), and Richard Morris (John Innes
Centre, Norwich, United Kingdom). Here is a Thank you to all members for shar-
ing knowledge and and learning experiences.
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Thank you, and your accompanying teams, for mentoring my scientific process,
and growth as a scientist.

All code for figures, analyses and simulations in this thesis is available on my
GitHub.

This studentship as part of the PLAMORF project that has received funding from
the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (Grant agreement No. 810131).

Thank you, European Union!
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Prologue

Slow down, Science, this is my love letter to you

Science, I love you. You bring joy into my life by fascinating and challenging me ev-
ery day. You help me grow, you foster my inner child. You inspire me and give me
hope. You amaze and remind me over and over again about the magnificence of life.

I love waking up not knowing what is going to blow my mind today, but knowing
something will. I love dancing around the edges of knowledge, learning what has
been explored and seeing new territory that humanity has not explored yet. I love
the acceptance of failure you are teaching me, science. And that still you empower
me, because only by being brave and believing in myself I can learn the arts, crafts
and competences I need for heading off into the unknown by asking questions every
day.

Allowing myself to ask big questions has become an important task for me during
my time with you. Although it was certainly also taught and lived in my family
and surroundings all those years before ... Now, science, you sometimes break my
heart. I thought this was a connecting piece between those two worlds, my past
and present. But how much do you allow yourself to ask big questions?

Carefully, I want to leave my criticism with you. While I am unbelievably grateful
for my experience with you, I can feel a tension between us most days. I want you
to know how I feel because I know we can do better. Everything I love about you
is obscured by a shadow.

As students of life, we all need time and space to learn and explore. We need re-
minders that we can do more than we think. We need motivation to pursue visions,
instead of destructive criticism that only hinders us from moving forward. Give
this to humans, and they master the most difficult tasks, they are innovative and
creative, and they push each other forward. Beautifully, all of what I just men-
tioned is not bound to resources. Sadly you showed me, as a student of science,
that all of the above is a rare gift. Why is that?

Science, can’t you see the structural problem underneath your feet?
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Science, you can’t tell me you don’t understand. I know it’s painful to think about
it and I know it will hurt. But take my hand, I know you can do it. Be self-critical
and allow things to change.

My activist nature can’t look away from how you have operated the last few years.
You are busy spinning the wheel, caught in the dogma of growth. And you yourself
know best how dangerous a dogma is for innovation. Science, you are driving me
crazy when you are driven by capitalistic forces, by growth for the sake of growth.
Is this truly who you are?

Science, I love you when you are genuinely curious, when you’re infecting with
inspiration. I love it when you carry me off to unknown places in my imagination.
Whenever the game of science gets into you, when things are done just because
we can, I am losing my connection to you. Then I am disappointed and I start
worrying about the state of the world. I thought you were there to help me out of
that. I thought you were here to keep surprising me, and show me something new
every day.

Change is hard, and change is slow. Hope is precious. Science, can’t we support
peaceful life on a planet full of life? With the unbelievable we constantly manage to
do, can’t we also do that? Let’s explain our thoughts to each other. Let’s empower
each other. Let’s get out of the fairytale of growth.

We need time. Science, you need time. Being immersed in the loops of more and
more we hardly allow ourselves to ask the big question. What are we doing
here?

Science, please, slow down. Growth, the only thing that matters in life is not the
only thing that matters in life.
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Chapter 1

An Introduction to Bayesian
Statistics

1.1 What is science and why are we collecting
data?

In science, at least the way I understand it, we want to systematically and empiri-
cally acquire knowledge about the natural world. This encompasses the formulation
and testing of general laws through the scientific method. In biology, we want to
extract knowledge about life from data. How can we do that?

We record data by observing and measuring the world and life around us, which
transform into information once we assign labels or meanings to them, Figure 1.1.
As a means to distill information from data, which may eventually lead to the
gain of knowledge, humanity has discovered the need for statistics and philosophy.
It arises from uncertainty and variability being pervasive. Statistics serves as the
compass that guides us through the labyrinth of data, enabling us to derive mean-
ingful insights and make informed decisions. In this thesis, the main contributions
are efforts to organize, summarize, and interpret a deluge of data that is recently
flooding biology. However, data – no matter what and how big – can always only
provide a glimpse of information about a potentially complex system. Therefore,
even if we are dealing with a flood, we will explore throughout this thesis what
we can and cannot learn from limited bits of information and, how problems arise
that statistics can or cannot solve. Just like any good tool, it can only ever help
us uncover information that is actually present in the data. If information is not
present, we face a problem of ‘Garbage in, garbage out’.

1.2 Best guesses from limited information

Measuring things can be hard. This may be because of its unstable nature (How
many hours of sunshine do we get in a day in Norwich?), or because measuring it
is a technically challenging (How fast can flies fly?). We still want to try recording
observations, of course, because we are curious, and then we can see whether there
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Chapter 1

Figure 1.1: Data are the record of observations, which turn into information once
we attach a label or meaning to it. There may be labeled data, however, with no
information in it. In information theory, the mathematical study of information and
communication, we would say it has a low entropy, meaning there is no surprise for us
in the recordings. If we get surprised by information in data, it may teach us something
new, and contribute to knowledge, once we find the connections and causalities causing
the surprise in the data. Learning something new can happen at any point, maybe we
record some more observations which give us new insights (that surprise us), from
which we can deduce new knowledge that we can weave into our current beliefs. In
contrast, we can also ignore all of these prior steps, methodology and philosophy and
transform data, information, knowledge, and insights into a conspiracy. Alternatively,
we can choose to set aside rationality and engage with our emotions, creating something
profoundly meaningful from any of the given pieces – art. Artistic expression allows
us to explore the emotional and subjective dimensions of our experiences, highlighting
the diverse ways we can interpret and interact with the world around us.

is information in our data, that we can potentially deduce knowledge from. To
achieve this, we want to measure many times to capture variability and potential
measuring errors. Unfortunately, we can do our best to measure in the most ex-
cellent way possible, and still end up with limitations (in terms of information,
entropy, surprise) of our data.

We can use Probability theory to express the uncertainty of a measurement. Pio-
neers Thomas Bayes and Pierre-Simon Laplace explored this in their work in the
18th and 19th centuries. As the story goes, their contributions were largely dis-
credited and forgotten. Until many many decades later several researchers, among
them Harold Jeffreys, Edwin Thompson Jaynes, and Richard Cox rediscovered and
popularised the powers of Probability theory in statistics. They founded what we
now know as Bayesian statistics.

Everything may have started with another mathematician, James Bernoulli, asking
the question of how to reason in situations where one cannot argue with certainty.
Bernoulli formulated a difference between deductive logic and inductive logic. De-
ductive reasoning moves from general principles to specific instances, and inductive
reasoning moves from specific instances to general principles [1]. He was pondering
over the question whether we can use the mathematics and mechanisms of proba-
bility, which can be used in games of chance, for inference problems appearing in
our everyday lives . . .
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Chapter 1

It is established now that we can use probability theory for inference problems and
in the next pages I will try to introduce how ‘Bayesian inference’ works, before
we will encounter new success stories later in the thesis. To the early pioneers, a
probability represented a degree of belief or plausibility of an event: How much
do we think something is true, given some evidence we have at hand? This is the
essence of hypothesis testing and model comparison we are going to use.

1.3 Games of chance meet daily life

You are playing a simple card game with a full deck of cards. Your partner reveals
to you the top card on the stack, now it is your turn to guess whether the next
card in the stack has a higher or lower value. It’s the beginning of the game, they
show you a 2. Do you choose ‘above’ or ‘below’, and why?

You are rushing to a meeting in a university building you have not been in before.
Suddenly, you feel your period starting. You have no female hygiene products on
you. You need to find another woman to hopefully help you out. There is a junc-
tion in your path, one leading to the computer science department, one leading to
the department for environmental sciences. Where do you go and why?

Chances are good, you have just intuitively done what took humanity a while to
figure out consciously. Your past experiences in playing cards and navigating uni-
versity buildings have informed your decision on your best choice of action. You
naturally evaluated which choice is more likely to bring you success. Now, how
would your decisions change, however, if you are at the end of the card game, there
are 4 cards left and you have not yet seen a single 1? How would your decisions
change if it is 2024 and you would assume university staff has a good representation
of all genders no matter the discipline?

You can answer these questions easily because you have been confronted with them
a lot of times in your life and it comes intuitive to you now. Let’s pretend for a
minute you are a child and you have never played a card game in your life before.
What do you do? You play, and lose and win and lose until you eventually start
noticing patterns. You start to get a feeling for the chances of winning with certain
values. The pioneers I mentioned earlier turned this intuition into a mathematical
framework: probability theory. What’s the probability of winning the game by
saying ‘above’ given your partner is showing you a 1? 2? 3? 4? 5? And so on?
And furthermore, how do we learn to get better at this game by playing it lots of
times?

1.3.1 Dissecting the games of chance

Let’s say, θ is the event of you winning the game by saying ‘above’ and n is the
rank of the card that is shown to you first. We can describe our uncertainty of the
events occurring with probabilities, P (θ) the probability of you winning by saying
‘above’ and P (n), the probability of seeing a card ranked n, Figure 1.2.
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Figure 1.2: The blue event θ and the yellow event n are happening with certain
probabilities, P (θ) and P (n). The conditional probability of θ given n is found in the
green overlap.

We are interested in the intersection of these events, the conditional probability of
θ given n, P (θ|n). How likely are we to win by saying ‘above’ given the card we
are shown. We can get this from looking at the joint probabilities of θ and n, the
union P (n, θ), first,

P (n, θ) = P (n|θ) × P (θ) ,

P (θ, n) = P (θ|n) × P (n) .
(1.1)

The probabilities P (n, θ) and P (θ, n) describe the same union of events n∩θ, hence,

P (n, θ) = P (θ, n)

P (n|θ) × P (θ) = P (θ|n) × P (n) .
(1.2)

From here we can get the intersection, the probability of θ given n. Which is the
famous Bayes’ theorem in action,

P (θ|n) =
P (n|θ) × P (θ)

P (n)
. (1.3)

It provides us with an equation for a conditional probability, to calculate how
likely we are to win the game by saying ‘above’ (θ) given the card we are shown
(n). For hypothesis testing, the card that is shown to us is nothing other than some
data D we would collect in an experiment, like an observation we are making. The
probability that we win the game by saying ‘above’ is a hypothesis H we are testing.
Therefore, we can also write Bayes’ theorem for hypothesis testing as

P (H|D) =
P (D|H) × P (H)

P (D)
, (1.4)

which we call posterior probability, P (H|D), the probability that our hypothesis H
is true, given the data D we are seeing. The posterior is determined by two factors,
a prior probability P (H) and a likelihood P (D|H) (and a third factor P (D) that
is just a normalisation constant – see below).

Coming back to our card game example with our event of winning and our events
of seeing certain cards θ and n, the posterior probability P (θ|D), determined by
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the prior probability P (θ) and the likelihood of θ, expressed as P (D|θ), can be
written as

P (θ|D) =
P (D|θ) × P (θ)

P (D)
, (1.5)

or more precisely,

P (θ|D,H) =
P (D|θ,H) × P (θ|H)

P (D|H)
, (1.6)

given that everything is dependent on the hypothesis that we formulate.

1.3.2 Formulating hypotheses, defining models

As I stated earlier, the goal in science is to deduce knowledge from data. We want
to find the general principles explaining specific observations we make. So we for-
mulate hypotheses, that we wish to test by making observations and evaluating
whether they can explain what we are seeing. A hypothesis is a specific statement
or proposition about the system we are investigating and we can only test it, by
also defining a model. A model in Bayesian statistics refers to a mathematical
representation of the data-generating process: How did the data come about? It
includes the likelihood function, which describes how the observed data is gen-
erated given certain parameters. The model incorporates prior beliefs about the
parameters through the prior distribution. A hypothesis, the statement or proposi-
tion we are making, is about a parameter or a set of parameters within the context
of the model. We can test hypotheses by calculating the posterior probabilities of
these hypotheses given the observed data. The likelihood P (D|θ) is our means of
feeding data we gathered in an experiment into the equation: We collect data (D)
and calculate the probability of obtaining the data, given the underlying model of
θ, i.e. how well our model reproduces the data.

The denominator normalises the posterior probability. It is the probability of the
data. This normalising factor is also called the evidence (or the marginal like-
lihood), and it has got this prestigious name for a reason. It will later play an
important role in hypothesis testing and Bayes factors.

Probably, this is not how you have learned to play card games. You did not think
about posterior probabilities, hypotheses and models. What you did is thousands
of experiments, collecting experiences of failing and learning until you reached your
current knowledge about card games. This learning process over the years of your
life, is a knowledge updating process that is essentially the same as learning from
data in our scientific experiments, follow me through Figures 1.3, 1.4, 1.5.

The posterior is a probability distribution describing our current knowledge. For
example, the probability that we are going to win the card game, given our cur-
rent knowledge about card games. The probability distribution over the event of
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Figure 1.3: If we are playing a card game for the first time in our life we have no prior
knowledge how to optimise our chances for winning. We have no tactics. We just
start an experiment (Experiment 1), collect some experience of winning and losing,
data (Data 1), and eventually know more about how to win afterwards (posterior
knowledge). If we are playing as an adult, we have some experience in card games.
This prior knowledge can help us to understanding the game before we have even
started playing (collecting new data).

winning θ that covers all possible values (between 0 and 1), depends on the data
D, an observations of games.

With every game we play, we learn. We do another Bayesian knowledge updating
step, just as described in Equation 1.3 and 1.4. The equations formalise how to
learn more about the game by updating the probability distribution over θ by in-
cluding more data or collecting experience, Figure 1.4 and 1.5.

Prior knowledge

Posterior knowledge

Data 1

Prior knowledge

Experiment 1

Likelihood

Evidence
x =

Prior knowledge

Posterior knowledge

Data 2

Prior knowledge

Experiment 2

Likelihood

Evidence
x =

Figure 1.4: With every game we play and every experiment we conduct, we are updating
our knowledge about card games, this world and how to find tampons in emergency
situations. All Prior knowledge can be taken into account to update our posterior
knowledge. As an adult, we have all of our past experiences behind us, making it
easier to make an informed decision between ‘above’ and ‘below’. A researcher with a
lot of background knowledge will read and interpret a new paper in their field in very
different light than a student immersing for the first time.
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Figure 1.5: Another visualisation of the concept of Bayesian knowledge updating: This
figure is exactly the same as the last ones but by applying colours we want to emphasise
the learning process (starting from blue) and the mixing in of new information (shades
of red) changing our current view, the posterior (purple). In this case the colours
are getting more and more intense and vibrant. This is not the case in all learning
processes, however. What if experiments show opposing results?

1.3.3 Humans interpreting probabilities

Because all of what we have talked about so far happens very fast and automati-
cally, we do not think about it too much. Now comes the bad news: Humans tend
to be bad at recognising which bits of prior knowledge are important to make good
decisions. Science communicator Grant Sanderson identified the difficulty aptly,
stating: ‘Rationality is not about knowing facts, it’s about recognising which facts
are relevant’ [2], [3]. For example, while we were focussing on finding a woman in
this university building (especially in a stressful situation), did we consider how big
the two departments are? How likely are we going to meet any person in the de-
partment? Are scientists going to be working from home? Are they going to be on
fieldwork? These are the moments where theory and practice deviate far from each
other and where we are losing in card games because we under- or over-estimate
our chances being distracted by irrelevant facts. Prior knowledge matters.

1.4 The medical test paradox

A famous example demonstrating how prior information can fundamentally change
the interpretation of a situation is the Medical Test Paradox. It is not a real para-
dox but a veridical paradox teaching us how an accurate test (for a disease, or a
hypothesis) is not necessarily a predictive test (for having the disease, or a hypoth-
esis being true).

Assume there is a breast cancer screening and 1000 women are tested. 10 of those
women do suffer from breast cancer, of which 9 get a positive test result. 89 further
women get a positive test result, although they do not have cancer, just like the
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901 cancer-free women with negative test results, Table 1.2. You are one of the
1000 women in the test and you get your results back with a positive outcome, how
likely is it, that you have cancer?

In your first shock, you might be sure you have cancer, because you consider the
worst and you feel you have good evidence – a positive test result – that you suffer
from the disease. But eventually you will question how accurate the test is that
is turning your world upside down. Conventionally, we can calculate test accuracy
statistics from the numbers given above, numbers that are important to be avail-
able for all medical tests for quality assurance. Table 1.1 will help to remind us
how test statistics are usually calculated.

Table 1.1: There are 4 possible scenarios that we can count for the outcome of a test.
The result can be positive (+) and negative (-) and the condition can be given (P)
or absent (N). For a person with the disease (P) receiving a positive test (+) we get
a true positive hit (TP), a person with the condition (P) receiving a negative test (-)
a false negative hit (FN). Subsequently we get a false positive hit (FP) for a person
without the disease (N) receiving a positive test result (+), and a true negative hit
(TN) for a person correctly being identified as disease-free. We can summarise the
performance of our (medical) test in four values: the true positive rate (TPR) also
called Sensitivity of a test, the false negative rate (FNR), the false positive rate (FPR),
and the true negative rate (TNR), also known as specificity.

Table 1.2: We are using a cancer screening as an example for the medical test paradox.
We are testing a group of 1000 people, of which 10 have the condition (P) and 990 do
not (N). The test is showing a positive result (+) on 98 patients and a negative result
(-) on 902. 89 false positive (FP) cases and 1 false negative (FN) case have occurred.

The test in our example has a sensitivity of 90%,

sensitivity =
TP

TP + FN
=

9

9 + 1
= 0.9 , (1.7)
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and a specificity of 91%,

specificity =
TN

TN + FP
=

901

901 + 89
= 0.91 . (1.8)

These numbers were given to a group of gynecologists in a study in the 90s [4],
where they were asked the same question as above. What are the odds that your
patient actually has cancer given they received a positive test result? They were
given the answers (A) 9 in 10, (B) 8 in 10, (C) 1 in 10 and (D) 1 in 100; What do
you think is the right answer?

In this influential piece of research for the fields of psychology and medicine we
have learned how people often misunderstand probabilities and the significance of
base rates when interpreting medical test results. But often is actually an under-
statement: In this specific experiment we have learned that the group of healthcare
professionals have performed worse than random in the test. Most picked the worst
case (A), while (C) is the true answer. Once we see a visualisation of the test statis-
tics, we get a better intuition for what is going on here: We underestimate what
the chances to have cancer are, Figure 1.6.

We can conclude that there is the need to find better ways to communicate medical
tests, if their statistics are heavily misinterpreted. But now, if medical tests are so
likely to be misinterpreted, what about scientific results?

Figure 1.6: The medical test example we are using is a cancer screening with 1000
participants represented in this figure by 1000 circles. There is a 1% prevalence for the
disease, the test has a sensitivity of 90%, and a specificity of 91 %. If there are 10
cancer cases among 1000 participants, receiving one of 98 positive results does update
your chances of having cancer from 10 in 1000 to 1 in 10.

The implications of the medical test paradox will follow us through the rest of this
thesis, out into the world and our everyday life. How do we combat the misunder-
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standing of tests?

1.5 Introducing Bayes factors

One good way to help us correctly estimate how likely we are to suffer from a dis-
ease given a positive test result is by rephrasing the question. By what factor have
the odds of carrying a disease increased, given a positive test result, as compared
to before the test? This factor is called a Bayes factor. Before we do the test we
might know how widespread the disease is. We can update this prior knowledge
about our chances of having the disease by doing a test. It depends on the accuracy
of the test how much we learn from a positive test result. To summarise the test
statistics we can calculate this Bayes factor, a single value that summarises the 4
values we had been given earlier (Table 1.1) with TP (True Positive), FP (False
Positive), TN (True Negative), FN (False Negative); or the 2 in form of sensitivity
and specificity).

If we want to express the posterior knowledge about having the disease given a
positive tests result P (P|+), we can use Bayes theorem,

P (P|+) =
P (+|P) × P (P)

P (+)
=

P (+|P) × P (P)

P (+|P) × P (P) + P (+|N) × P (N)
, (1.9)

where we shall not forget to take the prior, the prevalence expressed as P (P) =
(prior) = P/(P + N), into account. We can also pronounce this with the vocabulary
of test accuracy statistics where the prior is the prevalence of the disease,

P (P|+) =
(prior)(TP/P)

(prior)(TP/P) + (1 − prior)(FP/N)
. (1.10)

If we express the prevalence in odds,

O(P) =
P

N
=

10

990
, (1.11)

we can update the prior odds of having the disease to posterior odds O(P |+) of
having the disease after doing a test. Given we received a positive test (+), we can
multiply the prior odds with a Bayes factor for the test we have done,

O(P|+) =
P

N
× P (+|P)

P (+|N)
= O(P) × TP/P

FP/N
= O(P) × sensitivity

FPR
,

(1.12)

where the Bayes factors are tidily separated. We can remember, that if we formulate
the prevalence in odds, we can simply multiply the Bayes factor with the prevalence
to update our beliefs on the odds of having the disease after receiving a positive
test result,

posterior odds = prior odds × Bayes factor . (1.13)
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Receiving a positive test in our example changes the prior odds from 10 to 990 (1
in 100) to the correct answer (C) 1 in 10,

O(P|+) = O(P) × TP/P

FP/N
=

10

990
× 9/10

89/990
=

100

990
, (1.14)

with a Bayes factor of ≈ 10.

If we tell the story about medical tests in the framework of probability theory, con-
veying that we are updating our prior knowledge by doing a test, would we have
fewer misinterpretations about the implications of medical tests? Frankly speak-
ing, assigning priors is already hard enough. We need to factor in the prevalence,
symptoms, or contacts for contagious diseases, ... Why are we making the test
interpretation another hurdle if we can learn more about probability theory and
how to use it for inference problems? This will be the red thread for the rest of
this thesis. We will be using this beautiful framework, and find use cases of Bayes
factors for different challenges in molecular biology.

1.6 Bayes factor derivation for a binomial toy prob-
lem

Now that we have familiarised ourselves with the first and most important Bayesian
statistics tool in this thesis, the Bayes factor, we can explore what else we can use
it for. We mentioned earlier, that we can also describe learning processes in science
with the posterior distribution, simply by exchanging events and their probabilities
for data we are seeing and hypotheses we want to test, equation 1.4. Although we
will return to the medical test paradox in the Discussion of the thesis, we can leave
this exact use case of Bayes factors as a test statistic for medical tests behind us
and take a look at how to use Bayes factors for other hypothesis tests. Let’s return
to our card game example for that.

We are watching a game of ‘above or below’. As described earlier, the tactics (or
lack of tactics) of a child who has never played a card game before are probably
very different compared to an adult who has been confronted with similar games
many times before in their life. We want to see whether the lack of tactics in this
game makes a difference, or whether an adult could relax and close their eyes during
that game, meaning it is all about luck anyway. We can do that using Bayes factors.

We want to find an equation for a Bayes factor that helps us evaluate after each
game which hypothesis is more likely to be true. Both players, adult and kid, are
shown the same cards and they give their predictions independently. We want to
know whether there is a difference in their successes and how it changes over time,
with more and more games the kid is exposed to. If we let our players compete in
many games we might also be able to observe the learning progress of the kid (or
the adult) over time. We are going to get a limited amount of data, as we are only
recording a few games with our players, and so we employ Bayesian statistics here
to help us make sense of our observations.
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1.6.1 Defining the problem and stating the hypotheses

Each game consists of N rounds. In each round the players will be shown a card.
They have to state their guesses and we count how often the players win (n suc-
cesses). From this data, we can infer a success rate q for each of the players. The
question we are asking is essentially whether the success rates of our players are
the same, or different.

We can formulate two hypotheses. Hypothesis H1 states that the success rates q1
and q2 do not differ; understanding the probabilities behind the card game does not
lead to a different outcome than making random decisions. Hypothesis H2 states
that the probabilities for success are different; a naive player achieves very different
results than an experienced player. Therefore, the problem we are evaluating is
whether,

q1
?
= q2 . (1.15)

1.6.2 Finding a model

The simplest model to describe the process we are observing is a binomial model,
as we are observing a probabilistic event with two outcomes: winning or losing.
Hence, we can describe the relationships between success rate q, the number of
successes n, and the number of rounds N in our data with a binomial distribution,

P (n|N, q) =

(
N

n

)
qn(1 − q)N−n . (1.16)

This description implies, for example, that if we knew the success rate q of a player
and the number of rounds they played, N , we can, with the help of the binomial
distribution, compute the probability of any number of successes n, Figure 1.7.

Figure 1.7: Imagine we are watching two players with different tactics represented by
different success rates, 0.5 and 0.7. With the help of the binomial distribution we can
compute the probability of success in N rounds for all possible n from 0 to 10.

1.6.3 Learning from data

Before the players have played the game we could guess how well they will perform,
but, typically, their success rates q1 and q2 are unknown. However, once they have
played a game (or better several) we have the outcomes or data, and we can infer
the success rates using Bayes’ theorem as an inverse probability problem. As we
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do not know q, but we want to learn about q from our data, we shall refer to this
as θ from now on. Importantly, θ is not q, but the range of values that q may take
and over which we assign a probability distribution reflecting what we know about
it.

As we want to compare our two players, child and adult, to see whether their
success differs, we are, technically speaking, asking whether the successes of our
players, n1 for player 1 and n2 for player 2,

q1 ⇝ n1 and q2 ⇝ n2 , (1.17)

arose from the same success rates q (which we don’t know), or not. This implies
that we are comparing two models, in Hypothesis H1 a single parameter θ is enough
to explain all data, whereas in Hypothesis H2 we need two different parameters θ1
and θ2.

Before we collect our data we don’t know about the performance of our players. Our
prior information only consists of the fact that we are dealing with a probabilistic
event with two outcomes which we can describe with a Binomial distribution. We
don’t know about the outcomes.

Let’s look at some results of the games, Table 1.3.

Table 1.3: Our players have played 3 games (10 rounds each) of ‘above or below’. We
have counted how many times they have guessed the right answer. Both players were
shown the same cards and they chose their answers independently.

We can infer an expectation value ⟨θ⟩ for the success rates of our players from their
success counts n among games N ,

⟨θ⟩ =
n + 1

N + 2
, (1.18)

following Laplace’s rule of succession to infer probabilities for events given limited
observations.

How can we learn more about θ from the data, beyond an expectation value? What
is the probability distribution over θ, given (new) success counts of our players?
Bayes theorem is back, helping us out one more time. We can write the posterior
distribution P (θ|n), our newest updated knowledge, as
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P (θ|n) =
P (n|θ) × P (θ)

P (n)
. (1.19)

From the binomial distribution above we know that the number of successes n
depends on θ and the number of rounds N . We also include this bit of information
in the posterior,

P (θ|n,N) =
P (n|θ,N) × P (θ)

P (n,N)
,

P (θ|D) =
P (D|θ) × P (θ)

P (D)
.

(1.20)

To calculate the posterior we need to find all the building blocks of the equation, in
other words, we need to find expressions for all of them. We remember, the poste-
rior is determined by two factors, the prior probability P (θ|H) and the likelihood
of θ, P (D|θ,H), normalised by the evidence P (D|H), Equation 1.5 and 1.6.

1.6.4 The building blocks of a posterior distribution

The likelihood is how we get data that we gathered in an experiment into the equa-
tion: We collect data (D) and calculate the likelihood of the parameters producing
the data. We do this by employing a process model to describe the probabilistic
process of how the data came about. This means we calculate the probability of
observing the data given θ. Hence, we use the binomial distribution we had earlier
to describe the process (Equation 3.2), to define the likelihood over θ,

P (D|θ) ∝
(
N

n

)
θn(1 − θ)N−n . (1.21)

First, we need an expression to feed our prior knowledge in a prior distribution.
This distribution captures our knowledge about the system before we collect data or
before we include more data and update our knowledge. We can choose whichever
distribution best describes our prior knowledge of θ. If we think that all values of
θ are equally possible, we might assign a uniform prior.

The mathematical form of the prior influences the ease of further calculation. The
Beta distribution is the conjugate distribution of the binomial distribution and
therefore a convenient choice for the prior, owing to it having the same functional
form (a choice that will lead to some satisfying simplifications later, extraordinarily
convenient choice),

P (θ|u1, u2) =
1

B(u1, u2)
θu1−1 (1 − θ)u2−1 = Beta(u1, u2) , (1.22)

where the hyper-parameters u1 and u2 can be used to capture existing knowledge
about the success rate θ. The Beta distribution is named after its normalisation
factor, the Beta function B(u1, u2),
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B(u1, u2) =

∫ 1

0

θu1−1 (1 − θ)u2−1dθ . (1.23)

Can you spot the similarities? The prior gives us the option to start with no
knowledge or bias (called flat prior), where all outcomes are equally likely by set-
ting u1 = u2 = 1. Theoretically, one could introduce a bias to favor one success
rate θ over another, but as we stated earlier, there is no good reason here to do
that. Figure 1.8 shows the concept of Beta priors and how we could introduce bias
over θ to capture either theoretical reasoning or knowledge from previous experi-
ments.

Figure 1.8: Beta distributions change their shapes according to the hyper-parameters
u1 and u2. Choosing a ‘flat prior’, u1 = u2 = 1, means introducing no bias or prior
information.

Finally, the evidence P (D) found in the denominator of equation 3.7 is the prob-
ability that the data D is produced. We are computing the probability for seeing
data D given all possible values of θ, which means we want to sum over all prob-
abilities for all values of θ between 0 and 1, which is essentially integrating over
P (D|θ) weighed by how likely each θ is, P (θ),

P (D) =

∫ 1

0

P (D|θ) × P (θ) dθ . (1.24)

To visualise this integration, you can picture that the evidence is the area under
the curve of P (D|θ) × P (θ). The evidence tells us how much the possibility space
given by the hypothesis collapses by looking at the data.

Note, that this is not limited to 2-dimensional spaces and can be extended to 3 or
more if there are several variables you integrate over, P (D|θ1, θ2) × P (θ1, θ2) . . .
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Figure 1.9: We can calculate the estimated number of successes for any probability of
success θ. Remember, in our calculations, we assign a probability distribution over θ,
instead of only considering a single value. Finding the evidence is calculating the space
under under the curve of P (D|θ)×P (θ), given data n. The evidence is a measure for
how much the possibility space collapses by data given the hypothesis or model.

1.6.5 The assembly of the posterior distribution

Now that we discussed all the building blocks of the posterior, let’s put them to-
gether for our two hypotheses.

Using the binomial likelihood, we can infer the posterior distribution over the
success rates of our players from the recorded games, starting from a prior for
Hypothesis H1,

P (θ|H1) = Beta(u1, u2) =
1

B(u1, u2)
θu1−1 (1 − θ)u2−1 , (1.25)

and two priors for two parameters in Hypothesis 2,

P (θ1, θ2|H2) = Beta(u1, u2) × Beta(u1, u2) , (1.26)

which we will update with the results from the games we recorded by multiplying
with the likelihood. The likelihood of θ for given data (D1, D2) and Hypotheses 1,
following a process model with one parameter, can be written as

P (D1, D2|θ,H1) =

(
N

n1

)
θn1(1 − θ)N−n1 ×

(
N

n2

)
θn2(1 − θ)N−n2 . (1.27)

For Hypothesis 2, the likelihood of the parameters, θ1, θ2, given H2 over two models,
is
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P (D1, D2|θ1, θ2, H2) =

(
N

n1

)
θn1
1 (1 − θ1)N−n1 ×

(
N

n2

)
θn2
2 (1 − θ2)N−n2 .

(1.28)

If we now put together our equation for the posterior of Hypothesis H1, as we did
earlier for the general case, we get,

P (θ|D1, D2, H1) =
P (D1, D2|θ,H1) × P (θ|H1)

P (D1, D2|H1)
. (1.29)

Filled with the building blocks for the posterior for Hypothesis H1 that we just
described we can assemble and simplify the posterior,

P (θ|D1, D2, H1) =

(
N

n1

)
1

B(u1, u2)
θn1+u1−1
1 (1 − θ1)N−n1+u2−1

(
N

n1

)
1

B(u1, u2)

∫ 1

0

θn1+u1−1
1 (1 − θ1)N−n1+u2−1 dθ

×

(
N

n2

)
1

B(u1, u2)
θn2+u1−1
2 (1 − θ2)N−n2+u2−1

(
N

n2

)
1

B(u1, u2)

∫ 1

0

θn2+u1−1
2 (1 − θ2)N−n2+u2−1 dθ

=

=
θn1+n2+u1−1(1 − θ)N+N−n1+n2+u2−1

B(u1 + n1 + n2, u2 + N + N − n1 − n2)
=

= Beta(u1 + n1 + n2, u2 + N + N − n1 − n2) .

(1.30)

Note, how the evidence (denominator) simplifies to a Beta function (magic trick of
choosing a conjugate prior), an identity we recognise from Equation 3.10 and how
the posterior as a whole can be expressed as a Beta distribution, compare Equation
3.9.

Analogously, for Hypothesis H2 we can formulate the posterior probability distri-
bution as

P (θ1, θ2|D1, D2, H2) =
P (D1, D2|θ1, θ2, H2) × P (θ1, θ2|H2)

P (D1, D2|H2)
, (1.31)

and using the same magic conjugate prior simplification tricks we end up with a
posterior probability function,
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P (θ1, θ2|H2, D1, D2) =

(
N

n1

)
1

B(u1, u2)
θn1+u1−1(1 − θ)N−n1+u2−1

(
N

n1

)
1

B(u1, u2)
B(u1 + n1, u2 + N − n1)

×

(
N

n2

)
1

B(u1, u2)
θn2+u1−1(1 − θ)N−n2+u2−1

(
N

n2

)
1

B(u1, u2)
B(u1 + n2, u2 + N − n2)

=

= Beta(u1 + n1, u2 + N − n1) ×

Beta(u1 + n2, u2 + N − n2) .

(1.32)

We have learned now how to update our knowledge about the success rates of our
players. But how can we compare the hypotheses now? We want to know which
hypothesis is more likely to be true, given our data. We can find the ratio of the
two probabilities to evaluate,

P (H2|D)

P (H1|D)
=

Evidence(H2) × Prior(H2)

Evidence(H1) × Prior(H1)
(1.33)

where D is the entirety of the data, D1 and D2. Reading this will sound very
familiar to us: The posterior odds is the Prior odds times a factor. The Bayes
factor, the ratio of the evidences for our two hypotheses. We have already found
a way to calculate the evidence for both of our hypotheses in the denominator of
their posteriors, by integrating over likelihood and prior for all θ, so we get a Bayes
factor,

Bayes factor =
P (D1, D2|H2)

P (D1, D2|H1)
=

=
B(u1 + n1, u2 + N − n1) × B(u1 + n2, u2 + N − n2)

B(u1, u2) × B(u1 + n1 + n2, u2 + N − n1 − n2)
,

(1.34)

where all except one pre-factor, B(u1, u2), cancel and B(u1, u2) = 1 for a flat prior.

We can use this Bayes factor to update our knowledge by multiplying it with our
prior knowledge about a system. This implies that for an event with a very low
prior ratio, we want to see a strong Bayes factor – good evidence – to change our
belief.
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Figure 1.10: The process we have gone through in this derivation was finding (left) a
likelihood function that serves as a model for the process we are watching, (middle) a
prior expression to include knowledge, and (right) a posterior to express our updated
belief.

1.6.6 Bayes factors for card games

Congratulations, you have just made it through the first Bayes factor derivation of
this thesis. Two more to go! If we calculate the Bayes factors for our recorded card
games we get the following table, Figure 1.11. Usually, we transform our Bayes
factor to log10 Bayes factors. In the rest of the thesis we will always refer to log10

Bayes factors when talking about Bayes factors.

Figure 1.11: Our two players, a kid and an adult have played 3 games with 10 rounds
each. We counted the successes of them correctly guessing whether the card is ‘above’
or ‘below’. Afterwards we inferred an expectation value ⟨θ⟩ for their success rates and
calculated log10 Bayes factors to evaluate whether we can see the differences in their
tactics.

1.6.7 Interpreting Bayes factors

The Bayes factor is the ratio of evidences for the two hypotheses which we wish to
compare. If there is is an equal probability for both hypotheses, we will get a log
Bayes factor around 0, meaning we cannot conclude any explanation of the data is
more likely. As soon as we can find more evidence for one of the two hypotheses
in the data given our model, the log10 Bayes factors will grow accordingly above
or below 0. If we see more evidence for hypothesis 1, the log10 Bayes factors will
migrate into the negative numbers, in relation to how big the evidence differences
are, and vice versa, if we see more evidence for hypothesis 2, the Bayes factors will
rise, Figure 1.12.

Inspecting Figure 1.11 after you have learned that log10 Bayes factors around 0
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Figure 1.12: Positive log10 Bayes factors indicate stronger evidence for Hypothesis 2,
while negative log10 Bayes factors represent support for Hypothesis H1. Following
Jaynes [5] log10 Bayes factors 1 are considered a sensible cutoff for binary decisions.
Jeffreys [6], and similar Kass and Raftery [7] offer a verbal discription where (to sum-
marise) absolute log10 Bayes factors below 0.5 barely worth mentioning, 0.5 - 1 is
substantial support, above 1 is strong support and above 2 is decisive. These interpre-
tations are built on minimal differences humans can and cannot notice in signals [6].

reflect no difference in player tactics may lead you to the conclusion that luck is
everything in this card game, no inference will help you. The log10 Bayes factors
are very small. But do you think this is the right conclusion (given the experience
in your life so far)? If we pretend our players had played games with 100 rounds
and we give them the same success rates, we will see how our perception changes.

Figure 1.13: The importance of repetition and necessary insights become very clear
when we compare the Bayes factors in Figure 1.11 and this Figure 1.13. We have
gathered more data and therefore more evidence, resulting in more extreme Bayes fac-
tors. This table makes us believe that at first, kid and adult have very different success
rates, and the differences decrease with the number of games they play. Interestingly,
and we will encounter this in more detail in Chapter 6, it does not matter if they are
playing these 300 rounds in 3 games or 5 games or 10 games, our overall conclusions
will be the same. If we want to observe the learning process of the kid, however, we
need to look at the process over time, of course, instead of all 300 rounds at once.

1.6.8 Bayes factors in the Analysis of RNA-Seq data

Bayes factors can be easier and harder to calculate, depending on how easy or hard
it is to find the building blocks for the posterior distribution, Equation 1.4, and
if simplifications happen like in our example. The derivation we worked through
was, of course, chosen to demonstrate how simple it can be. In Chapters 3 and 6
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we introduce Bayes factors in the analysis of RNA-Seq data for two different pur-
poses. Relatively speaking, both of these examples are still simple and we could
find analytical solutions for them, which is not given in many other problems out
there.

1.7 Bayesian inference in the analysis of biological
data

The central question of this thesis is: How can we extract knowledge about life from
data? We will nearly exclusively look at a very popular data type in molecular biol-
ogy, called RNA-Sequencing data. RNA-Sequencing is a technique to identify and
count all RNA present in a biological sample. Before we go into the introduction to
the technology and the content of this thesis, I want to reiterate to the beginning
of the thesis and find motivation to use Bayesian inference to analyse RNA-Seq
data.

We have learned in the last pages about some simple principle mechanisms and
the underlying philosophy of Bayesian statistics. There are two big strengths in
approaching statistical analysis like that, that we touched on so far. Firstly, we
can incorporate prior knowledge into the analysis. I guess this is not only a valu-
able thought for the analysis but for research and life in general. By combining
prior knowledge with new insights gleaned from the data, Bayesian statistics offers
a more holistic and informed approach to inference, especially in situations with
limited or noisy data. Secondly, the uncertainty of our measurement is quantified
in the form of probability distributions, allowing for a more nuanced representation
of the unknown parameters. The goal is to capture the complexity of real-world
uncertainty, which brings us to biology. The Bayesian framework’s ability to pro-
vide probabilistic statements about parameters and predictions offers an intuitive
and comprehensive understanding of uncertainty, which is exactly what we need.

Currently, we are collecting a lot of RNA-Seq data in biology, bringing a huge
amount of very interesting insights about molecular and cellular processes to us.
Nevertheless, it is still a measuring technique with limitations, that is measuring
probabilistic events in complex living systems. The process of the data collection
is complicated, involving many steps of chemical and computational innovation
we are only capable to use since a few years. This is paired with the challenge of
identifying and quantifying thousands of macro-molecules that are part of dynamic
processes in life. Analysing this data is unbelievably fascinating, and involves ad-
ventures from 18th-century mathematics to 21st-century innovation.
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Chapter 2

An Introduction to
RNA-Seq Data

Transparency Note — Parts of this chapter are in an arXiv pre-print titled ‘A
Closed-Form Solution to the 2-Sample Problem for Quantifying Changes in Gene Ex-
pression using Bayes Factors’ authored by Gurpinder Singh Sidhu, Melissa Tomkins,
Richard J Morris and myself [8].

2.1 RNA-Sequencing enables quantification of RNA
in cells

Every living cell of any organism on this planet follows the so-called central dogma
of molecular biology – a genetic information processing pipeline and molecular pro-
duction pathway. Genetic information, stored in DNA, is transcribed into RNA,
of which many are translated into proteins, Figure 2.1.

DNA RNA Protein

transcription translation

Figure 2.1: The central dogma of molecular biology.

The processes of transcription and translation are delicately regulated, and their
rates of genes may change over time – orchestrating development, and life. The field
of molecular biology is striving to understand and quantify all of these processes
and molecules. One way to measure transcript levels in cells is by RNA-Sequencing
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(RNA-Seq) [9]–[11]. In this technique, a biological sample is taken (e.g. a leaf of a
plant), and by chemical and physical treatments, all RNA of all cells in the sample
is extracted, while all other structures and molecules are washed away. The ex-
tracted RNA is sequenced, which results in short strings of RNA, called sequencing
reads, as a digital output. Those reads can be aligned by alignment algorithms to
the sequences of the genome of the organism to find their site of origin within the
genetic material. For each gene in the genome, we can count the number of reads
mapping to it. This number is considered proportional to the amount of RNA
originating from this gene in the tissue. Hence, by sequencing all RNA found in
a biological sample, we can estimate the amount of RNA we find in a tissue from
the number reads assigned to a gene.

There are unlimited options for the use of RNA-Sequencing, of course. In this
thesis, we are focusing on the data analysis in two different experimental setups
using this technique: Differential gene expression analysis (Chapters 3 and 4), and
the detection of mobile mRNA in plants (Chapters 5 and 6). For simplicity, we
will only introduce the popular experiment of differential gene expression in this
chapter, and go into the details of long-distance mobile mRNA detection in Chap-
ter 5.

2.2 Using RNA-Seq to identify transcription reg-
ulation changes

If we carry out two (or more) RNA-Sequencing experiments under different con-
ditions, we can compare the amounts of RNA in a sample and may learn about
environmental conditions affecting the process of transcription in a tissue. In differ-
ential gene expression analysis, we seek to identify genes with a ‘significant’ change
in their expression between the two measured conditions and call them differen-
tially expressed genes, DEG henceforth. In Figure 2.2 we depict an overview of
this experimental procedure.

2.3 Current statistical methods in differential gene
expression analysis rely on hard cutoffs for
identification criteria

Numerous review articles have summarized RNA-Seq technologies and data anal-
ysis tools for the identification of transcription changes in recent years [12]–[17].
Currently popular differential gene expression analysis tools all follow a similar
workflow, depicted in Figure 2.5. Several analysis options and parameters that
need to be set by researchers, combined with the challenges of technical and bi-
ological noise, may lead to difficulties in reproducing the exact results of studies,
however. This issue has been discussed in several instances. Chen et al. [12], for ex-
ample, illustrate in their review how using different methods for a complete analysis
from raw reads to differential expression and functional enrichment analysis can
lead to different results and conclusions. Rapaport et al. [17] and [18] contributed
an extensive test of several packages on simulated and real data and found similar
results – already 10 years ago. Shortly afterward, when the popular tool DESeq2
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Figure 2.2: An overview of RNA-Sequencing experiments to identify differentially ex-
pressed genes. Tissue samples are collected from two conditions that are desired to be
compared. The RNA in these samples is extracted separately, and sequenced (Figure
2.3). The raw sequencing data output is processed by bioinformatics pipelines (Figure
2.4). One important step thereof is the alignment of sequencing reads to the genome
of the sample’s organism. The processed RNA-Seq data consists of sequencing read
counts for each gene. Afterwards follows the statistical analysis, which in this case is to
find out which genes have changed their expression between the conditions. In Chapter
3 we will discuss how we can calculate a Bayes factor for differential gene expression
for each gene, to rank genes according to the evidence in the data for changes in the
amounts of RNA present in the samples.

was published, the authors also compared the performance of eight existing differ-
ential gene expression analysis approaches using simulated data [19]. Nevertheless,
even though problems are reported, these analysis tools are the go-to methods
for the search for differentially expressed genes. While the authors of Chen et al.
[12] ‘emphasize the need to both conduct comprehensive comparative analyses and
justify specific study choices’, we will explore a bit further why these differences
occur later in this thesis and provide some insights on how to avoid these problems.

Differential gene expression analysis is a very popular experiment. Therefore, the
process has been streamlined in the last years, resulting in a range of software tools
that can carry out the full analysis: DESeq [20], DESeq2 [19], edgeR [21]–[23], bay-
Seq [24], EBSeq [25], to name the most popular ones, which have evolved from
RNA-Seq precursor analyses of SAGE (Serial Analysis of Gene Expression) data
[26], [27].

Currently, popular statistical analysis tools rely on two criteria for determining a
DEG: (1) p-values below a set threshold (to determine if a ‘significant’ change in
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Figure 2.3: Data collection in two conditions starts with sample collection and sample
preparation. It either involves converting RNA into cDNA, followed by next generation
sequencing (NGS) [9], [10], or more recent methods skip converting RNA and are able
to sequence RNA directly [11]. Depending on the objective of a study, scientists may
choose different RNA-Sequencing technologies, varying sequencing depths as well as
bioinformatics and statistical analysis pipelines [12]. After sequencing the raw data is
processed in bioinformatics pipelines, continuation in Figure 2.4.

normalised read counts between the two conditions is observed) and (2) an absolute
log2 fold change value above a certain threshold, where

log2(fold change) = log2

c1
c2

, (2.1)

with the normalised read counts c1 and c2 for condition 1 and condition 2, to esti-
mate the magnitude of the change. We will refer to this log2(fold change) as fold
change in the rest of this thesis.

46



Chapter 2

Figure 2.4: Raw sequencing data are processed in several steps (white boxes) in bioinfor-
matics pipelines. The processing involves several data type conversions (red bubbles).
To navigate the jungle of techniques, sequencing, processing and data analysis tools
are reviewed constantly, e.g. in [12]–[17]. The work of this thesis is located in post-
processing analyses only (yellow bubbles).

Popular cutoffs for DEGs are p-value < 0.05, and | log2(fold change) | > 1, some-
times > 2 [12], [14]–[19], [28]–[35]. This means, that current criteria are filtering
for genes that have at least doubled, or even quadrupled their expression. While
setting a fold change cutoff decreases the number of false positive hits, potentially
interesting genes with noticeable changes that have not at least halved or doubled
their expression are ignored. Considering molecular mechanisms of biology, how-
ever, there is no reason why the impact of a gene that has doubled its RNA in
a cell is necessarily higher than another gene that has incurred a smaller relative
change. As an alternative to deciding arbitrary fold change and p-value cut-offs,
in Chapter 3 we explore the use of the Bayesian statistics toolbox in molecular
biology in this popular analysis example.
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Figure 2.5: Currently used statistical software packages are mainly following the pre-
sented flowchart. Processed data, read counts for each gene, are filtered and normalised
before a p-value (left side) and log2 fold change (right side) are calculated. These two
values serve as classification criteria for identifying DEGs. While the overall idea of
how to identify those genes is common to all packages, the exact way a p-value is
calculated varies from tool to tool.

2.4 Thesis preview

In Chapter 3 we present a Bayesian framework tailored to the differential gene
expression analysis of processed RNA-Seq data. In contrast to current software
that often involves various pre-processing stages, and applies complex statistical
analyses, involving parameter estimations and multiple statistical tests, we put for-
ward a concise mathematical equation (i.e. we provide a closed-form or analytical
solution) to calculate a Bayes factor for each gene, enabling genes to be ranked
according to the statistical evidence for change. In Chapter 4 we compare our
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new Bayesian framework to existing methods in the field and identify (or remind
us about) limitations of RNA-Seq that can cause reproducibility issues.

In Chapter 5 we will learn about the effort of using RNA-Seq in the detection
of long-distance mobile mRNA in plants. Modern sequencing technologies paired
with ancient grafting practices are state-of-the-art for investigating the mysterious
long-distance movement of macromolecules, such as mRNA. We have developed a
Bayesian framework to tackle sequencing noise in this detection setup, resulting in
astonishing accuracy improvements, Chapter 6.

We carried out a re-analysis of several long-distance mobile mRNA data sets in a
range of plant species which brought more complications about the use of short-read
sequencing in the detection of mobile RNA to light, Chapter 7. As in previous
chapters, we learn a lot about the limitations of RNA-Seq, ranging further than
the specific use discussed in the chapter. Chapter 8 is the final summary and
discussion of the work in this thesis.
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Chapter 3

Analytical Bayesian
Framework for Differential
Gene Expression Analysis
using RNA-Seq Data

Transparency Note — Parts of this chapter are in an arXiv pre-print titled ‘A
Closed-Form Solution to the 2-Sample Problem for Quantifying Changes in Gene Ex-
pression using Bayes Factors’ authored by Gurpinder Singh Sidhu, Melissa Tomkins,
Richard J. Morris and myself [8]. This chapter has largely profited from discussions
with all co-authors of this pre-print, and Thelonious Omori. Since the completion of
the first version of this thesis, the content of the chapter has been modified and in parts
improved for a bioRxiv pre-print [36]. All code for figures, analyses and simulations for
this chapter can be found on my GitHub.

Summary — Advances in RNA-sequencing technology have revolutionised our ability
to capture the complete RNA profile in tissue samples (bulk RNA-Seq). This wealth of
data allows for comparative analyses of RNA levels within cells and tissues, shedding
light on transcript dynamics of developmental processes, environmental responses, and
treatment effects. However, quantifying changes in gene expression still presents a
challenge, given the inherent biological variability, technological limitations, and mea-
surement errors. To address this, we introduce a Bayesian framework tailored to the
differential gene expression (DGE) analysis of processed RNA-Seq data. Our framework
unifies and streamlines a complex analysis, typically involving parameter estimations
and multiple statistical tests, into a concise mathematical equation (i.e. we provide
a closed-form or analytical solution). It can be implemented in a single line of code,
enabling rapid and transparent ranking of genes according to statistical evidence for a
change in gene expression. Furthermore, we introduce a method evaluating the vari-
ability between replicates. We conducted a comparison of our framework with leading
differential gene expression tools, finding substantial overlaps in the results and inter-
esting disagreements, mainly caused by pre-filtering and small differences in fold change
values, which are currently driving the classification of a ‘differentially expressed gene’.
This motivated us to explore the possibility of ranking genes instead of classifying DEGs
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moving forward.

3.1 Background

We have learned in Chapter 2 that RNA-Sequencing (RNA-Seq) is a powerful
technique used in molecular biology to gain insights into gene expression and tran-
scriptional activity at a tissue sample level. By sequencing all RNA molecules
present in a sample, RNA-Seq can reveal which genes are expressed or which ge-
nomic regions are transcribed at a specific time during development or in response
to environmental stimuli [9], [11], [28]. RNA-Seq datasets can be compared to
identify statistically significant changes in the amounts of RNA between the sam-
ples (differential gene expression, DGE), or over-representation analyses to identify
interesting candidate genes for further investigations [12].

Excellent review articles are available that summarise RNA-Seq technologies, asso-
ciated data analysis tools, and their successes and limitations [14]–[16], [18], [28]–
[34]. Motivated by studies reporting reproducibility challenges in this area [12],
[17], [19], [35], we were driven to re-examine the statistical assumptions underlying
differential gene expression analysis from a Bayesian perspective, Figure 3.1. This
endeavor has led to the development of an exact Bayesian framework tailored to
this use case, including the derivation of an analytical expression for solving this
two-sample test problem in differential gene expression. Through comparisons with
popular existing methods, using both simulated and read data, we found, that this
analysis enhances the computational efficiency without compromising accuracy.

3.2 Results and Discussion

3.2.1 Differential gene expression analysis can be cast into
the framework of Bayesian inference and model com-
parison

We assign to every gene i an expression probability qi. This probability is variable
and depends on all events from transcription of gene i to mapping of a correspond-
ing read in data processing,

DNA
qi−→ read count . (3.1)

For a known qi, we can describe the probability of ni number of reads mapping
to a gene i, out of total reads in a sample N with a binomial distribution (a read
maps to gene i, with probability qi, and it does not, with probability 1 − qi),

P (ni|N, qi) =

(
N

ni

)
qni (1 − qi)

N−ni . (3.2)

This implies that if we know the gene expression probability qi of a gene and the
total number of all reads N in an RNA-Seq experiment, we can compute the prob-
ability of any number of RNA-Seq reads ni mapping to gene i. Note that in total
N =

∑
ni.
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Figure 3.1: A schematic overview of our new framework for differential gene expression
analysis based on Bayesian model comparison. The analysis is built on a simple gene
expression model for which we infer parameters from collected, processed RNA-Seq
data. We calculate the evidence (a measure for how compatible a model is with
the data) for different models. The evidences for two alternative hypotheses and the
corresponding models are compared by computing the ratio of them (Bayes factor).
In this DGE case, these 2 hypotheses are: H1) the data can be explained by one
gene expression parameter (q1 = q2), as opposed to H2) two different gene expression
parameters are needed to explain the data (q1 ̸= q2), which can be interpreted as a
change in gene expression. Note that our knowledge of q is represented by a probability
distribution over the parameter and not a single value. A negative log10 Bayes factor
for a gene lets us conclude that there is no change in expression, whereas a positive
log Bayes factor marks a change. The more extreme the Bayes factor, the stronger the
respective evidence. If log10 Bayes factors are around 0 there is no evidence either way.
We can use Bayes factors to rank genes according to the confidence in an expression
change, and if wanted, for binary significance decisions.

In a differential gene expression experiment (or any other two-sample test) we want
to answer the question of whether two data sets D1 (consisting of N1 and ni1) and
D2 (consisting of N2 and ni2), for an observation (gene) i,

qi1 ⇝ D1 and qi2 ⇝ D2 (3.3)

arose from the same probability distribution qi. Therefore, our problem is to decide
whether

qi1
?
= qi2 , (3.4)

which is equivalent to asking whether the expression probability qi of a gene
changed between two data sets, or not.

We can calculate a Bayes factor for each gene, describing how much the RNA-Seq
data supports one of two hypotheses. This will be our metric for ranking genes
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according to the statistical evidence for a change in gene expression.

Hypothesis H1 states that the data from both experiments can be explained by
one statistical model,

qi ⇝ D1 and qi ⇝ D2 . (3.5)

RNA-Seq data from the first and second experiment, i.e. mRNA levels of gene
i, are statistically consistent, and we have no statistical support for a difference
between them. The data are consistent with the biological and technical variance
that might be expected between experiments.

Hypothesis H2 states that the data are best explained by a different model for
each experiment,

qi1 ⇝ D1 and qi2 ⇝ D2 . (3.6)

In this case, the RNA-Seq data are unlikely to have arisen from just one qi, the
variance is higher and requires a separate model for each data set. Hence the data
support a difference in gene expression between the samples.

3.2.2 Deriving Bayes factors for differential gene expression

The transcription probability qi is unknown. However, we can infer it from RNA-
Seq data using Bayes’ theorem as an inverse probability problem. We use θi to
denote the range of possible values of qi (between 0 and 1) and use a probability
distribution over θi, P (θi), to capture our knowledge of qi, with our best estimate
of qi being the expectation value ⟨θi⟩.

The posterior is a probability distribution describing current knowledge of θi, given
the data, D, i.e. the RNA-Seq read count data (N,ni),

P (θi|D) =
P (D|θi) × P (θi)

P (D)
. (3.7)

The posterior is determined by three factors: the prior probability P (θi|H), the
likelihood of θi, either expressed as P (θi|D) or Λ(θi), and a normalising factor
P (D) in the denominator. This normalising factor is called the evidence or the
marginal likelihood.

To find a likelihood function P (D|θi) for all possible θi, we can use the equation
3.2 to model P (D|θi) as a simple binomial process

P (D|θi) ∝
(
N

ni

)
θni
i (1 − θi)

N−ni . (3.8)

The prior distribution captures our knowledge about the system before we collect
data. A convenient choice for the prior is the Beta distribution, as it is the conjugate
distribution of the binomial distribution, owing to it having the same functional
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form and allowing us to proceed analytically. The prior distribution can be written
as

P (θi|u1, u2) =
1

B(u1, u2)
θu1−1
i (1 − θi)

u2−1 = Beta(u1, u2) , (3.9)

where the hyper-parameters u1, u2 ∈ R+, can be used to capture existing knowledge
about the transcription probability. The Beta distribution Beta(u1, u2) is named
after its normalisation factor, the Beta function B(u1, u2), expressed as

B(u1, u2) =

∫ 1

0

θu1−1
i (1 − θi)

u2−1dθi . (3.10)

For instance, a reasonable estimate of qi might be the inverse of the number of
genes and u1 and u2 could be chosen accordingly to provide a prior over θi. Here,
we choose a bias-free, flat prior (u1, u2 = 1).

Finally, the evidence P (D) is the probability that the data D is produced. It can
be calculated by integrating over the numerator in equation 3.7

P (D) =

∫ 1

0

P (D|θi) × P (θi) dθi . (3.11)

This means that if we sum up all probabilities of seeing data D for all possible
values of θi, we get a value called the evidence. To visualise this, we can picture
the evidence as the area under the curve of P (D|θi) × P (θi).

For two datasets, D1 and D2, we can find a posterior distribution P (θi|D) for
Hypothesis 1 and Hypothesis 2 separately. For Hypothesis 1, the assumption is
the same expression probability can explain both datasets, θi ⇝ D1 and θi ⇝ D2,
resulting in

P (θi|D1, D2, H1) =
P (D1, D2|θi, H1) × P (θi|H1)

P (D1, D2|H1)
. (3.12)

For Hypothesis 2, we assume that the expression probabilities are different between
experiments, θi1 ⇝ D1 and θi2 ⇝ D2 ,

P (θi1, θi2|D1, D2, H2) =
P (D1, D2|θi1, θi2, H2) × P (θi1, θi2|H2)

P (D1, D2|H2)
. (3.13)

We define a prior for the single expression probability in Hypothesis 1,

P (θi|H1) = Beta(u1, u2) =
1

B(u1, u2)
θu1−1
i (1 − θi)

u2−1 (3.14)

and the prior for two expression probabilities in Hypothesis 2,
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P (θi1, θi2|H2) = P (θi1|H2) × P (θi2|H2) = Beta(u1, u2) × Beta(u1, u2) . (3.15)

Note that we have assumed the same priors over θi1 and θi2. The likelihood for
the data (D1, D2) given Hypothesis 1 can be written as

P (D1, D2|θi, H1) =

(
N1

ni1

)
θni1
i (1 − θi)

N1−ni1 ×
(
N2

ni2

)
θni2
i (1 − θi)

N2−ni2 .

(3.16)

For Hypothesis 2, the likelihood of the data given H2 depends on the two expres-
sion parameters of the model, θi1, θi2,

P (D1, D2|θi1, θi2, H2) =

(
N1

ni1

)
θni1
i1 (1 − θi1)N1−ni1 ×

(
N2

ni2

)
θni2
i2 (1 − θi2)N2−ni2 .

(3.17)

Thus, the posterior of Hypothesis 1 simplifies, thanks to conjugate prior, to the
following equation,

P (θi|D1, D2, H1) =
P (D1, D2|θi, H1) × P (θi|H1)

P (D1, D2|H1)
=

=

(
N1

ni1

)
θni1
i (1 − θi)

N1−ni1

(
N1

ni1

)∫ 1

0

θni1
i (1 − θi)

N1−ni1dθi

×

(
N2

ni2

)
θni2
i (1 − θi)

N2−ni2

(
N2

ni2

)∫ 1

0

θni2
i (1 − θi)

N2−ni2dθi

×

1

B(u1, u2)
θu1−1
i (1 − θi)

u2−1

1

B(u1, u2)

∫ 1

0

θu1−1
i (1 − θi)

u2−1dθi

=

=
θni1+ni2+u1−1
i (1 − θi)

N1+N2−ni1−ni2+u2−1

B(u1 + ni1 + ni2, u2 + N1 + N2 − ni1 − ni2)
=

= Beta(u1 + ni1 + ni2, u2 + N1 + N2 − ni1 − ni2) .

(3.18)
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Note how the evidence (denominator) simplifies to a Beta function; an identity we
recognise from Equation 3.10 and how the posterior as a whole can be expressed
as a Beta distribution, compare Equation 3.9.

Analogously, for Hypothesis 2 we can formulate and simplify the posterior proba-
bility distribution to

P (θi1, θi2|D1, D2, H2) =
P (D1, D2|θi1, θi2, H2) × P (θi1, θi2|H2)

P (D1, D2|H2)
=

=

(
N1

ni1

)
θni1
i1 (1 − θi1)N1−ni1

(
N1

ni1

)∫ 1

0

θni1
i1 (1 − θi1)N1−ni1dθi1

×

(
N2

ni2

)
θni2
i2 (1 − θi2)N2−ni2

(
N2

ni2

)∫ 1

0

θni2
i2 (1 − θi2)N2−ni2dθi2

×

1

B(u1, u2)
θu1−1
i1 (1 − θi1)u2−1

1

B(u1, u2)

∫ 1

0

θu1−1
i1 (1 − θi1)u2−1dθi1

×

1

B(u1, u2)
θu1−1
i2 (1 − θi2)u2−1

1

B(u1, u2)

∫ 1

0

θu1−1
i2 (1 − θi2)u2−1dθi2

=

= Beta(u1 + ni1, u2 + N1 − ni1) ×

Beta(u1 + ni2, u2 + N2 − ni2) .

(3.19)

The Bayes factor (BF) is a ratio of the statistical evidences P (D|H1) and P (D|H2)
supporting the two hypotheses. We already found the evidences for both of our
hypotheses in differential gene expression analysis in the denominator of their pos-
teriors.
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BF21 =
P (D1, D2|H2)

P (D1, D2|H1)
=

=

(
N1

ni1

)
1

B(u1, u2)
B(u1 + ni1, u2 + N1 − ni1)

B(u1 + ni1 + ni2, u2 + N1 + N2 − ni1 − ni2)
×

(
N2

ni2

)
1

B(u1, u2)
B(u1 + ni2, u2 + N2 − ni2)

(
N1

ni1

) (
N2

ni2

)
1

B(u1, u2)

=

=
B(u1 + ni1, u2 + N1 − ni1) × B(u1 + ni2, u2 + N2 − ni2)

B(u1, u2) × B(u1 + ni1 + ni2, u2 + N1 + N2 − ni1 − ni2)

(3.20)

Where all except one pre-factor, B(u1, u2), cancel. For a flat prior, B(u1, u2) = 1.

As is common practice in differential gene expression analysis, we proceed to cal-
culate an inferred log2 fold change,

inferred log2 fold change = log2

{ ( u1 + n2

u2 + N2 − n2

)
/
( u1 + n1

u2 + N1 − n1

) }
. (3.21)

In our framework, under the assumption the replicates rj for conditions j are con-
sistent with each other, all Njr of all replicates can be summed to Nj for each
condition j and all nijr to nij to calculate BF and inferred log2 fold change for
each gene i.

3.2.3 Ranking genes according to statistical evidence for ex-
pression change

Bayes factors are a measure of confidence in one hypothesis over another after see-
ing the data and assuming that both hypotheses were equally probable a priori: for
each gene the data are consistent with one expression probability (H1) vs. the data
support there being two underlying expression probabilities (H2), i.e. a change in
gene expression has occurred. We log10 transform the Bayes factors. A log Bayes
factor of 0 means there is an equal probability for both hypotheses, whereas a
logBF21 > 0 favours Hypothesis 2 (change in gene expression) and logBF21 < 0
favours Hypothesis 1 (no change in gene expression), see Figure 3.1. Assigning
each gene a log10 Bayes factor, logBF21, enables ranking them according to the
evidence supporting gene expression change given the RNA-Seq data.

Should a simple ‘change’ or ‘no change’ outcome be preferred, Bayes factors can be
used as criteria for a binary classification of DEGs. Following published literature
[5], [7], we choose a cut-off of logBF21 > 1 → differentially expressed gene (DEG).
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Furthermore, Bayes factors reflect the number of mapping reads between the RNA-
Seq samples, see Figure 3.2: A high Bayes factor means high confidence in a change
in gene expression and high relative numbers of change. This means, if a gene has
a lot of reads mapping to it that support a change relative to the same gene under
different conditions, then the magnitude of the Bayes factors will reflect this. This
is something to keep in mind, as we are comparing evidences to get a measure for
confidence and confidence will rise as we have more points of measurement (number
of reads).

3.2.4 Ranking genes according to their variability across repli-
cates

In our framework, under the assumption the replicates r are consistent with each
other, all Njr of all replicates can be summed to Nj for each condition j and all
nijr to nij to carry out the analysis proposed above. For monitoring the variability
in the data, we extended the Bayesian framework to quantify the consistency of a
gene’s expression across replicates. Again, we calculate a Bayes factor, this time
to rank by variability.

Using the same equations as derived above, we can ask whether two replicates
have consistent expression for each gene. This framework can be extended to ask
whether any number of replicates, k, have consistent expression.

We define two hypotheses. Hypothesis H1 states that the data from all replicates
can be explained by statistical model with only one expression probability for each
gene,

qi ⇝ D1 . . . , qi ⇝ Dk, (3.22)

i.e the data are consistent with the biological and technical variance that might be
expected between replicates. Hypothesis H2 states the data are best explained
by a separate expression probability for each replicate,

qi1 ⇝ D1, qi2 ⇝ D2, . . . , qik ⇝ Dk. (3.23)

In principle, the number of models need not be equal to the number of replicates,
and any number greater than 1 and less or equal to k could be explored, i.e. we
would be asking whether various subsets of replicates are consistent. Due to the
combinatorics for large numbers of replicates (see below), we limit ourselves here to
the extreme case of every replicate being different. If the replicates are consistent,
we can simply sum all the nir for replicate r for each gene i, and likewise for the
Nr with the above framework.

For each gene we calculate a Bayes factor, describing how much the RNA-Seq data
supports Hypothesis 2 over Hypothesis 1, i.e. how consistent the expression is be-
tween replicates. We use this Bayes factor for identifying genes that vary strongly
between replicates.

For Hypothesis 1 the evidence is given by
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P (D1, D2, . . . , Dk|H1) =
B(ni + u1, N − ni + u2)

B(u1, u2)
×

k∏

r=1

(
Nr

nir

)
, (3.24)

with N =
∑

Nr and ni =
∑

nir for all replicates r. The evidence for Hypothesis
2 is given by

P (D1, D2, . . . , Dk|H2) =
1

Bk(u1, u2)

k∏

r=1

(
Nr

nir

)
B(nir + u1, Nr − nir + u2), (3.25)

with N =
∑

Nr and ni =
∑

nir. By computing the ratio of the evidence for
Hypothesis 2 over Hypothesis 1, we have a general way of testing k models over 1
model,

BFk1 =
P (D1, D2, . . . , Dk|H2)

P (D1, D2, . . . , Dk|H1)
=

=

1

Bk(u1, u2)

k∏

j=1

(
Nj

nij

)
B(nij + u1, Nj − nij + u2)

B(ni + u1, N − ni + u2)

B(u1, u2)
×

k∏

j=1

(
Nj

nij

) =

=

k∏

j=1

B(nij + u1, Nj − nij + u2)

Bk−1(u1, u2) ×B(ni + u1, N − ni + u2)
.

(3.26)

3.2.5 The more data, the stronger the evidence

Before we started using the framework on biological data, we investigated the gen-
eral behavior of Bayes factors and inferred log2 fold change and their relationships
for different total read depths and number of reads mapping to single genes, see
Figure 3.2. Furthermore, we have investigated what happens if the total read depth
between conditions or treatments varies, see Figures 3.3 and 3.4. As expected, the
more data, the stronger the evidence, and the more pronounced the Bayes factors.
Note that due to the chosen statistical approaches and normalisation steps other
software packages cannot account for effects of differing total read depths.

3.2.6 Bayesian differential gene expression inference results
are in agreement with other methods

Many tools are available for differential gene expression analysis [22]–[27]. Cur-
rently, DESeq2 [19], [20] and edgeR [21], [22] are two of the most popular software
packages for differential gene expression analysis. Therefore, we compared the per-
formance and results using Bayes factors for differential gene expression with these
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Figure 3.2: Bayes factors and absolute inferred fold change values rise with more data
(increased number of reads in RNA-Seq experiments). Bayes factors and inferred log2

fold change have been calculated following the equations for Bayes factors described
above in the Results. The total number of reads in both in silico experiments is set
to 8 ∗ 106 ∗ 12. This number follows the average read depth in the RNA-Seq study
of Schurch et al. [35] and their recommended number of 12 biological replicates. In
colors, we see the functions depending on the difference between n1 and n2 the number
of reads mapping to a gene in two different conditions, (∆ n = n1−n2). We document
what happens if the total read depth between conditions or treatments varies in Figures
3.3 and 3.4.

Figure 3.3: Differences in overall read depths between experiments (while n1, n2 stay
in similar magnitudes), distort the symmetry. Again, we can see how Bayes factors
and absolute inferred fold change values rise with more data (increased number of
reads in RNA-Seq experiments). Bayes factors and inferred log2 fold change have been
calculated following the equations in the Method section (derivation in Section 3.2.2).
Here, one experiment has double total number of reads compared to the other, n1, n2

keep the same magnitudes. The total number of reads in the in silico experiments is set
and we see variation in the read depths per genes. In colours we plotted the functions
dependent on the difference between n1 and n2, ∆n = n1 − n2, the number of reads
mapping to a gene in the two different conditions.

two packages.

We conducted differential gene expression analysis on a yeast data set collected by
Schurch et al. which has been designed for comparative differential gene expression
analysis studies [35]. We took the set of 42 wild-type (WT) and 44 mutant repli-
cates, and performed analyses using DESeq2, edgeR, and our analytical Bayesian
framework, here referred to as bayexpress. The overlaps of the identified genes
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Figure 3.4: Differences in overall read depths in combination with n1, n2 rising in
proportion, distort the symmetry accordingly. Once more we see how Bayes factors
and absolute inferred fold change values rise with more data (increased number of
reads in RNA-Seq experiments). Bayes factors and inferred log2 fold change have
been calculated following the equations in the Method section (derivation in Section
3.2.2). Here, one experiment has double total number of reads compared to the other,
in contrast to Figure 3.3, here n1, n2 are in relation to the raised read depth in one
experiment. The total number of reads in the in silico experiments is set and we see
variation in the read depths per genes. In colours we plotted the functions dependent
on the difference between n1 and n2, the number of reads mapping to a gene in the
two different conditions.

based on different labelling criteria are shown in Figure 3.5. Overall, the agree-
ment between the three methods is high, especially DESeq2 and edgeR seem to
agree.

3.2.7 Differences in results arise from fold change cut-offs
and pre-filtering

Whilst the agreement between DESeq2, edgeR and bayexpress overall is good, there
are discrepancies – especially for our Bayesian framework bayexpress. We explored
the disagreements and found that they arise because of differences in log2 fold
change values between packages, or because of pre-filtering data (edgeR was set to
filter genes with 0 values in any of the replicates), Figure 3.6. In Figure 3.7 and 3.8
we show a selection of example genes illustrating the differences of the classification
results we found in Figure 3.5 – all of which can be explained by pre-filtering or
small differences in fold change values.

3.2.8 Bayes factors do not require a correction for the length
of genes

In Section 3.2.5 we stated that Bayes factors grow with the evidence given in data
to calculate them. The more reads map to a gene, for example, the stronger the
evidence we can find to support the hypotheses. Therefore, we investigated the re-
lationships between gene lengths, q-values and Bayes factors, because longer genes
have a higher probability for reads to map to them. We found, however, that in
practice the analysis is not sensitive to gene lengths and no further normalisation
is required, Figure 3.9. We document an extreme example of what happens if the
total read depth between conditions or treatments varies and how this is not an
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Overlaps bayexpress edgeR DESeq2 All 3

bayexpress 995

edgeR 49 4

DESeq2 142 637 181

All 3 4251

Overlaps bayexpress edgeR DESeq2 All 3

bayexpress 138

edgeR 1 0

DESeq2 52 98 50

All 3 342

Overlaps bayexpress edgeR DESeq2 All 3

bayexpress 15

edgeR 0 4

DESeq2 8 26 0

All 3 82

| FC | > 0 | FC | > 1 | FC | > 2

(a) (b) (c)

Figure 3.5: Currently popular statistical tools DESeq2, edgeR and our new Bayesian
framework bayexpress show decent overlaps in the identification of DEGs between WT
and a Snf2-mutant in yeast. Especially DESeq2 and edgeR show very similar results.
At the top we are showing Venn-diagrams of classified DEGs, at the bottom the same
data in table format. The three diagrams show three different sets of criteria for DEG:
(a) Significant change (p-value < 0.05, or Bayes factor > 1) and | log2 fold change
| > 0, (b) Significant change (p-value < 0.05, or Bayes factor > 1) and | log2 fold
change | > 1, (c) Significant change (p-value < 0.05, or Bayes factor > 1) and | log2

fold change | > 2. In total there are 7126 yeast genes, the experiment had 42 WT
replicates, and 44 Snf2-mutant replicates. More information on the data can be found
in the original publication [35], the code to run the analysis can be found on Github.

issue for the framework in Figures 3.3 and 3.4.

3.3 Conclusions

3.3.1 A Bayesian framework to rank genes based on the ev-
idence for a change in gene expression between exper-
iments

Our proposed Bayesian framework offers an exact solution for the two-sample-test
problem in differential gene expression analysis on RNA-Seq data. It has been
tested on both simulated (Figure 3.2) and real RNA-Seq data and compared to
existing packages (Figure 3.5). A single equation can provide a rank for genes
based on the statistical support for change in gene expression. Our model uses the
binomial distribution, which is, with no further knowledge, an optimal (maximum
entropy, least-biased) probability assignment [5] and delivers sensible results for
both simulated and real data, as well as comparisons to popular published meth-
ods. We noticed differences between our inferred fold change and the fold change
values calculated by DESeq2 and edgeR (Figure 3.6) which explained a lot of vari-
ation between classification results of packages. A second cause for differences we
identified is a pre-filtering step excluding zero-read genes which was activated in
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(a) (b) (c)

Figure 3.6: The log2 fold change values of different statistical packages are not calcu-
lated in the exact same way and therefore show differences, resulting in DGE classifica-
tion differences. This is the reason why we distinguish our value from others by calling
it ’inferred’ log2 fold change. Here we are plotting the log2 fold change of DESeq2,
edgeR and the inferred log2 fold change of the Bayesian framework in relation to each
other. The lines show density histograms for the scatter plots. Data: 7126 yeast genes
(42 WT replicates, 44 Snf2-mutant replicates) [35]. (a) Overall, the fold change values
are shifted and do not match perfectly. We checked the genes where DESeq2 and the
Bayesian framework do not agree (off-diagonal) and found that those are genes with
no reads in at least one replicate. These are the genes where the effect of Laplace’s
rule of succession (which results from the choice of uniform prior) is visible. (b) Again,
with the Bayesian framework and edgeR comparison we can see an overall shift, which
leads to classification differences if we choose cutoffs according to fold change. Note
that for positive fold changes the Bayesian framework will identify more genes as DEG,
meanwhile for negative fold changes fewer compared to the other two packages. Fur-
thermore, edgeR had a filter on in our analysis for genes with n1|n2 = 0, hence we do
not see any genes here that do not follow the diagonal line. (c) DESeq2 and edgeR
match nearly perfectly.

edgeR.

Analogous to bulk RNA-Seq data handling, there are numerous articles discussing
single-cell RNA-Seq data [37]–[40]. While our framework is not specifically tai-
lored to single-cell sequencing data, we posit that with appropriate modifications,
it holds potential for adaptation to such data.

Furthermore, despite us not having made use of the prior in this framework yet,
there is huge potential in doing so in the future. Information about the system
(e.g. known expression changes between tissues or organisms) and experimental
design (e.g. batch-effects or alike) may be fed into the analysis.

3.3.2 A Bayesian framework to rank genes according to vari-
ability between replicates

Variability in RNA-Seq experiments has been raised as an issue many times before
[12], [14]–[20], [22], [24], [25], and we are only at the beginning of grasping how
much of it is technical or biological nature [41]–[44]. We propose to use Bayes
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(a) YAL016C-B is one of 138 genes which are
marked as DEGs in bayexpresss but not the
other two packages.

(b) YDL062W is one of 50 genes that are
DEGs according to DESeq2 but not the other
two.

(c) RPR1 is one of 98 genes that are DEGs
according to DESeq2, edgeR but not bayex-
press.

(d) YAL063C-A is one of 52 genes that are
DEGs according to DESeq2, bayexpress but
not edgeR.

Figure 3.7: Disagreements in the classification of DEGs arise because of pre-filtering
and small differences in fold change values, which are one of two defining criteria. Here,
and continued in Figure 3.8 we plot q-values for 7 example genes across all replicates
(42 WT, 44 Snf2-mutant) in a yeast experiment [35]. The WT is seen in purple, and
the Snf2-mutant in orange. Note the variability of the y-axis ranges. The fine lines
are density histograms along the y-axis, and the thick lines are estimated means of
q, updated with each new replicate. For each gene we can find a Bayes factor for
differential expression (BF21) and an inferred log2 fold change at the top, both are
calculated taking all 42/44 replicates into account. Bayes factors for consistency of
replicates (BFk1) can be found for each genotype in the boxes. The example genes
have been selected to cover all sets in the Venn-diagram in Figure 3.5 (b). Continued
in Figure 3.8.
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(a) YGR161W-C is the only gene that is a
DEG according to edgeR, bayexpress but not
DESeq2.

(b) YAL061W is one of 342 genes that are
DEGs according to all 3 packages.

(c) Finally, 15S rRNA is one of 6445 genes
that none of the packages have identified as
DEG.

Package bayexpress edgeR DESeq2

iFC BF_21 FC p-value FC p-value

YAL016C-B 1.060 126.045 0.782 1.090e-13 0.775 1.267e-18

YCR108C 1.514 -4.288 NaN NaN 1.142 1.242e-02

RPR1 -0.974 102.506 -1.275 1.489e-12 -1.301 4.319e-17

YAL063C-A 1.355 17.517 NaN NaN 1.097 2.824e-10

YGR161W-C 1.303 2034.172 1.011 1.928e-26 0.998 1.641e-50

YAL061W -1.939 9735.107 -2.224 4.721e-51 -2.235 1.953e-241

15S_rRNA 0.274 -3.711 NaN NaN -0.137 6.884e-01

(d) DESeq2, bayexpress and edgeR results for
the shown example genes in Figure 3.7 (a)-(d)
and Figure 3.8 (a)-(c).

Figure 3.8: Disagreements in the classification of DEGs arise because of pre-filtering
and small differences in fold change values, which are one of two defining criteria. Here,
as a continuation of Figure 3.7, we are plotting q-values for 7 example genes across
all replicates (42 WT, 44 Snf2-mutant) in a yeast experiment [35]. The WT is seen
in purple, and the Snf2-mutant in orange. Note the variability of the y-axis ranges.
The fine lines are density histograms along the y-axis, and the thick lines are estimated
means of q, updated with each new replicate. For each gene we can find a Bayes factor
for differential expression (BF21) and an inferred log2 fold change at the top, both
are calculated taking all 42/44 replicates into account. Bayes factors for consistency
of replicates (BFk1) can be found for each genotype in the boxes. The example genes
have been selected to cover all sets in the Venn-diagram in Figure 3.5 (b).
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Figure 3.9: Bayes factors do not require gene length corrections. We cannot see
a correlation between transcript lengths and q-values of genes (log-scale, across all
replicates in the Yeast data set [35]) and neither can we see a correlation between
transcript lengths and Bayes factors of genes (log-scale, across all replicates). Shown
are 5219 of the 7126 yeast genes, data and code to make these plots are available on
Github. We conclude that Bayes factors are not gene length dependent and that no
additional normalisation is necessary.

factors as a metric for the consistency of replicates to rank genes according to their
variability to monitor this issue in the interpretation of the DGE results. Of course,
the quality of this ranking is dependent on available information about the consis-
tency of a gene, i.e. the number of replicates. Moreover, we speculate that this part
of the framework can be extended to identify DEGs in multiple comparison studies.

3.3.3 An Analytical Bayesian Framework in DGE speeds up
the data analysis

Although other packages use Bayesian approaches [24], [25], [45], [46], the exact
framework and model we are using here, which has been generally described by
[47], is novel in differential gene expression analysis.

Whilst this may not be a decisive factor for many applications, analytical frame-
works can drastically speed up data analysis. For a single run on 42/44 replicates
in yeast we can already see the differences: 5s for edgeR, 14s for DESeq2, and 0.1s
for bayexpress. Whenever we want to implement DGE analysis into bigger pro-
cesses, like bootstrapping experiments e.g. [35], the differences start to sum up.
We conducted a bootstrapping experiment which took 333s using edgeR, 1176s us-
ing DESeq2, 6s for bayexpress, which is a good improvement in light of optimising
computational processes.

3.3.4 Ranking by Bayes factors instead of classifying by fold-
change cutoffs provides a new way to communicate
DGE results

One source for differences in the classification of DEGs by different packages is pre-
filtering of data (e.g. excluding genes with 0 reads). A second source is differences
in the calculation of fold change values resulting in different values (Figure 3.6),
big enough to make differences in classification via cutoffs. Both of these issues are
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reflected in the examples in Figure 3.7 and 3.8. Having fold change value cutoffs
as decisive factors gives those values big importance, although there is no reason
to discard genes that have not doubled or quadrupled their expression. By setting
arbitrary fold change cutoffs we are loosing interesting candidates with good sta-
tistical evidence for change. Only before RNA-Seq results were trusted without
qRT-PCR validation, there have been discussions about the accuracy of both tech-
niques below certain magnitudes [48], [49], hence why fold change cutoffs were set.
Biologically speaking we cannot generalize that a certain fold change in expression
is more significant than another. In that sense, these cutoffs are only serving as
false positive filters, as a trade-off for accepting higher false negative hits. For
increasing accuracy and reproducibility in general, however, we may simply need
to increase the number of replicates. Ranking genes by Bayes factors (according to
statistical support) can help to identify follow-up candidates without filtering out
interesting genes due to fold change cutoffs. If Volcano plots [33], [50] are needed,
Bayes factors for differential gene expression can be plotted against inferred log2

fold change values. Ranked list of genes could be compared using rank comparison
algorithms [51], [52].

3.4 Materials and methods

All real data we used and all simulated data we created with all of our scripts to
repeat the study and reproduce all figures can be found on our Github.

3.4.1 How to use Bayes factors for differential gene expres-
sion analysis

All presented equations can be coded in just a few lines of code and can be used
to calculate Bayes factors for differential gene expression (BF21), Bayes factors
for consistency of replicates (BFk1), and inferred log2 fold change values, for all
genes from processed RNA-Seq data (read counts). We provide a Python and R
implementation on our Github.

3.4.2 Yeast data

Our package comparison has been inspired by a yeast study conducted by Schurch
et al. [35], [53] in 2016. They performed RNA-Seq on 42 wild type (WT) and
44 Snf2-mutant replicates and carried out a bootstrapping study to find out how
many biological replicates RNA-Seq studies need and which packages to use for the
analysis. Thanks to their detailed documentation and data availability, we could
base a lot of our work on their data.

We used their fully processed data downloaded from their Github. Originally they
had 48 replicates but only worked with 42/44, as documented in [35], [53], which
we followed.
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What is a differentially
expressed gene?

Transparency Note — This chapter is an extension to Chapter 3. It has largely
profited from discussions about differential gene expression with Gurpinder Singh Sidhu,
Thelonious Omori, Melissa Tomkins and Richard J. Morris. Since the completion of the
first version of this thesis, the content of the chapter has been modified and, in parts,
improved for a bioRxiv pre-print [54]. All code for figures, analyses and simulations for
this chapter can be found on my GitHub.

Summary — In the last chapter we learned about a new Bayesian framework we
developed for ranking genes according to their statistical evidence for gene expression
change in RNA-Seq data using Bayes factors. To compare our method to existing pop-
ular analyses we had to define what exactly a ‘differentially expressed genes’ was, and
started challenging the current definitions. Here we present a series of bootstrapping
experiments on a Yeast data set (1) exploring how different researchers and statistical
packages define ‘differentially expressed genes’, (2) demonstrating which trade-offs ap-
pear with setting arbitrary cutoffs, and (3) building motivation for moving away from
binary classification towards ranking methods. We will learn about the importance of
the number of replicates in a study, how variability can easily be misinterpreted as
differential expression, and in which ways we can or cannot avoid these problems.

4.1 Introduction

4.1.1 The insights promised by RNA-Seq data

In Molecular Biology we strive to understand the global orchestration of cellular
processes. Identifying all components and their concentrations in cells and tissues
over time, development, environmental stimuli and treatments is a very compelling
vision. It is therefore not surprising that techniques in this field are in high de-
mand and, hence, rapidly evolving. RNA-Sequencing is the best snapshot of all
RNA in a tissue sample (bulk RNA-Seq) or isolated cell (single-cell RNA-Seq) we
can get at the moment. Numerous advances are published and reviewed regularly,
helping researchers to navigate the best-practice jungle, documenting strengths
and weaknesses of the techniques [14]–[16], [18], [28]–[34]. As these methodologies
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are high-throughput, it becomes increasingly difficult to validate their effectiveness
and reliability in real-world applications. This situation highlights a critical gap
in the field, where the innovation potential must be matched by rigorous testing
and validation processes to ensure that the results obtained are both accurate and
meaningful. The ongoing evolution of these techniques presents an exciting oppor-
tunity for researchers, but it also necessitates a careful approach to ensure that
the tools we develop can be trusted. As we strive to enhance our understanding
of cellular dynamics, it is essential to establish robust frameworks for assessing the
accuracy of these new methods, thereby ensuring that technological advancement
and scientific rigor develop hand in hand. At the moment, e.g. we cannot tell
biological (changes in gene expression or RNA accessibility) and technical fluctua-
tions (everything under the term ‘sequencing error’, and bioinformatic limitations)
apart, and both of them have probabilistic behaviours and components. Even if
we try to validate RNA-Seq, there are challenges: The accuracy of qRT-PCRs or
similar methods is under investigation itself [55], [56] and we don’t know if we are
able to sequence all RNA or only an accessible fraction.

4.1.2 The reliability of DGE identification using RNA-Seq
is under discussion

Motivated by studies reporting reproducibility challenges in RNA-Seq analysis [12],
[17], [19], [35], we re-examined the statistical assumptions underlying differential
gene expression analysis from a Bayesian statistics perspective. The newly pro-
posed framework in Chapter 3 enables us to rank genes by Bayes factors for dif-
ferential gene expression. Here in Chapter 4 we investigated where reproducibility
issues come from in three RNA-Seq data bootstrapping experiments. The results
teach us about (1) how differences in the results of statistical analyses between
analysis tools arise due to arbitrary cutoffs and the variability of the data; (2) how
easily variable data can produce what we currently define a ‘differentially expressed
gene’, and (3) how we can take the variability of genes into account when inter-
preting DGE results. All of these results support our proposal to rethink binary
classifications in RNA-Seq results, given the limitations of the technique and often
low numbers of repetitions of experiments.

4.2 Results

4.2.1 Bootstrapping experiments underline explanations we
found for disagreements between methods

In the previous chapter we conducted a comparison between methods – following
similar studies by others [12], [17], [19], [35]. We used current statistics packages
to carry out differential expression analysis on a comprehensive yeast data set and
presented and discussed the results (Chapter 3). Comparing our Bayesian frame-
work, Bayes factors for differential expression, DESeq2 [19], [20], and edgeR [21],
[22], we found substantial overlaps in the results but also disagreements, which we
would like to discuss further, after gaining new insights thanks to the following
bootstrapping study.

Here, we aim to illustrate instances of genes uncovered during our exploration of the
method comparison, where statistical software packages to identify DEGs did not
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agree. Some of these instances have prompted a reevaluation of our understanding
of what truly constitutes a DEG. We are using the yeast data we introduced in
Chapter 3, an RNA-Seq experiment with 42 wild type and 44 mutant replicates
collected by Schurch et al. [35].

We present a series of plots for single genes. First, we look at normalised read
counts (q = (n + 1)/(N + 2) with n reads mapping to the gene of interest and N
total reads in the experiment) of 42/44 replicates of the yeast study (wild-type vs.
mutant), plot at the top. Second, the plots below, are the results of a bootstrap-
ping experiment comparing three statistical methods: Bayes factors for differential
expression (see Chapter 3), DESeq2 [19], [20], and edgeR [21], [22]).

We conducted a bootstrapping experiment to evaluate whether the identification
of DEGs depended on the number of replicates. The results for this are presented
under the q-value plots. We generated 100 data sets by sampling 3, 6, 12, or 20
replicates from the pool of 42/44 replicates and performed differential gene expres-
sion analysis using the different methods on those 100 data sets. The numbers
(and colors) are the counts out of 100, how often the gene was labelled as DEG.
We applied four different criteria: (1) Bayes factor > 1 and inferred | log2 fold
change | > 1; (2) edgeR: p-value < 0.05 and | log2 fold change | > 1; (3) DESeq2 :
p-value < 0.05 and | log2 fold change | > 1; (4) Bayes factor > 1 and no inferred
log2 fold change cutoff.

The first set of examples (Figure 4.1: ‘YAL016C-B’, ‘YAL031W-A’, ‘YAR035W’,
‘YAR068W’) has been taken of a pool of genes that were identified as DEG by
Bayes factors (compare criteria (1) and (4)), but not the other two packages, see
Figure 3.5 (b) in Chapter 3. These genes are not highly expressed but show clear
expression changes between WT and mutant, still, they are not reliably identified
by edgeR (2) and DESeq2 (3), even if 20 replicates are given. The reason for them
not being picked up is due to their only slight variations in fold change values. We
can also see that for the Bayesian framework to identify some of them requires a
high number of replicates.

The second set of examples (Figure 4.2: ‘YGL228W’, ‘YBR078W’, ‘YIL094C’, ‘YGL253W’)
has been chosen to continue asking questions about fold change cutoffs. None of
these genes show up as DEG, even though some of them show noticeable changes.
Furthermore, YIL094C is a beautiful example to talk about the group of genes
that are identified as DEG by DESeq2 and edgeR but not the Bayesian framework:
The reason is a (seemingly almost preposterous) difference in how exactly log2 fold
change values are calculated. We compared the 3 fold changes and found that our
inferred value is consistently slightly lower, see Appendix Chapter 3. In summary,
while certain genes may not be desired as DEGs due to their lack of biological
significance or the influence of confounding factors, it is equally important to be
aware of the potential for overlooking significant genes in our analyses. For some
of these example genes here we were wondering why we would not want them to
show up as DEGs and how many DEGs we have overlooked in analyses so far.

The third set of genes (Figure 4.3: ‘YGR192C’, ‘YOR383C’, ‘YHR174W’, ‘YDR077W’)
shows some of the highest Bayes factors in the analysis across all replicates, show-
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ing clear separations between WT and mutant. Note, that the Bayes factors grow
to astronomical numbers when summing up the evidence over 42/44 replicates, in
line with increasing amounts of data supporting a consistent inference. Still, some
of these genes are not reliably picked up when fold change cutoffs are introduced.
Whether a smaller fold-change is biologically less relevant remains to be explored –
currently there seems no apparent reason to think that. There are discussions that
some genes may show changes in expression that are statistically significant but
biologically irrelevant. For instance, small changes in genes that are consistently
highly expressed in all conditions might not contribute meaningfully to the biolog-
ical processes under investigation. Therefore, some people conclude that including
such genes as DEGs could lead to misleading interpretations of the underlying bi-
ology. Excluding a lot of genes, however, is actively ignoring information. From
our point of view, this might make us blind to identifying potential mechanisms of
importance. Another line of argument might be to relate concentration changes to
binding constants for a specific binding event. If a small fold change is sufficient
to take a concentration from below the binding constant to above the binding con-
stant then a gene will have an impact, even though the changes are slow.

The fourth set of examples (Figure 4.4: ‘YNL232W’, ‘YLR329W’, ‘YDR291W’,
‘YPR164W’) is a negative control showing that analyses also successfully identify
genes where the change is not extreme enough. On average over 42/44 replicates
we can see distinct tendencies of the genes in WT and mutant, hence why they
obtained a positive Bayes factor. However, the changes are not big enough to cross
fold change thresholds and also for a lower number of replicates Bayes factors would
often not support any expression change.

The fifth set of examples (Figure 4.5: ‘snR32’, ‘YPL032C’, ‘YNL034W’, ‘YPL030W’)
presents genes with negative Bayes factors (taking all replicates into account).
Note, that in one of them the average lines are separated but we do not get a
positive Bayes factor because there are not many reads mapping (see y-axis scale).

To summarise the findings of our statistical software package comparison, we see
both beautiful agreements and concerning differences. Most disagreements can be
explained by arbitrary cutoffs, which support our previous suggestion to renounce
binary classifications and introduce ranking-based methods in the future (Chapter
3). Bayes factors enable this ranking and can also replace log2 fold change rankings,
for which we have no judicious biological backup regardless. We can clearly see
how with a higher number of replicates, we get better-defined data and, therefore,
better accuracy of the analysis.

4.2.2 RNA-Sequencing delivers a lot of numbers, but do we
need more?

Despite these challenges in classification, RNA-Seq is a huge success, because it
delivers numbers – lots of them. The quality of those numbers is dependent on many
factors: the experimental setup and technique, of course, but also earlier research
like the quality of genome assemblies, and the number of biological replicates.
Unfortunately, the latter is a good practice that is still often not implemented, even
though it is a way to increase the resolution of RNA-Seq. In the following section
we want to demonstrate how easily we can get significant results from variability in
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Figure 4.1: Example genes in yeast that move between DEG and no DEG classification
depending on arbitrary cutoffs. The four examples presented tend to be identified by
Bayes factors (if sufficient replicates are given) but not edgeR and DESeq2. The plots
at the top show inferred q-values (normalised read counts, q = (n + 1)/(N + 2) with
n reads mapping to the gene of interest and N total reads in the experiment) for one
gene per plot across 42/44 RNA-Seq replicates [35]. The WT is seen in purple, and
the Snf2-mutant in yellow. Note the variability of the y-axis ranges. The fine lines
are density histograms along the y-axis, and the thick lines are estimated means of q,
updated with each replicate. For each gene we can find a Bayes factor and inferred
log2 fold change at the top, those are calculated taking all replicates into account. The
numbers at the bottom of each plot are the results of the bootstrapping experiments:
The number of times (x/100) the gene has been identified as DEG, for data sets with
3, 6, 12 and 20 replicates ((1) Bayes factor > 1, and | log2 fold change | > 1; (2)
edgeR: p-value < 0.05 and | log2 fold change | > 1; (3) DESeq2 : p-value < 0.05 and
| log2 fold change | > 1; (4) Bayes factor > 1, no log2 fold change cutoff). edgeR had
a filter for 0 read genes on, which is causing some differences. Bayes factors in boxes
are Bayes factors for testing the consistency of the number of mapping reads across
replicates (see Chapter 3). If the gene is marked* it is part of the list of highly variable
genes identified in another bootstrapping experiment, see Figure 4.6.
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Figure 4.2: Example genes that move between classes depending on arbitrary log2

fold change cutoffs. Note, that the inferred fold-change in the Bayesian framework is
consistently lower than the fold-change calculated by DESeq2 and edgeR. The plots
at top show inferred q-values (normalised read counts, q = (n + 1)/(N + 2) with n
reads mapping to the gene of interest and N total reads in the experiment) for one
gene per plot across 42/44 RNA-Seq replicates [35]. The WT is shown in purple,
the Snf2-mutant in yellow. Note the variability of the y-axis ranges. The fine lines
are density histograms along the y-axis, and the thick lines are estimated means of q,
updated with each replicate. For each gene a Bayes factor (BF21) and inferred log2

fold change is given at the top of the plot, those are calculated taking all replicates into
account. The numbers at the bottom of each plot are the results of the bootstrapping
experiments: The number of times (x/100) the gene has been identified as DEG, for
data sets with 3, 6, 12 and 20 replicates ((1) BF21 > 1, and | log2 fold change | > 1;
(2) edgeR: p-value < 0.05 and | log2 fold change | > 1; (3) DESeq2 : p-value < 0.05
and | log2 fold change | > 1; (4) BF21 > 1, no log2 fold change cutoff). edgeR had a
filter for 0 read genes on, which is causing some differences. Bayes factors in boxes are
Bayes factors BFk1 for testing the consistency of the number of mapping reads across
replicates (Chapter 3). If the gene is marked* it is part of the list of highly variable
genes identified in another bootstrapping experiment, see Figure 4.6.
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Figure 4.3: Example genes with some of the highest Bayes factors in the analysis across
all replicates are not always identified as DEGs. The plots at the top show inferred
q-values (normalised read counts, q = (n + 1)/(N + 2) with n reads mapping to the
gene of interest and N total reads in the experiment) for one gene per plot across
42/44 RNA-Seq replicates [35]. The WT is seen in purple, the Snf2-mutant in orange.
Note the variability of the y-axis ranges. The fine lines are density histograms along
the y-axis, and the thick lines are estimated means of q, updated with each replicate.
For each gene a Bayes factor (BF21) and inferred log2 fold change is given at the top
of the plot, those are calculated taking all replicates into account. The numbers at the
bottom of each plot are the results of the bootstrapping experiments: The number of
times (x/100) the gene has been identified as DEG, for data sets with 3, 6, 12 and 20
replicates ((1) BF21 > 1, and | log2 fold change | > 1; (2) edgeR: p-value < 0.05
and | log2 fold change | > 1; (3) DESeq2 : p-value < 0.05 and | log2 fold change | >
1; (4) BF21 > 1, no log2 fold change cutoff). edgeR had a filter for 0 read genes on,
which is causing some differences. Bayes factors in boxes are Bayes factors BFk1 for
testing the consistency of the number of mapping reads across replicates (Chapter 3).
If the gene is marked* it is part of the list of highly variable genes identified in another
bootstrapping experiment, see Figure 4.6.
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Figure 4.4: Different analyses do agree in the identification of no change, or change
that can only be identified with a high number of replicates. The plots at the top show
inferred q-values (normalised read counts, q = (n+1)/(N+2) with n reads mapping to
the gene of interest and N total reads in the experiment) for one gene per plot across
42/44 RNA-Seq replicates [35]. The WT is seen in purple, the Snf2-mutant in orange.
Note the variability of the y-axis ranges. The fine lines are density histograms along
the y-axis, and the thick lines are estimated means of q, updated with each replicate.
For each gene a Bayes factor (BF21) and inferred log2 fold change is given at the top
of the plot, those are calculated taking all replicates into account. The numbers at the
bottom of each plot are the results of the bootstrapping experiments: The number of
times (x/100) the gene has been identified as DEG, for data sets with 3, 6, 12 and 20
replicates ((1) BF21 > 1, and | log2 fold change | > 1; (2) edgeR: p-value < 0.05
and | log2 fold change | > 1; (3) DESeq2 : p-value < 0.05 and | log2 fold change | >
1; (4) BF21 > 1, no log2 fold change cutoff). edgeR had a filter for 0 read genes on,
which is causing some differences. Bayes factors in boxes are Bayes factors BFk1 for
testing the consistency of the number of mapping reads across replicates (Chapter 3).
If the gene is marked* it is part of the list of highly variable genes identified in another
bootstrapping experiment in Section 4.2.4, or Figure 4.6.
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Figure 4.5: A set of genes resulting in negative Bayes factors, if all replicates are taken
into account. Here we are looking at 4 example genes with negative Bayes factors,
in other words, no statistical support for gene expression change (taking all replicates
into account). The plots at the top show inferred q-values (normalised read counts,
q = (n+1)/(N +2) with n reads mapping to the gene of interest and N total reads in
the experiment) for one gene per plot across 42/44 RNA-Seq replicates [35]. The WT
is seen in purple, the Snf2-mutant in orange. Note the variability of the y-axis ranges.
The fine lines are density histograms along the y-axis, and the thick lines are estimated
means of q, updated with each replicate. For each gene a Bayes factor (BF21) and
inferred log2 fold change is given at the top of the plot, those are calculated taking all
replicates into account. The numbers at the bottom of each plot are the results of the
bootstrapping experiments: The number of times (x/100) the gene has been identified
as DEG, for data sets with 3, 6, 12 and 20 replicates ((1) BF21 > 1, and | log2 fold
change | > 1; (2) edgeR: p-value < 0.05 and | log2 fold change | > 1; (3) DESeq2 :
p-value < 0.05 and | log2 fold change | > 1; (4) BF21 > 1, no log2 fold change cutoff).
edgeR had a filter for 0 read genes on, which is causing some differences. Bayes factors
in boxes are Bayes factors BFk1 for testing the consistency of the number of mapping
reads across replicates (Chapter 3). If the gene is marked* it is part of the list of
highly variable genes identified in another bootstrapping experiment in Section 4.2.4,
or Figure 4.6.
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Figure 4.6: Bayes factors cannot inform about high variability and inconsistency of
genes but can still reflect expression changes for those potentially problematic cases.
The plots at the top show inferred q-values (normalised read counts, q = (n+1)/(N+2)
with n reads mapping to the gene of interest and N total reads in the experiment) for
one gene per plot across 42/44 RNA-Seq replicates [35]. The WT is seen in purple,
the Snf2-mutant in orange. Note the variability of the y-axis ranges. The fine lines
are density histograms along the y-axis, and the thick lines are estimated means of q,
updated with each replicate. For each gene a Bayes factor (BF21) and inferred log2

fold change is given at the top of the plot, those are calculated taking all replicates into
account. The numbers at the bottom of each plot are the results of the bootstrapping
experiments: The number of times (x/100) the gene has been identified as DEG, for
data sets with 3, 6, 12 and 20 replicates ((1) BF21 > 1, and | log2 fold change | >
1; (2) edgeR: p-value < 0.05 and | log2 fold change | > 1; (3) DESeq2 : p-value <
0.05 and | log2 fold change | > 1; (4) BF21 > 1, no log2 fold change cutoff). edgeR
had a filter for 0 read genes on, which is causing some differences. Bayes factors in
boxes are Bayes factors BFk1 for testing the consistency of the number of mapping
reads across replicates (Chapter 3). Starting top left, ’LSR1’ shows beautifully how
this gene would often be wrongly identified as differentially expressed, by chance, due
to its high variability. ’YLL039C’ seems to be expressed in a bimodal fashion in WT,
switching to one state in Snf2, and also ’YJL098W’ and ’YLL026W’ show interesting
bimodal patterns. Just like before, all of those are examples of interesting genes we
miss out on when applying fold change cutoffs.
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data, especially with low repetition numbers. Is a ‘statistically significant’ result,
a result we can communicate without uncertainty?

4.2.3 How easily can variable data masquerade as differen-
tial expression?

In this experiment, we sought to illustrate the potential impact of variable data on
the identification of DEGs. To emphasize this point, we sampled an additional set
of 100 bootstrapped data sets with 3 and 10 replicates exclusively using wild-type
data. We calculated Bayes factors for differential expression (BF21) for all genes
in the data set, and found many ‘significantly differentially expressed’ genes. The
objective was to highlight the challenge arising with data variability and the ease
at which a variable gene, of which there are many (more on that in the third experi-
ment), can be misidentified as a DEG. Our analysis revealed that while most DEGs
exhibited expected moderate log2 fold change values, a surprising number of genes,
particularly in data sets with only 3 replicates, displayed noteworthy deviations,
see Figure 4.7. In Figures 4.8, 4.9 and 4.10 we show how these numbers change for
higher Bayes factor cutoffs and demonstrate that we can find strong evidence for
‘differential expression’, especially in experiments with only 3 replicates.

This insightful experiment mirrors the concept of using Bayes factors to quantify
the variability of genes, as previously described (Chapter 3). Calculating this fac-
tor for each gene can caution researchers about genes with inconsistent replicates.
However, the metric is dependent on the resolution of the data, which can only be
raised by increasing the number of replicates. The exploration underscores once
more the importance of accounting for data variability and exercising prudence in
the interpretation of differential gene expression results, particularly in scenarios
with limited replicates. The findings presented here serve as a compelling reminder
of the complexities inherent to differential gene expression analysis and the need
for robust methodologies to navigate the challenges posed by variable data.

4.2.4 Identification of consistently inconsistent genes

It is evident from the last two sections that there are genes with high variability in
the data set. The issue has been raised many times before [12], [14]–[20], [22], [24],
[25], and we are only at the beginning of grasping how much of it is of technical or
biological nature [41]–[44]. In this experiment, we wanted to find how many genes
with inconsistent expression there are in the data set. Previously, we defined how to
calculate Bayes factors to test the consistency of replicates and rank genes accord-
ing to their variability between replicates (Chapter 3). In order to identify highly
variable genes in the yeast data set [35] we calculated Bayes factors for consistency.
However, we also went further and identified consistently inconsistent genes. We
carried out a third bootstrapping experiment, where we shuffled a pool of 42/44
replicates 100 times (see 100 colourful lines in Figure 4.11) and counted how many
genes of the 7126 genes in yeast are identified as inconsistent using Bayes factors
as previously defined (Chapter 3), while increasing the number of replicates. We
can learn from this experiment that it takes quite a few more than 12 replicates for
our results to converge. By chance, the luxurious situation of around 40 replicates
is enough to conclude there are around 1600 consistently inconsistent genes in the
WT and around 900 in the Snf2-mutant. Taking all replicates into account we find
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Figure 4.7: A control experiment (wild type vs. wild type comparison) demonstrating
how variability in data is leading to false identification of differentially expressed genes.
The number of putative DEGs (y-axis) identified in 100 bootstrapped data sets (x-
axis), given 3 different criteria (purple, green and red). The total number of genes is
7126, 44 WT replicates (wild type only) of a yeast study have been used to sample the
individual data sets (Data: [35]). On the left the number of replicates in each sampled
data set is 3, on the right hand side it is 10. The first row is using a Bayes factor
cutoff of 1, the second row uses a Bayes factor cutoff of 10 and the third row uses a
Bayes factor cutoff of 100. We only show counts up to 500 here, for full data visit our
Github.
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Figure 4.8: A control experiment comparing wild type vs. wild type in a differen-
tial gene expression analysis demonstrating how variability in data leads to false pos-
itive identification of differentially expressed genes. The number of putative DEGs
(y-axis) identified over 100 bootstrapping iterations (x-axis), given 3 different criteria
(in colours). The total number of genes is 7126, 44 WT replicates (wild type only)
of a yeast study have been used to sample the individual data sets (Data: [35]). On
the left the number of replicates in each sample is 3, on the right hand side it is 10.
Top: all data points, bottom: zoom into top plot. For this Figure we used a Bayes
factor cutoff of 1, in Figure 4.9 we increase the cutoff to 10, and in 4.10 to 100 to
demonstrate that we can find strong evidence for differentially expressed genes in the
control, with decreasing numbers of putative DEGs for higher numbers of replicates.

an overlap of 1426 and a union of 1633 genes for WT and an overlap of 765 and a
union of 922 in the mutant across 100 bootstrapping iterations. The union numbers
drastically increase, however, when reducing the number of replicates. This is in
line with the results we discovered in Figure 4.7. The genes found in the union list
are marked* in Figure 4.1, 4.2, 4.3, 4.4, 4.5. To highlight this group we discuss ex-
amples of variable genes we identified (’LSR1’, ’YLL039C’, ’YJL098W’, ’YLL026W’)
in Figure 4.6. We did take a look at those examples and realized, how the assump-
tion for the Bayesian framework (all replicates are consistent with each other) is
not met and nevertheless we get sensible results – but only if given 42/44 replicates.

For big numbers of replicates, we can use Bayes factors to evaluate the variability
of replicates, and bootstrapping, as a warning system for genes where we need to
be cautious with interpreting results. This could enable us to communicate vari-
ability in data sets. We considered filtering highly variable genes but decided not
to, when we saw the interesting example genes in Figure 4.6 we would miss.

Based on our observations of the described data, we can proceed with interpreting
differential gene expression analysis on these genes only if enough replicates are
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Figure 4.9: A control experiment comparing wild type vs. wild type in a differential
gene expression analysis demonstrating how variability in data leads to false positive
identification of differentially expressed genes. The number of putative DEGs (y-axis)
identified in 100 bootstrapped data sets (x-axis), given 3 different criteria (purple,
green and red). The total number of genes is 7126, 44 WT replicates (wild type only)
of a yeast study have been used to sample the individual data sets (Data: [35]). On
the left the number of replicates in each sample is 3, on the right hand side it is
10. Top: all data points, bottom: zoom into top plot. For this Figure we used a
Bayes factor cutoff of 10, in Figure 4.8 we set the cutoff to 1, and in 4.10 to 100 to
demonstrate that we can find strong evidence for differentially expressed genes in the
control, with decreasing numbers of putative DEGs for higher numbers of replicates.
For more information and code, visit our Github.

given. We advise exercising caution in interpreting Bayes factors for these genes,
as illustrated by several examples in Figure 4.6. Limited numbers of replicates may
lead to wrong impressions for highly variable genes, see genes we identified in a
bootstrapping experiment in Figure 4.11.

4.3 Discussion

Three different bootstrapping experiments of a Yeast experiment show the limi-
tations of differential gene expression analysis using RNA-Seq. In the first exper-
iment, we compared different statistical methods for differential gene expression
analysis and learned how insufficient numbers of replicates produce false positive
classifications in differential gene expression analysis and how fold change cutoffs
drive potential false negative classifications of DEGs. Of course, these statements
are made in a binary-thinking world, which is at the heart of our criticism. Statis-
tical methods have a decent agreement in their results, increasing consensus comes
with better-defined data (more replicates). In the second experiment, the WT-WT
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Figure 4.10: A control experiment comparing wild type vs. wild type in a differential
gene expression analysis demonstrating how variability in data leads to false positive
identification of differentially expressed genes. The number of putative DEGs (y-axis)
identified in 100 bootstrapped data sets (x-axis), given 3 different criteria (purple, green
and red). The total number of genes is 7126, 44 WT replicates (wild type only) of a
yeast study have been used to sample the individual data sets (Data: [35]). On the left
the number of replicates in each sample is 3, on the right hand side it is 10. Top: all
data points, bottom: zoom into top plot. For this Figure we used a Bayes factor cutoff
of 1, in Figure 4.8 we set the cutoff to 1 and in 4.9 to 10, to demonstrate that we can
find strong evidence for differentially expressed genes in the control, with decreasing
numbers of putative DEGs for higher numbers of replicates. For more information and
code, visit our Github.

control experiment, we have shown how high variability of a gene across replicates
in RNA-Seq, due to biological and technical fluctuations, may lead to false positive
DEGs. In the third experiment, we found that there are around 1600 consistently
inconsistent genes (of 7126) in the WT and around 900 consistently inconsistent
genes in the Snf2-mutant. Especially those genes are likely to produce ‘false pos-
itive DEGs’ if not sufficient replicates are given in studies. Considering the high
number of problematic genes, especially because we are handling a population of
yeast cells in this case, raises questions about the value and insights gained by
large-scale techniques like this.

4.3.1 What can we expect from RNA-Seq?

Of course, there is a huge potential and vision behind transcriptomics. All of
those challenges together result in reproducibility issues, however, which have been
documented many times before. The large data output of RNA-Seq builds up ex-
pectations for deep insights from differential gene expression studies. However, we
do not have information on the resolution of RNA-Seq nor the variability of genes
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Figure 4.11: We identified around 1600 consistently inconsistent genes in the WT
(top) and around 900 consistently inconsistent genes in the Snf2-mutant (bottom).
We calculated Bayes factors for testing the consistency of gene expression (BFk1) for
increasing numbers of replicates (2-42/44) in 20 (left) and 100 (right) bootstrapping
iterations (each one colourful line in the plots). On the y-axis we count the number
of genes that have been identified as inconsistent across replicates. The criterion is
a Bayes factor for consistency, BFk1 > 1. On the x-axis we increase the number of
replicates we take into account. We can see how overall there is a different number of
inconsistent genes in WT and mutant. Fascinatingly, this test also beautifully shows
how in Bayesian statistics the order in which data is added (in form of more replicates)
does not matter, and so when all information (all replicates) are taken into account,
we always reach the same conclusion.

without many repetitions of experiments.

The vision of a fully described cell is a huge motivator. But does RNA-Seq deliver
what it promises to get us closer to this goal? How much information is there for
us in RNA-Seq data and how much knowledge can we deduce from it? (This a
the moment to go back to Figure 1.1 at the start of the thesis.) Indeed, we do
get a lot of numbers that seem very attractive to us in the information age. These
numbers feel like a big insight, despite the lack of information on their resolution.
We need to be careful not to be tricked by our brains to read, interpret and com-
municate them as solid truth. Especially with a scientific culture of publishing
‘positive’ results only we solely expose ourselves to RNA-Seq success stories. How
many RNA-Seq data sets have (for sometimes good reasons) vanished under desks
somewhere? We don’t know.
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Nevertheless, identifying limitations always serves as a guide for improving tech-
niques. As we gain a deeper understanding of cellular processes at the mechanistic
level, we can develop solutions to enhance RNA accessibility for RNA-Seq. Ad-
vances in sequencing techniques, such as the emergence of long-read sequencing,
will address parts of alignment issues and improve genome assemblies. Further-
more, the importance of replication becomes evident as we continue to learn and
refine our experimental and technical tools. In parallel, we have the opportunity to
enhance algorithms in bioinformatics and improve statistical methods by incorpo-
rating the Bayesian statistics toolbox, which offers elegant and efficient solutions.

4.3.2 Where do we go from here?

We do want to give a motivational outlook after these cleanup efforts. How can
we update our RNA-Seq workflows to contribute more knowledge to the puzzle of
life?

1. We can increase the number of replicates to increase the resolution of the
data. Schurch et al. answered the question: ‘How many biological repli-
cates are needed in an RNA-seq experiment and which differential expression
tool should you use?’ in [35] and conclude 6-12 replicates are needed, de-
pendent on the resolution at which we wish to detect differences. Liu et al.
investigated the tactics of raising sequencing depth vs. increasing biological
replication [57]. Gierlinski et al. have developed a method to identify outliers
among replicates [53]. While we acknowledge the trade-off between time and
resources, our findings, as well as previous studies, underscore the substan-
tial decrease in insight gained from an RNA-Seq experiment if an insufficient
number of replicates are employed. This, in turn, increases the likelihood of
drawing erroneous conclusions.

2. We can learn a lot from well-documented RNA-Seq data bases and previ-
ous studies. The big variances we get for genes across replicates have been
discussed and challenged statistical method development since early days of
RNA-Seq [35], [53]. We can learn about the variability of our data and
whether it is of biological (be it individual cells [44], [58], [59] or organisms
[41], [42]) or technical nature [43] from the wealth of existing data. In addition
to that, we can investigate how e.g. pooled samples [60]–[62] vs. individuals
in multicellular and unicellular organisms change the picture.

3. Documenting and publishing the results of any study, no matter the outcome,
will feed the investigations mentioned in the previous point.

4. Updating our statistical frameworks to communicate outcomes of studies in
a more sophisticated way may help us to correctly evaluate the outcomes of
experiments. The way we can avoid fold change cutoffs, and therefore the
accuracy trade-offs coming with them, by using Bayes factors for differential
gene expression, serves as a motivator for exploring how Bayesian inference
and further causal inference could shape research in the future.

4.4 Methods

All real data we used and all simulated data we created is found, with all of our
scripts to repeat our study and reproduce all figures, on our Github. The intro-
duction of Bayes factors for differential gene expression was given in the previous
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chapter and we have applied it exactly how documented and derived in our former
work.

4.4.1 Yeast data

Our package comparison has been heavily inspired by a yeast study conducted by
Schurch et al. [35], [53] in 2016. They performed RNA-Seq on 42 wild type (WT)
and 44 Snf2-mutant replicates and carried out a bootstrapping study to find out
how many biological replicates RNA-Seq studies need and which packages to use
for the analysis. Thanks to their detailed documentation and data availability, we
could base a lot of our work on their data. We used their fully processed data
downloaded from their Github. Originally they had 48 replicates but only worked
with 42/44, as documented in [35], [53], which we followed.

4.4.2 Bootstrapping DGE analysis

We created 100 data sets randomly sampling 3, 6, 12, or 20 replicates from the
pool of 42/44 yeast replicates without replacement (meaning, an individual repli-
cate can appear only once within each data set). Afterwards, we set up a pipeline
to analyse the data using edgeR, DESeq2 and our Bayesian framework which was
used throughout our work, from package comparison (Figures 4.1, 4.2, 4.3, 4.4, 4.5
and 4.6) to the control experiment on wild-type only data (Figures 4.7, 4.8, 4.9,
and 4.10) and the identification of consistently inconsistent genes (Figure 4.11).
All data sets and results have been stored and published, and so is all code to
reproduce the full procedure.
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RNA-Seq in the detection of
long-distance mobile mRNA
in plants

Transparency Note — Parts of this chapter have been uploaded to bioRxiv in a
manuscript titled ‘Re-analysis of mobile mRNA datasets highlights challenges in the
detection of mobile transcripts from short-read RNA-Seq data’ authored by Pirita Paa-
janen, Melissa Tomkins, Ruth Veevers, Michelle Heeney, Hannah Rae Thomas, Federico
Apelt, Eleftheria Saplaoura, Saurabh Gupta, Margaret Frank, Dirk Walther, Christine
Faulkner, Julia Kehr, Friedrich Kragler, Richard J. Morris and myself [63]. Other parts
may be recognised from two further of our articles emerging from the PLAMORF
project, which are central to Chapter 6, that are authored by subgroups of the former
author list [64], [65].

Summary — The long-distance transport of messenger RNAs (mRNAs) has been
shown to be important for several developmental processes in plants. A popular method
for identifying travelling mRNAs is to perform RNA-Seq (RNA-Sequencing) on grafted
plants. This approach depends on the ability to correctly assign sequenced mRNAs to
the genetic background from which they originated. The assignment is often based
on the identification of single-nucleotide polymorphisms (SNPs) between otherwise
identical sequences. A major challenge is therefore to distinguish SNPs from sequencing
errors. In the following 3 chapters we are presenting our efforts to investigate and
improve the accuracy of mobile mRNA detection using RNA-Seq data. Here, we give
an introduction to the experimental setup and explain our motivation that led to the
work presented in Chapter 6.

5.1 Introduction

5.1.1 mRNAs exit cells and move long distances in plants

At the beginning of my doctoral studies, it was widely acknowledged that a mul-
titude of messenger RNAs (mRNAs) molecules are transported over significant
distances within plants [66], [67] and between parasitic plants and their hosts [68]–
[70]. It seems, for some mysterious reason, that mRNAs exit the cells where they
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are transcribed to travel in vascular tissues from one part of a plant to another.
Non-cell-autonomous functions of these transported RNAs have been described in
several instances [71], such as acting as signals and influencing development in cells
distinct from their origin [72], [73]. These processes include leaf development in
tomato [74], meristem maintenance and root growth in Arabidopsis thaliana [75],
[76] or tuberisation in potato [77]. Reports of mRNAs travelling over long-distances
coupled with evidence of mRNAs acting non-cell-autonomously have given rise to
the proposal that mobile mRNAs may act as signaling agents in a novel long-
distance communication system [66], [71], [78]–[80].

The broad range of possible purposes and tasks conducted by travelling biomolecules,
in general, are under investigation. The consequences of the movement can be seen
in a variety of observable effects. While for some molecules signaling functions
have been documented (proteins, siRNAs, miRNAs) [81]–[84], for mRNAs – the
main interest in this investigation – different functions are debated [80], [85]. For
some specific examples of mobile mRNAs we have descriptions of their impact [74],
[86]–[88], for many more, we remain puzzled what the function and relevance of
mobility is [67], [89], [90]. The identification of transported RNAs, their origins,
destinations, and the conditions under which they are transported is crucial for
understanding their potential roles in signaling processes [85].

5.1.2 How do mRNA move long distances?

The exact mechanisms for the movement of huge molecules like mRNAs are still
missing. For mRNAs to move from cell-to-cell, they most likely need to cross the
cell walls through pores that link the cytoplasm of neighbouring cells with each
other, called plasmodesmata [75], [91]. How exactly this movement occurs is yet
to be discovered. Evidence for plasmodesmal trafficking, despite the limitations
of size, is puzzling. A full mRNA, potentially folded into a 3-dimensional struc-
ture, fitting through these passages, suggests that there may be active and specific
translocation mechanisms that either unfold the mRNA and shuttle a molecule
through the plasmodesmata or enlarge the cytoplasmic sleeve. There is also ev-
idence for RNAs and proteins travelling together [92], [93], again lacking exact
mechanistic explanations. So far, all of those ideas have only been described, but
not shown to actually happen, leaving the riddle of how such large molecules move
between cells effectively unsolved [91].

Movement inside cells may be via diffusion, local movement from cells to neigh-
boring cells may happen by some kind of active transport to increase efficiency.
However, as soon as we consider larger distances, these modes of transport become
less effective. We can do a simple back-of-the-envelope calculation based on mea-
surements in mammals [94], [95]: If an mRNA is travelling a distance of 1 cm by
diffusion, it would take 1000 days, approximately 20 days by non-selective active
transport, and approximately 2 days, or less, by selective active transport. For
these numbers, however, we have not yet taken movement through plasmodesmata
into account, which would significantly increase the times [96], [97]. In order for
long-distance transport to happen within biologically reasonable time scales, it has
been considered, that long-distance transport of macromolecules occurs in the vas-
cular system of plants [69], [98], [99].
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The vasculature of plants consists of two counterparts. In the xylem, a non-living
pipe-like structure, water and nutrients taken up by the roots are transported to
the shoot, or wherever they are needed. In the living tube-structure called phloem,
water and photosynthates, forming the phloem sap, are transported. This sap has
been proposed to be a good transport medium for macromolecules [69], [98]. The
idea is inspired by parasitic plants, such as Cuscuta pentagona, a plant feeding on
the phloem sap of Arabidopsis thaliana. It has been shown that approximately
30% of the Arabidopsis transcriptome can be detected in the phloem of Cuscuta
[69], [98], supporting the hypotheses that (a) there are mRNAs in the phloem and
(b) it is the phloem where the translocation of mobile mRNAs takes place [99].
The flow of the sap may reduce the transport time of mRNAs from several days
to minutes, which would comfortably lie within the expected range of half-lives of
most mRNAs [100], [101].

5.1.3 Which mRNA move long distances?

There were several efforts to catalog macromolecules in vascular tissues. The ap-
pearance of RNA and protein was so abundant, that researchers started talking
about phloem transcriptomes and proteomes. These detection efforts led to publi-
cations of phloem transcriptomes in Arabidopsis, Melon, and Legumes [89], [102]–
[104], reporting the presence of several hundreds of mobile mRNAs.

The amount of mRNA molecules that re-enter cells at a destination is very low.
Reports place the imported numbers of mobile mRNAs in cells at less than 0.1%
of the endogenous levels [105]–[107], i.e. only a fraction of the observed transcrip-
tional noise [108]. If transcription of an mRNA resulted in 1000 transcripts then the
expected stochastic fluctuations would be greater than ± 30 transcripts (typically
over-dispersed compared to a Poisson distribution [108], [109]), whereas the ex-
pected number of imported non-endogenous transcripts of the same mRNA would
be only 1. Should mobile mRNA be part of a communication system, this raises
questions about how such signals can be read and decoded. Ideas from information
theory have been put forward as a means of analysing and testing mRNA signaling
as a communication system [85], [90]. These inquiries are likely to be important for
unravelling the potential signaling role and biological function of mobile mRNAs,
and would be greatly aided by knowing which mRNAs move, when they travel,
from where to where and under which conditions. Furthermore, determining which
mRNAs are translocated might allow for features to be identified, such as physico-
chemical properties or sequence and structural patterns (motifs, zip-codes), that
relate to transport or functional characteristics. For instance, a previously iden-
tified mobility motif that was found to be enriched in the low abundance subset
that turned out to relate to mRNA stability [110], inline with recent findings which
suggest that mRNA localisation can be explained by mRNA stability [95]. There is
therefore significant interest in the detection of mobile mRNAs and many reports
and datasets are meanwhile available [111]. Nevertheless, extensive data mining
efforts, including our own, have failed to find predictive features for mobility in the
sequences of currently annotated transcripts [112].
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5.1.4 The detection of mobile RNAs often exploits the an-
cient technique of grafting

Combining root stocks and vegetative material (scions) of different plants is an
ancient practice called grafting, that has been and is still used in traditional horti-
culture to confer abiotic and biotic resistance to crops [113]. Also in the detection
of mRNAs, the property of plants to re-establish vascular and cellular connections
after cutting proves to be useful. It has become the method of choice to combine
different plants and find RNA molecules that have crossed the graft-junction, while
having some control over contamination [67].

Early breakthroughs identified long-distance mobile signalling agents, among them
flowering regulators in plants, called florigen [114], of which Flowering Locus T is
now known to be a contributing factor [115], [116]. Later on, with the establishment
of modern sequencing technologies and computational analyses, the field moved
on to high-throughput detection methods, enabling the transcriptome-wide search
for mobile mRNAs. From what we have learned about the likelihood of mobile
mRNAs travelling through the phloem, it seems probable that as soon as a graft-
junction heals and the vascular system reconnects, hundreds of phloem-mobile
mRNAs can cross the graft junction. Indeed, using grafting followed by high-
throughput transcriptomics (RNA-Seq), studies over the last decade have identified
hundreds to potentially thousands of graft-mobile mRNAs in a variety of plant
species [69], [89], [98], [106], [107], [117]–[122].

5.1.5 High-throughput detection of mobile mRNAs in plants
using grafting followed by RNA-Seq

Using RNA-Seq to identify all mRNAs extracted from plant tissue from grafts be-
tween different genetic backgrounds, such as different species, accessions, ecotypes,
or cultivars, has been widely employed for identifying transported transcripts over
graft junctions and potentially over long distances within a plant [69], [89], [98],
[106], [107], [117]–[122]. However, the identification of transported transcripts keeps
challenging the field, as existing graft-mobile mRNA classifications show poor re-
producibility [63], [67]. These inconsistencies may be attributed to experimental
conditions and technical differences that hinder direct comparability, or the nature
of mobile mRNA transport [67].

Identifying which transcripts belong to which genotype in grafted plants (between
two different genotypes) requires a means of distinguishing them. Choosing closely
related genotypes that differ in known positions between their genomes, single nu-
cleotide polymorphisms (SNPs), allows for transcripts to be identified based on
these allele-specific nucleotides in RNA-Seq data, Figure 5.1. For grafts between
different cultivars or ecotypes of the same species, such as the Arabidopsis thaliana
Col-0 and Ped ecotypes [98], or between closely related species, such as grapevines
species Vitis palmata, Vitis girdiana, Vitis hybrid C3309, Vitis vinifera cultivar
Riesling [106], transcripts from different genotypes can be identified based on the
SNPs between them. Typically, a requirement is made for a defined number of
RNA-Seq reads to have a SNP that corresponds to the alternative allele for a tran-
script to be assigned to a foreign genotype. These values are chosen carefully to
reduce the risk of sequencing noise biasing the identification. Previously published
criteria include at least one read if it is covering a minimum of two SNPs [106], or
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Genotype 1

graft junction

RNA-Seq of
root tissue

Candidate mobile
transcripts that travel
from shoot to root

Challenge: Which RNA-Seq reads can be
assigned to genotype 1, which to genotype 2?

Solution 1:
SNP-based

Solution 2:
Mapping-based

Genotype 2

Shoot of Genotype 1

Root of Genotype 2

Heterograft

Figure 5.1: Grafting coupled with RNA-Seq has been employed to identify transcripts
that move from tissue of one genotype/species/ecotype/cultivar into tissue of an-
other genotype/species/ecotype/cultivar across the graft junction. Shown here is a
grafting-based strategy for identification of mRNAs that move from shoot (scion) to
root (stock), from genotype 2 to genotype 1, using a scion:stock=genotype 2:genotype
1 heterograft. The same strategy can be used to identify transcripts that move from
shoot to root from genotype 1 to genotype 2 using a genotype 1:genotype 2 graft.
Transcripts that move root to shoot can be identified by analysing mRNAs in shoot
tissue. Natural grafts, such as those established between the parasitic dodder plant
and its host plants, can be used in place of artificial grafts. A key challenge in all
such approaches is how to assign transcripts to each genotype; methods for doing so
are based on (1) SNP (single nucleotide polymorphism) identification or on (2) the
alignment to different reference genomes. For grafts from the same species, or similar
genotypes, SNPs can be used to distinguish between genotypes and thus identify the
source genotype of each transcript (1). For grafts between different species, mapping
(2) each RNA-Seq read to the genome assemblies can be an effective method for de-
termining which transcripts are specific to one species. In this thesis we will only focus
on SNP-based approaches.
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two [106], three [123] or four [98] reads covering the same SNP. When these criteria
are met, the transcript is defined as mobile.

5.2 Motivation and Aim for use of Bayesian statis-
tics in the detection of mobile mRNA

5.2.1 Needles in haystacks and mobile RNAs in sequencing
data

We have learned earlier, that the imported numbers of mobile mRNAs is less than
0.1% of the endogenous levels [105]–[107]. Sequencing has known technological lim-
itations which lead to every nucleotide having a small probability of being assigned
to a different nucleotide (base-calling error). Illumina sequencing machines pro-
duce base-calling errors at a rate of approximately 0.1 to 1% per base on average
[124], [125]. The detection of mobile mRNAs using SNP differences between two
grafted plants therefore faces a challenging signal-to-noise problem. We asked how
well the above mentioned absolute read count criteria take this into account, and
came up with a simple estimate on how many currently mobile annotated mRNAs
can be explained by sequencing noise, instead of evidence for mobility.

Sequencing providers often give a quality assurance, for instance, that 85% of the
reads have at least Q30 (i.e. a base-calling error of less than 10−3). Thus, assum-
ing an RNA-Seq experiment delivers 20 million reads using paired-end sequencing
of 2 x 100 bp, we will have a total of 4 billion base calls of which we can ex-
pect up to approximately 4 million to be incorrect. Usually, further Phred score
filtering is applied to enhance the quality, and reduce the number of errors [98].
Base-calling errors are not the only potential source of change in the expected nu-
cleotide identity. Reverse transcriptases can introduce base changes with an error
rate of approximately 10−5 to 10−4; the reverse transcription reaction error can
be different for different nucleotides, for instance a ’G’ to ’A’ bias [126], [127], and
may exhibit a range of artifacts [128]. In the above example, this could result in a
further 400,000 potential nucleotide substitutions. Multiple effects give rise to dif-
ferences between the sequenced fragments and the corresponding genome sequence.
Some of these differences may appear in SNP positions and be indistinguishable
from a SNP supporting the alternate allele.

The alignment of RNA-Seq reads to the genomes of the two grafted plants is a pro-
cess with two outcomes (endogenous genotype, foreign genotype), for which, with
no further knowledge, the binomial distribution represents an optimal (maximum
entropy, least-biased) probability assignment [5]. We denote the probability of a
SNP matching the alternate allele by q. Using a (cumulative) binomial distribu-
tion, we assessed existing mobile mRNA criteria by computing the probability of
transcripts being classified as being mobile based on sequencing noise, Figure 5.2.
For low read-depths the probability of the criteria for mobile mRNA being met by
chance is extremely low, however, this increases with higher read-depths, meaning
that the false positives are to be expected for high-coverage experiments. The high
coverages employed in mobile mRNA studies result in high read-depths and hence
more absolute numbers of errors.

92



Chapter 5

 1x10
-10

 1x10
-8

 1x10
-6

 0.0001

 0.01

 1

 100  1000  10000

P
(n

1
S

N
P

≥
2

 i
n

 2
 o

u
t 

o
f 

3
|N

,q
)

N

q=0.16%
q=0.08%
q=0.04%
q=0.02%
q=0.01%

≥ 2 reads over 1 SNP in ≥ 2 out of 3 reps

 1x10
-10

 1x10
-8

 1x10
-6

 0.0001

 0.01

 1

 100  1000  10000

P
(n

1
S

N
P

≥
4

|N
,q

)

N

q=0.16%
q=0.08%
q=0.04%
q=0.02%
q=0.01%

≥ 4 reads over 1 SNP

 1x10
-10

 1x10
-8

 1x10
-6

 0.0001

 0.01

 1

 100  1000  10000

P
(n

2
S

N
P

s
≥
1

|N
,q

)

N

q=0.16%
q=0.08%
q=0.04%
q=0.02%
q=0.01%

≥ 1 read covering 2 SNPs

Figure 5.2: Published criteria for defining mobile mRNAs based on absolute read counts
suffer from read-depth dependencies. Shown are three different mobile mRNA defini-
tions (top, middle, bottom) and their dependence on read-depth (N) and on the rate of
a SNP matching to the alternate allele (q). The number of read counts over one SNP
that correspond to the alternate allele is denoted by n1SNP, over two SNPs by n2SNPs.
Note that both axes are on a log-scale. The requirement for co-occurring SNPs on one
read is more stringent and less likely to occur by chance at higher read-depths. If the
rate of finding the alternate allele was a consequence of base-calling errors only, then
we would expect q ≈ 10−Q/10/3, where Q is the Phred score cut-off. For a Phred
score of Q30 (q < 0.03̇%), these criteria are robust up to moderately high (several
hundred) read-depths and would be unlikely to occur by chance.
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Table 5.1: Total numbers of reported mobile mRNAs across all experiments in A.
thaliana [98] and V. girdiana [106] that can be explained by expected sequencing
noise. Assuming a probability of 0.1% and 0.01% for finding the alternate allele, this
table lists how many transcripts have been reported to be mobile and of these how
many have occurrences of the alternate allele (supporting mobility) that are consistent
with this probability, i.e. no statistical evidence for mobility. The results are based
on a defined background error rate that is the same for all SNPs. The hypotheses for
whether the data can be explained by background errors or whether the experimental
observations go beyond what would be expected from background errors alone (and
are therefore potential candidates for mobile transcripts) were evaluated following es-
tablished procedures [5], [64].

5.2.2 Many previously identified mobile mRNA candidates
show signals consistent with sequencing noise

Criteria based on absolute read counts exhibit a read-depth dependency (Figure
5.2), resulting in a bias towards highly abundant transcripts being assigned as mo-
bile. This bias has been reported and discussed in a previous study in our lab [110].
We therefore investigated how many previously published mobile transcripts identi-
fied by RNA-Seq are consistent with technological noise and read-depth. Table 5.1
shows how many mobile mRNAs would be consistent with different assumed error
rates, q, for the alternate allele. The consistency of the data with these error rates
was performed using Bayes factors [64], as we will describe in the next chapter. If
the probability for the alternate allele, q, was purely a consequence of base-calling
errors, we would expect q to be approximately a third of the base-calling error; for
a Phred quality score cut-off of Q30 this would result in a base-calling error rate
of 10−3 and a q of approximately 10−3/3 or q ≈ 0.03̇%. This q-value falls within a
range for which we find that a substantial number of previously identified mobile
mRNAs [98], [106], [107] were classified based on numbers of RNA-Seq reads over
SNP positions that are in line with what would be expected from sequencing noise,
Table 5.1. We point out that we used the same value of q for each base in this
analysis which does not take position-specific error rates into account. Neverthe-
less, this quick analysis suggests that a large proportion of the annotated mobile
mRNAs, based on available RNA-Seq data, may lack statistical support.

5.2.3 Identifying mobility signals by employing Bayesian in-
ference

By combining grafting with RNA-Seq we wish to detect mobile RNAs in plants to
learn which mRNAs are travelling from which parts of the plant to which organs.
Previously published studies using this detection method have reported hundreds
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or thousands of mRNAs. Often, we do not have many replicates for those exper-
iments. If so, there were different ways to summarise the evidence from several
replicates or experiments. In many cases, the unions of identified long-distance
mobile mRNAs were reported as final numbers. In Figure 5.3 we have visualised
the overlaps between several samples in a published mobile mRNA experiment.
We want to highlight that the majority of mobile mRNAs in this experiment, with
5 pooled samples taken from 5 organs, have been reported in the root and rosette
samples. There are 19 mobile mRNAs that have been detected in all 5 samples,
among the union of 1606 reported mobile mRNAs. We have described the chal-
lenge earlier, that using grafting combined with RNA-Seq depends on the ability
to correctly assign sequenced mRNAs to the genetic background from which they
originated. The assignment is often based on the identification of SNPs between
otherwise identical sequences. A major challenge is therefore to distinguish these
SNPs from sequencing errors. The read-depth dependency, which is introduced by
criteria based on absolute read counts, is one possible explanation for a previous
observation that mRNA abundance and mobility are correlated [110]. The defi-
nition of mobile mRNA based on absolute read counts gives rise to what appears
to be non-selective, abundance-dependent transport of hundreds or thousands of
mRNAs. The 19 long-distance mobile mRNAs identified in all 5 samples in the
experiment show high read counts in all samples, with 4 interesting exceptions,
Table 5.2.

Mobile mRNA detection faces a signal-to-noise problem in the detection of long-
distance mobile mRNAs in plants. For successful identification of mobile tran-
scripts, we need to demonstrate which data can be explained by sequencing errors
only, and which data require an explanation beyond that. To address this prob-
lem, we developed a Bayesian framework for distinguishing sequencing errors from
signals for mobile RNAs. We include prior information about sequencing errors in
the analysis, and identify transcripts where the data cannot be explained by errors
only. For each gene (with SNPs between grafted genotypes) we can calculate a
Bayes factor, informing about the evidence for mobility across all SNPs and all
replicates in an experiment. In the following chapter, we derive and demonstrate
how these Bayes factors can be computed analytically using RNA-Seq data over
all the SNPs in an mRNA. We present simulations to evaluate the performance
of the proposed framework and show how Bayes factors accurately identify graft-
mobile transcripts. The comparison to other mobility criteria using simulated data
shows how not taking the variability in read-depth, error rates, and multiple SNPs
per transcript into account can lead to incorrect classification. Furthermore, we
elaborate on the pitfalls of filtering for sequencing errors or focussing on single
SNPs within an mRNA. Moreover, we provide experimental design suggestions for
successful graft-mobile mRNA detection that emerged from our results.
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Figure 5.3: Many annotated long-distance mobile mRNAs are based on evidence from
a single sample. Thieme et al. [98] have reported 1606 mobile mRNAs from an
experiment on one plant with 5 samples from 5 organs (flower, upper stem, lower
stem, rosette, root). In this figure we want to draw attention to the differences in
evidences for mobility we have for those 1606. While there are 19 reported long-
distance mobile mRNAs that have been found in all 5 samples, there are also 1373
reported cases among the 1606 that only have evidence from 1 sample. Furthermore,
we notice large differences in the number of mobile mRNAs identified in different
organs. This may have biological reasons, of course, but we cannot draw conclusions
without more replicates. Top left we see the 19 long-distance mobile mRNAs that
have been identified in 5 samples and the 1087 mobile mRNAs where there is only
one sample providing evidence. Note that a large proportion of them are found in the
root and rosette samples. Top right we see the 377 long-distance mobile mRNAs with
evidence found in two samples. Again, a large proportion is coming from root and
rosette. Bottom left and bottom right we see 135 and 28 mobile mRNAs detected in
three and four organs, respectively.
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Table 5.2: A set of 19 consistently identified transcripts, that show high read numbers
and could therefore be in line with sequencing errors. In Figure 5.3 we have seen that
in one experiment, 1606 mobile mRNAs were reported across pooled samples from 5
organs (root, rosette, lower stem, upper stem, and flower). Of those 1606 reported
long-distance mobile mRNAs, 19 have been detected in all 5 samples. In this table we
take a closer look at this set of 19 genes and the number of reads mapping to them (all
4 alleles included) in different samples (root, rosette, lower stem, upper stem, flower).
We show the numbers of SNPs for each transcript (# SNPs) that have been taken into
account to evaluate evidence for mobility in the data and how many of those SNP-
positions show evidence for mobility of the transcript, the presence of the alternate
allele (# SNPs ***). Note, that all of the genes in the set have at least 7000 reads
mapping to them, except 4 examples in the root sample. These 4 genes are not known
to be expressed in the root, puzzlingly [129]–[132]. Referring back to Figure 5.2, we
were wondering how many of those could be explained by sequencing errors?
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Bayesian inference in the
Detection of mobile mRNA
in Plants

Transparency Note — The work presented in this chapter is a collaborative ef-
fort of Melissa Tomkins, Saurabh Gupta, Federico Apelt, Julia Kehr, Friedrich Kragler,
Richard J. Morris and myself. The described framework – how to use Bayes factors in
the detection of mobile mRNAs – has been published in 2022 [64]. A software package
to carry out this analysis has been published in 2023 [65].

Summary — In Chapter 5 we learned about the long-distance mobility of mRNAs
and that one way to investigate this phenomenon is combining grafting of plants with
RNA-Sequencing. Because the translocation of mRNAs is thought to happen in very
low numbers, sequencing errors present a major issue in distinguishing signals (SNPs
from different genotypes) from noise in the analysis. To tackle this problem we show in
this chapter how we can employ Bayesian inference to significantly improve detection
accuracy by incorporating prior information about expected sequencing error rates into
the analysis. We demonstrate how Bayes factors can be computed analytically using
sequencing read counts (from processed RNA-Seq data) over all SNPs in an mRNA.
We create simulated data to evaluate the performance of the proposed framework,
and to compare Bayes factors with other analyses. We find excellent accuracy im-
provements over previously applied mobility criteria. Our results uncover experimental
design suggestions (mainly concerning read-depth) for improved graft-mobile mRNA
detection and show the pitfalls of filtering for sequencing errors or focusing on single
SNPs within an mRNA.

6.1 Method description

6.1.1 Introducing Bayes factors in the detection of mobile
mRNA using grafting followed by RNA-Seq

In a grafting experiment, two genotypes of a species (ecotypes, accessions, or culti-
vars) are combined to create a heterograft, see Figure 6.1 for a reminder of the setup
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and an overview of the new analysis workflow. We will refer to the vegetative ma-
terial that is grafted onto another plant as the scion, and the plant onto which the
scion is grafted as the stock. If a transcript that originates from the stock is found
in scion tissue or a transcript from the scion is found in stock tissue, then a plausible
interpretation is that it has moved over the graft junction. This inference depends
on the ability to distinguish between mRNA molecules from the two grafted plants.

t1 / t2 or t2 / t1
Ν / n

SNP specific Bayes factor calculation via baymobil

4.8

t1 
Homografts Heterografts

Grafting
experiments
following
Thieme et al.
2015

Genome type1
Genome type2

SNP 1 SNP 2 SNP 3 SNP 4 SNP s...

RNAseq: 
read mapping

1000/20 10/5 1000/20 1000/20 10 000/50...

Bayes factor 
per SNP

1 0.22 1.98 -0.18 ...

1000/5 10/1 2000/10 1000/10 10 000/10...

1000/5 10/1 2000/10 1000/10 10 000/10...

Bayes factor 
per transcript 1.22 1.8 4.8...

Transcript 2 Transcript t Transcript 1

From graft t1 / t1: 

Transcript 2 Transcript tTranscript 1

t1

t2

t2

t2

t1

t1

t2

...

...

...

stock

scion

Nhom1, nhom1
From graft t2 / t2: 
Nhom2, nhom2

1

2

3

4

5

6

Figure 6.1: Workflow overview for the detection of graft-mobile mRNAs: Homo- and
hetero-grafting experiments are conducted between 2 types (t1/t1, t2/t2, t1/t2, t2/t1)
and RNA-Seq is performed on tissue samples. RNA-Seq reads are mapped to the
genomes of type 1 and type 2. At all SNP positions s between the types t1 and t2, the
aligned reads are counted (for homografts Nhom, for heterografts N) and according to
the type specific nucleotide at the SNP position assigned to one type (resulting in some
nhom in Nhom and likewise n in N). These numbers are input for the probabilistic
framework and can be used for calculating a Bayes factor for each SNP. Afterwards,
we can combine the SNP-level Bayes factors to a transcript-level Bayes factor (which
gives us better accuracy).

Homologous genes from closely related organisms often have highly similar se-
quences. Sequences that are identical cannot be distinguished. We assume that
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distinguishable homologous mRNAs from the two grafted plants with different ge-
netic backgrounds (genotypes) differ in a number of SNPs. Other differences, such
as insertions or deletions, are possible but not considered here.

Our objective is to establish a framework for determining the genotype from which
transcripts have originated. When sampling tissue from one of the grafted geno-
types (local), we may find SNPs associated with the other genotype (distal). The
challenge lies in assessing whether the RNA-Seq reads for these positions, which
could indicate transcripts that have crossed the graft junction, can be explained
by expected biological and technical variation in the local genotype.

Here, we construct a probabilistic description of how to distinguish sequencing er-
rors from graft-mobile transcripts using a Bayesian formalism for which we derive
exact solutions. We leverage Bayesian inference to evaluate the evidence for a
transcript being graft-mobile over the evidence for the data being consistent with
sequencing or processing errors. The analysis takes into account read depths, SNP-
specific error rates, all replicates, and multiple SNPs per transcript. It assumes
that the SNP positions have been identified from the comparison of high-quality
genomes or transcriptome data, and it focuses on sequencing errors at those posi-
tions without accounting for uncertainty in those positions.

The proposed Bayesian approach is evaluated using simulated data, demonstrat-
ing its ability to accurately identify graft-mobile transcripts and outperform other
methods for classifying transcripts based on RNA-Seq reads. Based on true and
false positives rates, we find that filtering SNPs with measurable errors, and not
taking error rates or read depths adequately into account have significant detri-
mental consequences on the classification performance. The proposed Bayesian
approach overcomes these issues and with controlled simulated data we can accu-
rately identify graft-mobile transcripts. Additionally, the analysis using simulated
data shows that combining information from multiple SNP positions increases clas-
sification accuracy, achieving near-perfect classification accuracy over a wide range
of parameters.

6.1.2 Problem definition

In the following, a genotype can be either a species, an accession, an ecotype or
a cultivar of a plant. We denote the two types used for grafting as t1 and t2.
Different graft combinations may result in homografts, i.e. stock:scion is t1:t1 or
t2:t2, and heterografts, i.e. stock:scion is t1:t2 or t2:t1, see Figure 6.1.

Our objective is to distinguish homologous transcripts from the grafted plants that
exhibit variations in nucleotide positions (SNPs). By conducting RNA-Seq anal-
ysis on samples from both the scion and stock of grafted plants and aligning the
reads to reference genomes from genotype 1 and genotype 2, we anticipate finding
read counts for the presence of the corresponding alleles of t1 and/or t2 for each
SNP position. Thieme et al. [98] have pioneered this experimental setup and offer
details on original grafting and RNA-Seq protocols.
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For each SNP, we represent the total number of reads mapping as N and the total
number of reads containing SNPs that correspond to a genotype different from the
sampled tissue’s genotype as n (for brevity, we will refer to n as the reads mapping
to the other type). As an example, if we conduct RNA-Seq on tissue obtained from
a scion of genotype t1, the reads that align best to genotype t2 at a specific SNP
will be represented by n. In the case of a sample taken from a homograft t1:t1, if
n reads align to genotype t2, these occurrences must be considered as ‘errors’ that
occurred somewhere during the process.

Potential sources of error encompass biological variation, such as mutations or
the presence of different splice variants, as well as technical issues during library
preparation or PCR amplification steps, mapping errors to the reference genome
and errors therein, and the limitations of bioinformatic tools and associated pa-
rameters. In Figure 6.2, we delineate the relationships between the numbers from
processed RNA-Seq data and the actual reads from each genetic background. The
pivotal question revolves around whether the data substantiate the presence of
transcripts from the other genotype (e.g., from t2) in the tissue of the sampled
genotype (e.g., t1), and the quantification of reads that can consequently be at-
tributed as graft-mobile.

For the sake of simplifying the explanation, we denote the genetic background of
the sampled tissue, the local genotype, always as ‘1’ (where ‘1’ could actually be
either genotype t1 or t2). We assume that a transcript has a set of SNPs, S = s, for
which the RNA-Seq analysis results in data in the form D = Ds = Ns, ns, where
Ns is the total number of reads for SNP s, of which ns map to the other, non-
sampled tissue of another genetic background, the distal genotype (denoted by ‘2’).

We want to compare the evidence for two opposing hypotheses which we define as
follows.

Hypothesis H1 states the data can be explained by a statistical model with only
one genetic background, i.e. RNA-Seq reads that appear to be from a second ge-
netic background are consistent with sequencing errors, mapping errors, frequencies
of somatic mutations, presence of splice variants and any other process that can be
expected to introduce mis-assignments in the sampled tissue of genotype 1 → the
data are consistent with the expected biological and technical variance
from only one genotype.

Hypothesis H2 states the data are best explained by a statistical model that
includes transcripts from distal grafted tissue, i.e. there are RNA-Seq reads from
transcripts from a second genetic background that are unlikely to have arisen from
the expected variance of genotype 1 → the data support the presence of
RNA-Seq reads from two genotypes and the transcript potentially be-
ing graft-mobile.

Hypothesis 1 thus posits that RNA-Seq reads from only one genetic background
are sufficient to explain the data, whereas hypothesis 2 requires that two genetic
backgrounds are present. If statistical evidence for two genetic backgrounds is
found in the data then a plausible inference is that transcripts have moved across
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Figure 6.2: Relationships between measured and inferred RNA-Seq read numbers: From
bioinformatics pipelines we can retrieve numbers of reads that map to certain positions:
N and n. N reads map at the position of SNP s, n of these carry the allele of the
other type and seem to be from graft-mobile transcripts (See Figure 6.1). However,
there is always an error of some kind. Only N1 actually originate from type 1 and
N2 actually originate from type 2. Nevertheless, we do not know N1, N2. How can
we get numbers for the actually translocated transcripts? We can build a probabilistic
framework for occurring errors by looking at prior knowledge [64] we have: the error
rates in the homograft data (Why we can do this is discussed in [64]). In this way
we can infer numbers for the errors n1 and n2 (from Nhom and nhom values) and,
therefore, also the reads from the graft-mobile transcripts N1 and N2.

the graft junction.

We can compare hypotheses using the posterior odds ratio [1], [5],

P (H2|D)

P (H1|D)
. (6.1)

When both hypotheses, H1 and H2, are equally likely a priori, P (H1) = P (H2), the
posterior odds ratio becomes equal to the marginal likelihood ratio (Bayes factor),

BF =
P (D|H2)

P (D|H1)
, (6.2)

where P (D|H1) and P (D|H2) are the marginal likelihoods, also known as evidences.

If the ratio of graft-mobile transcripts to non-graft-mobile transcripts were known
then this information could be used as the prior ratio for P (H2) over P (H1). Here,
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we will assume a 1:1 ratio and use Bayes factors. Following Jaynes [5], we use the
logarithm (of base 10) of the Bayes factor. A Bayes factor logBF of 0 means there
is an equal probability for both hypotheses, whereas logBF > 0 favours hypothesis
2 (graft-mobile) and logBF < 0 favours hypothesis 1 (errors), remember Figure
1.12 in Chapter 1 about how to interpret Bayes factors. The higher the log10 Bayes
factors in the detection of mobile mRNAs, the more evidence we find for the mo-
bility of mRNA. The Bayes factor is the ratio between the evidences supporting
two different hypotheses: the data are consistent with expected sequencing and
mapping errors vs. the data support the transcript being graft-mobile. Assigning
each mRNA a log10 Bayes factor enables ranking them according to the confidence
of mobility given the RNA-Seq data. Furthermore, the Bayes factors give quan-
titative information about the ratio between translocated and local transcripts in
the RNA-Seq sample taken from the heterograft. A high Bayes factor, therefore,
means high confidence in the ability for this mRNA to be mobile plus high rela-
tive numbers of translocated individual transcripts. If wanted or necessary, Bayes
factors can be used as criteria for a binary classification of mRNAs in mobile vs.
non-mobile. We recommend following published literature [5], [7] and choosing a
cut-off of ±1 (log10 Bayes factor ≤ −1 non-mobile, log10 BF ≥ 1: mobile), rather
than data-specific ranges.

6.1.3 The statistical evidence for a transcript being graft-
mobile can be computed from the contributions from
its SNPs

To compute the evidence, P (D|H1), we need to integrate over all parameters asso-
ciated with H1, p′. We assume these parameters can be specific to each SNP s in
a transcript,

p′ = (p′1, . . . , p
′
|S|), (6.3)

where |S| is the cardinal number of S, i.e. the number of SNPs in the transcript.
Assuming the parameters are independent between SNPs, the likelihood can be
expressed as the product of the likelihoods for each SNP,

P (D|H1, p
′) =

∏

s∈S

P (Ds|H1, p
′
s). (6.4)

The evidence for H1 over all data related to the transcript can thus also be ex-
pressed as a product,

P (D|H1) =
∏

s∈S

P (Ds|H1), (6.5)

where

P (Ds|H1) =

∫
P (Ds|H1, p

′
s,1) × P (ps,1|H1) dp′s,1 (6.6)

is the evidence for H1 for data Ds associated with SNP s.

Analogously we can derive equations for H2, whereby there may be a different
number of parameters associated with each SNP for H2,

p′′ = (p′′1 , . . . , p
′′
|S|) , (6.7)

compared to H1.
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The parameters are explained in the following sections and the full derivation.
Following the above procedure, we can express the evidence P (D|H2) as a product
of SNP-based evidences,

P (D|H2) =
∏

s∈S

P (Ds|H2). (6.8)

The log Bayes factor of hypothesis H2 (graft-mobile, i.e. there are reads from
two genotypes) over H1 (‘errors’, i.e. reads from only one genotype) can thus be
written as the sum over log Bayes factors for each SNP s within a transcript (as
set of SNPs, S),

logBF =
∑

s∈S

log
P (Ds|H2)

P (Ds|H1)
=

∑

s∈S

logBFs . (6.9)

This factorisation into contributions from each SNP allows us to focus on deriving
equations for a single SNP. We then sum these contributions to obtain an overall
log Bayes factor for a transcript being graft-mobile (H2) or not (H1).

6.1.4 SNP-specific evidence for H1 and H2 can be computed
from the posterior distribution over N2

RNA-Seq analysis of grafted plant tissue may result in some reads that align best
to type 1 and others to type 2 at SNP positions. Just as above, we denote the total
number of reads over a SNP by N and the total number of reads associated with
genotype 2 by n. If the data came from a homograft or a non-grafted plant, we can
assume that N − n reads were correct and n reads have sequencing errors or were
mismapped, i.e. there is a SNP-specific error rate that we can infer from the data.
A suitable likelihood Λ(θ), for a two-outcome event is the binomial distribution,
where θ is the error rate we wish to infer,

Λ(θ) =

(
N

n

)
θn (1 − θ)N−n . (6.10)

The conjugate prior of the binomial distribution is the Beta distribution, Beta(u1, u2),

P (θ|u1, u2) =
1

B(u1, u2)
θu1−1 (1 − θ)u2−1 = Beta(u1, u2) , (6.11)

where u1 and u2 are hyper-parameters and the normalising factor, B(u1, u2), is the
Beta function,

B(z1, z2) =

∫ 1

0

tz1−1(1 − t)z2−1 dt , (6.12)

which results in the posterior having the same functional form, i.e. a Beta distri-
bution,

P (θ|D) = Beta(u1 + n, u2 + N − n) = Beta(α, β) , (6.13)
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for which u1 and u2 are hyper-parameters of the prior and α and β are the updated
Beta distribution parameters of the posterior, see derivation in Section 6.1.7. The
probability distribution over SNP-specific error rates can thus be described by a
Beta distribution, Beta(α, β).

For a grafting experiment that involves plants with genotypes t1 and t2, we can in-
fer the following Beta distribution parameters from the homograft data: (αscion t1

s ,
βscion t1
s ) and (αstock t1

s , βstock t1
s ) from t1:t1, and (αscion t2

s , βscion t2
s ) and (αstock t2

s ,
βstock t2
s ) from t2:t2 for each SNP position s.

Examples of inferred posterior distributions for two different priors, error rates and
number of reads are shown in Figure 6.3. As expected, the choice of prior loses
relevance with increasing read depth.

Replicates can be used to update the posterior distributions. The information con-
tent of a dataset remains the same regardless how it is subdivided or the order in
which it is processed, and this is reflected in the mechanics of Bayesian updates
[5]. Figure 6.4 depicts how information is combined (always updating to the latest
state of knowledge) within the Bayesian framework described here. As expected
this leads to the same results no matter how the data are split (e.g. into replicates).

6.1.5 The number of reads from transported transcripts can
be inferred from heterograft data

As described above, we can focus on each SNP position in a transcript individually
and then combine the contributions from all SNPs. Given N total RNA-Seq reads
from sampled tissue of genotype 1 of which n contain SNPs associated with geno-
type 2, we want to know how many reads actually came from genotype 2, N2, see
Figure 6.2. Assuming that the biological and technical variation associated with
RNA-Seq analysis will be similar between homografts and heterografts, we can use
homograft data as a reference against which to evaluate the heterograft data. As
described in the derivation in Section 6.1.7, we can derive the posterior distribution
over N2, P (N2|D), which can be expressed analytically as a summation of Beta
functions that include N and n as parameters. From this posterior distribution,
the expected ratio of reads from transported transcripts can be computed,

⟨N2⟩ =

N∑

N2=0

N2 × P (N2|D) , (6.14)

and the ratio as r2 = ⟨N2⟩/N for each SNP s. For a transcript, the expected ratio
is given by averaging over all SNPs. Figure 6.5 shows how Bayes factors change as a
function of n and how well N2 can be estimated for different homograft read depths.

6.1.6 SNP-specific evidence for H1 and H2 can be computed
from the posterior distribution over N2

We now show how both P (H1|D) and P (H2|D) can be computed from the above
described distribution P (N2|D). Under hypothesis H1, any reads with SNPs as-
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Figure 6.3: The choice of prior distribution becomes less relevant as the read depth
increases. Each subplot shows the inferred posterior distribution for a different true
error rate, q, and an example of number of reads generated with this error rate. The
plots on the left start from a uniform prior (u1 = 1, u2 = 1), the plots on the right from
a more extreme prior (u1 = 1, u2 = 100). With increasing read depths, the posterior
distributions become more and more similar (yellow curves) for both priors. Note that
the scales of θ vary between rows in order to show the interesting differences, likewise
the scales of the y-axis are different.

sociated with the distal genotype must be considered errors, i.e. there are no
transcripts from genotype 2 in the data, N2 = 0. Under hypothesis H2, there are
reads from transcripts from genotype 2 and N2 is a natural number. For N2 > 0
there are N possible values for N2 and we can compare the evidence for each of
them against H1. The uniform prior distribution over N2 (from 0 to N , see deriva-
tion in Section 6.1.7) ensures that each instance of N2 > 0, which corresponds to
H2, will have the same prior probability as N2 = 0 that corresponds to H1, thus
resulting in an equal prior for H1 and H2 and the posterior ratio being equal to the
Bayes factor. The maximum log posterior odds ratio over all possible N2 values
for a transcript with |S| SNPs can now be computed from P (N2|D),
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Figure 6.4: The posterior distribution over θ for the full dataset does not depend on
how the data is grouped or the order of data. The curves correspond to the prior and
the updated posterior after seeing different sets of data. The final posterior is shown
as a thick line and is the same regardless of the order in which the data are processed.
Furthermore, we can subgroup the data in whatever way we like or even treat one
experiment as the prior and the prior as an experiment and we get the same result.

log
P (H2|D)

P (H1|D)
=

∑

s∈S

log
max{P (N2|Ds)}N2>0

P (N2 = 0|Ds)
=

∑

s∈S

logBFs,21 =

=
∑

s∈S

max{P (Ds|N2)}N2>0

P (Ds|N2 = 0)
× log

P (Ds|H2)P (H2)

P (Ds|H1)P (H1)
=

=

∏

s∈S

P (Ds|H2)

∏

s∈S

P (Ds|H1)
=

∏

s∈S

P (Ds|H2)

P (Ds|H1)
,

(6.15)
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Figure 3: The read depth of the homograft data influences the Bayes factors

and the numbers of inferred graft-mobile transcripts. The left plot shows how

the Bayes factor changes as a function of the number of reads, n, that map to

the other genotype for di↵erent homograft read depths. For an assumed error

rate, q, of 0.01 and a total number of reads, N , of 1000, the expected number

of mismatches would be 10. As the plot shows, the Bayes factor is negative for

n < qN = 10 and moves closer to 0 as n approaches the expected number of

mismatches. The Bayes factor remains negative somewhat beyond the expected

number of reads as these low numbers are still consistent with the inferred error

distribution. As n increases further, the Bayes factor becomes positive, favouring

the hypothesis that reads may have originated from genotype 2. This change in

Bayes factor is shown for di↵erent read depths from the homograft data. The

right plot shows the behaviour of the inferred number of reads from genotype 2,

N2, as a function of n and of the read depth from the homograft data, Nhom.

With higher read depths from the homograft data and therefore more accurate

inferences of the error probability distribution, the estimated number of reads

from the genotype 2, hN2i approaches the correct value (black dashed line).

be computed, hN2i =
PN

N2=0 N2P (N2|D) and the ratio as r2 = hN2i/N for each

SNP s. For a transcript, the expected ratio is given by averaging over all SNPs.

Figure 3 shows how Bayes factors change as a function of n and how well N2 can

be estimated for di↵erent homograft read depths.

SNP-specific evidence for H1 and H2 can be computed from the posterior distribution

over N2

We now show how both P (H1|D) and P (H2|D) can be computed from the above

described distribution P (N2|D). Under hypothesis H1, any reads with SNPs associ-

ated with the distal genotype must be considered errors, i.e. there are no transcripts

from genotype 2 in the data, N2 = 0. Under hypothesis H2, there are reads from

transcripts from genotype 2 and N2 is a natural number. For N2 > 0 there are N

possible values for N2 and we can compare the evidence for each of them against

H1. The uniform prior distribution over N2 (from 0 to N , see Appendix) ensures

that each instance of N2 > 0, which corresponds to H2, will have the same prior

probability as N2 = 0 that corresponds to H1, thus resulting in an equal prior for

H1 and H2 and the posterior ratio being equal to the Bayes factor. The maximum

log posterior odds ratio over all possible N2 values for a transcript with |S| SNPs

can now be computed from P (N2|D),

Figure 6.5: The read depth of the homograft data influences the Bayes factors and the
numbers of inferred graft-mobile transcripts. The left plot shows how the Bayes factor
changes as a function of the number of reads, n, that map to the other genotype for
different homograft read depths. For an assumed error rate, q, of 0.01 and a total
number of reads, N , of 1000, the expected number of mismatches would be 10. As
the plot shows, the Bayes factor is negative for n < qN = 10 and moves closer to
0 as n approaches the expected number of mismatches. The Bayes factor remains
negative somewhat beyond the expected number of reads as these low numbers are
still consistent with the inferred error distribution. As n increases further, the Bayes
factor becomes positive, favouring the hypothesis that reads may have originated from
genotype 2. This change in Bayes factor is shown for different read depths from the
homograft data. The right plot shows the behaviour of the inferred number of reads
from genotype 2, N2, as a function of n and of the read depth from the homograft
data, Nhom. With higher read depths from the homograft data and therefore more
accurate inferences of the error probability distribution, the estimated number of reads
from the genotype 2, ⟨N2⟩ approaches the correct value (black dashed line).

where max is over all positive N2. Given that this approach has P (H1) =
P (H2), the above equation is equal to the sum of SNP-specific Bayes factors,∑

s∈S logBFs,21, for each transcript. The expression for P (N2|Ds) is given in the
derication in Section 6.1.7. The above equation can be used to assess whether a
transcript is graft-mobile from RNA-Seq data and the results interpreted like we
discussed in the Introduction, Figure 1.12.

6.1.7 Derivation of Bayes factors in the identification of mo-
bile mRNAs

We assume that every nucleotide position, and thus every SNP, may have RNA-Seq
errors associated with it, which we describe by an error rate q. This error rate may
depend on the tissue that is being sampled, the genetic background, and may be
different at different genomic locations. If we knew the error rate at each SNP, q,
we could compute the probability of any number of reads being assigned to either
of the two grafted genotypes, following the binomial distribution for a total number
of reads at that SNP of N ,

P (n|N, q) =

(
N

n

)
qn (1 − q)N−n . (6.16)
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For instance, data from tissue of genotype A may consist of a total number of reads
of N of which N−n best align to the reference genome of genotype A and n align to
reference genome of genotype B, i.e. the transcripts have SNPs that are associated
with the grafted ecoptypes. The error rate, q, can be inferred from RNA-Seq data
from various homograft combinations or non-grafted plants using Bayes’ theorem,

P (θ|D) =
Λ(θ) P (θ)

P (D)
, (6.17)

where θ covers all possible values of the error rate q, and D is the RNA-Seq read
count data (N,n) for the SNP under investigation in whichever tissue was sampled
(genotype 1). Index 1 refers to the sampled genotype and index 2 refers to the
other grafted genotype. To compute the posterior distribution over θ, we need the
likelihood, Λ(θ), and the prior, P (θ).

We can use the above binomial distribution to define the likelihood over θ,

Λ(θ) = P (D|θ) =

(
N

n

)
θn(1 − θ)N−n . (6.18)

A convenient analytical choice of prior for a binomial likelihood is its conjugate
prior, the Beta distribution, due to it having the same functional form,

P (θ1|u1, u2) =
1

B(u1, u2)
θu1−1 (1 − θ)u2−1 = Beta(u1, u2) , (6.19)

where u1 and u2 are hyper-parameters. The normalisation factor of the Beta
distribution is known as the Beta function,

B(u1, u2) =

∫ 1

0

θu1−1(1 − θ)u2−1 dθ =
Γ(u1)Γ(u2)

Γ(u1 + u2)
, (6.20)

where Γ(x) is the Gamma function.

The expectation value ⟨θ⟩ for θ over Beta(u1, u2) is

⟨θ⟩ =
u1

u1 + u2
, (6.21)

and the variance is given by

V (θ) =
u1 u2

(u1 + u2)2(u1 + u2 + 1)
. (6.22)

Using the binomial likelihood, we can infer the posterior distribution over the
error rate from given RNA-Seq read data for each SNP, starting from a Beta prior
P (θ) = Beta(u1, u2),

110



Chapter 6

P (θ|N,n) =
Λ(θ) P (θ)

P (D)
=

=

(
N

n

)
θn+u1−1 (1 − θ)N−n+u2−1

(
N

n

)∫ 1

0

θn+u1−1 (1 − θ)N−n+u2−1 dθ

=

= Beta(u1 + n, u2 + N − n) .

(6.23)

The mathematics of inference thus reduces to updating the Beta distribution with
new count data. The expectation value for θ is updated from the prior expectation
⟨θ⟩ 6.21 to the posterior expectation

⟨θ⟩ =
u1 + n

u1 + u2 + N
. (6.24)

For a non-informative, uniform prior (u1 = 1, u2 = 1), the best estimate of the
error rate q, becomes

⟨θ⟩ =
n + 1

N + 2
, (6.25)

which is Laplace’s rule of succession for estimating probabilities from a limited
number of observations.

For heterograft data, we have N total reads of which N1 could be from genotype
1 and N2 from genotype 2, with N = N1 + N2, Figure 6.2. We assume in the fol-
lowing that the RNA-Seq associated errors will be comparable between homografts
and heterografts and between replicates.

The probability of observing n1 errors from N1 reads from genotype 1, given an
error rate q1 for genotype 1 is,

P (N1, n1|q1) =

(
N1

n1

)
qn1
1 (1 − q1)N1−n1 , (6.26)

and the probability of observing n2 errors from N2 reads, given an error rate q2 is,

P (N2, n2|q2) =

(
N2

n2

)
qn2
2 (1 − q2)N2−n2 . (6.27)

The joint probability of observing N1, n1, N2, n2 is thus

P (N1, n1, N2, n2|q1, q2) =

(
N1

n1

)
qn1
1 (1 − q1)N1−n1 ×

(
N2

n2

)
qn2
2 (1 − q2)N2−n2 .

(6.28)

If N2 and n2 were known, we could compute the probability of observing n being
associated with genotype 2 out of N total reads. We can use this to define a
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likelihood function (replacing the known q1 and q2 by θ1 and θ2 that we wish to
infer),

P (D|N2, n2, θ1, θ2) =

(
N −N2

n−N2 + n2

)
θn+N2−n2
1 (1 − θ1)N−n+n2 ×

(
N2

n2

)
θn2
2 (1 − θ2)N2−n2 .

(6.29)

To compute P (D|N2) we also need to consider the dependencies on n2, θ1, θ2. If we
knew the posterior distribution P (N2, n2, θ1, θ2|D), we could compute P (N2|D) by
summation over n2 (from 0 to N2) and integration over θ1 and θ2 (from 0 to 1),

P (N2|D) =

N2∑

n2=0

∫ 1

0

∫ 1

0

P (N2, n2, θ1, θ2|D) dθ1 dθ2 . (6.30)

From Bayes’s theorem we have

P (N2, n2, θ1, θ2|D) =
P (D|N2, n2, θ1, θ2) × P (N2, n2, θ1, θ2)

P (D)
, (6.31)

which leads to

P (N2|D) =

N2∑

n2=0

∫ 1

0

∫ 1

0

P (N2, n2, θ1, θ2|D) dθ1 dθ2 =

=

N2∑

n2=0

∫ 1

0

∫ 1

0

P (D|N2, n2, θ1, θ2) × P (N2, n2, θ1, θ2)

P (D)
dθ1 dθ2 .

(6.32)

We know that N2 can vary between 0 and N and n2 can be at most N2, so as
a prior for N2 we choose a uniform distribution over (0, N) and for n2 a uniform
distribution over (0, N2). For θ1 and θ2 we take the distributions inferred from the
homograft data, P (θ1) = Beta(α1, β1) and P (θ2) = Beta(α2, β2) as priors. This
results in a joint prior of

P (N2, n2, θ1, θ2) =
1

N + 1
× 1

N2 + 1
× Beta(α1, β1) × Beta(α2, β2) . (6.33)
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With this prior, the posterior distribution over N2 becomes

P (N2|D) =
1

P (D)

N2∑

n2=0

∫ 1

0

∫ 1

0

P (D|N2, n2, θ1, θ2) × P (N2, n2, θ1, θ2) dθ1 dθ2 =

=
1

P (D)(N + 1)

N2∑

n2=0

1

N2 + 1

(
N −N2

n−N2 + n2

)(
N2

n2

)
×

∫ 1

0

∫ 1

0

θn−N2+n2
1 × (1 − θ1)N−n+n2θn2

2 (1 − θ2)N2−n2 ×

θα1−1
1 (1 − θ1)β1−1

B(α1, β1)
× θα2−1

2 (1 − θ2)β2−1

B(α2, β2)
dθ1 dθ2 =

=
1

P (D)(N + 1)B(α1, β1)B(α2, β2)

N2∑

n2=0

1

N2 + 1

(
N −N2

n−N2 + n2

)(
N2

n2

)
×

B(n−N2 + n2 + α1, N − n + n2 + β1) B(n2 + α2, N2 − n2 + β2) .

(6.34)

The normalisation constant P (D), can be obtained by summing the above equation
over N2 and setting the result to 1. This leads to an expression for P (D),

P (D) =
1

(N + 1)B(α1, β1)B(α2, β2)

N∑

N2=0

N2∑

n2=0

1

N2 + 1

(
N −N2

n−N2 + n2

)(
N2

n2

)
×

B(n−N2 + n2 + α1, N − n + n2 + β1) B(n2 + α2, N2 − n2 + β2) .

(6.35)

We now have an analytical expression for the posterior over N2 with which the
expectation value for N2 can be computed,

⟨N2⟩ =

N∑

N2=0

N2 × P (N2|D) . (6.36)

The ratio of the inferred number of reads from genotype 2 over the total num-
ber of reads, r2 = ⟨N2⟩/N , for each SNP can be averaged over all SNPs to give
the expectation value of the percentage of transported reads averaged over each
transcript,

⟨r2⟩ =
∑

s∈S

r2
|S| . (6.37)

The posterior probability P (H1|D) for Hypothesis H1 and can be expressed as

P (H1|D) =
P (D|H1) P (H1)

P (D)
, (6.38)

and consequently we can find the posterior probability P (H2|D) for Hypothesis H2

as

P (H2|D) =
P (D|H2) P (H2)

/P (D)
. (6.39)
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The normalisation constant, or evidence P (D), can be written as

P (D) = P (D|H1) P (H1) + P (D|H2) P (H2) . (6.40)

Hypothesis 1 corresponds to N2 = 0 and the probability of H1 can be obtained by
setting N2 = 0 in P (N2|D) and renormalising accordingly,

P (H1|D) ∝ P (N2 = 0|D) . (6.41)

Hypothesis 2 corresponds to a value of N2 ̸= 0. Above, we assigned to every N2

an equal prior probability of 1/(N + 1), which also results in an equal prior for H1

and H2 for a defined N2. Choosing the N2 with the maximum posterior, N∗
2 , will

lead to highest posterior for H2 amongst the available options,

P (H2|D) ∝ P (N2 = N∗
2 |D) , (6.42)

and represents the most favourable choice for N2 suggested by the available data.
The proportionality factor is the same in both cases and results from the renor-
malisation due the change from (N + 1) hypotheses over N2 to 2 hypotheses, H1

and H2. The log posterior odds ratio can now be expressed as

log
P (H2|D)

P (H1|D)
= log

P (N2 = N∗
2 |D)

P (N2 = 0|D)
= log Bayes factor , (6.43)

which, as the priors are the same, is equal to the Bayes factor of hypothesis 2 over
hypothesis 1 at each SNP s. The key terms are obtained from previous expressions,

P (N2 = 0|D) =
1

P (D)(N + 1)B(α1, β1)

(
N

n

)
B(n + α1, N − n + β1) (6.44)

and

P (N2 = N∗
2 |D) =

1

P (D)(N + 1)B(α1, β1)B(α2, β2)
×

N∗
2∑

n2=0

1

N∗
2 + 1

(
N −N∗

2

n−N∗
2 + n2

) (
N∗

2

n2

)
×

B(n−N∗
2 + n2 + α1, N − n + n2 + β1) ×

B(n2 + α2, N
∗
2 − n2 + β2) .

(6.45)

6.2 Validation against labeled data

As most predicted graft-mobile mRNAs from RNA-Seq data have not been vali-
dated, there is uncertainty regarding their labelling, making an evaluation of the
classification performance problematic. We circumvent this problem by creating
datasets for which we know exactly which transcripts are assigned to be graft-
mobile and which not (see Methods). The use of simulated data gives us full
control over important parameters such as error rates and read depths while test-
ing the accuracy of our method.
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6.2.1 Error rates can be accurately inferred from read counts
per SNP in homografts

A first question was how well we can infer the true error rate from simulated data
(see Methods). Figure 6.6 shows the inferred error rate, ⟨θ⟩, plotted against the
true error rate q for a range of q from 0 to 1 and for read depth N from 10 to
10,000. For low read depths (N = 10) the possible number of outcomes is small,
leading to a visibly discretised set of inferred error rates with significant variation.
For N = 100, the inferred error rates match already well to the true error rates.
For N = 1000 and above, the estimates are accurately defined with high precision.
This suggests that with suitably high RNA-Seq read depths (relative to the error
rate), we can expect the inferred error rate per SNP to be a fair reflection of the
true error rate.
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Figure 6.6: Error rate estimates from the inferred Beta distribution improve with higher
read depth and accurately capture the known error rate in simulated data. Data were
generated by randomly assigning reads to the other genotype, n, based on a defined
error rate, q, for a total number of reads, N . The hyper-parameters were set to u1 = 1
and u2 = 1 (uniform distribution). The estimated error rate was computed from the
expectation of θ over the posterior distribution, ⟨θ⟩ = (u1 + n)/(u1 + u2 + N). Ten
datasets were generated for every value of q in steps of 0.01 between 0 and 1 for
different values of N .
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6.2.2 Negative and positive controls are captured well by
Bayes factors for individual SNPs

We compare hypotheses by evaluating the evidence for one hypothesis over an-
other. Here, we use logarithm base 10 of the Bayes factor for hypothesis 2 over
hypothesis 1, meaning that a value of zero arises when the data give no evidence
either way, a negative value when the data is consistent with expected error rates
and a positive value if graft-mobile transcripts are present, as discussed above and
back in the Introduction (Figure 1.12).

To investigate whether the Bayes factor calculation would correctly assign a neg-
ative value for cases where there are only errors (no graft-mobile transcripts), we
generated datasets (see Methods) for different error rates and different read depths.
Data were generated that represent both homograft combinations to infer their pos-
terior distributions for the error rates.

Separate data were generated from the same process with the same error rates for
each SNP and treated as heterograft data. We found that the Bayes factors from
most simulated datasets correctly favour hypothesis 1 that the observed data arose
from a process with consistent error rates between homo- and heterograft data.
However, as expected, there are several exceptions due to the stochastic nature of
the simulations, Figure 6.6. The variability in Bayes factors depends on how well
the read depth captures the underlying error rate, for instance an error rate of
q = 0.01 will not be well represented by a read depth of 100 or less.

After confirming that the Bayes factors perform satisfactorily on negative con-
trols, we next validated the approach on positive controls. We used simulated
data for which additional reads from genotype 2 were added (graft-mobile tran-
scripts), thus making them less consistent with the inferred homograft error rates.
As anticipated, the closer the number of reads from genotype 2 is to the expected
number of errors, the more challenging it is to distinguish graft-mobile transcripts
from errors, Figure 6.7. If the error rate for a SNP is q, then we would expect to
have on average qN reads that are errors. The standard deviation of this value
is

√
q(1 − q)N . If we infer the error rate from the homograft data, we obtain a

distribution over the inferred error rate, θ, the expectation of which, ⟨θ⟩, is our best
estimate for q. The detection of reads from graft-mobile transcripts is therefore
limited by the available data through the variation (precision) in the inferred error
rate. We conclude that the Bayes factors perform well at the individual SNP level
but that false assignments can be expected, in particular for low read depths that
fail to represent the underlying error rates.

6.2.3 Combining the evidence across SNPs increases the ac-
curacy of classification

A major advantage of the proposed framework is its ability to combine the evi-
dence across multiple SNPs within a transcript. If the data from several SNPs
of a transcript are incompatible with expected errors, then this enhances the evi-
dence of the transcript being graft-mobile. Conversely, if the data from only one
out of several SNPs within a transcript are found to deviate from expected errors,
and data from the other SNPs are likely errors, then this could result in evidence
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Figure 6.7: The Bayes factors for simulated data with a defined error rate become
more tightly distributed around negative values when the read depth is sufficient to
accurately estimate the error rate in the homograft data. Simulated homograft data
following a binomial distribution for a given error rate, q, and read depth, N , were
generated and compared against other such datasets that were treated as heterograft
data (but with no graft-mobile transcripts). Here, N is the same for homograft and
heterograft datasets. The plots show the results from 10000 simulated datasets for
two values of N . For q = 0.01 and N = 100 (left), the read depth in the homograft
data is insufficient to accurately estimate the error rate, leading to erratic inferences
for individual SNPs in the heterograft datasets. All SNPs are consistent with the
underlying error rate (as they were generated stochastically from the same model),
yet we find 1439 instances out of 10000 with log1 0 Bayes factor > 0 due to the
broad inferred homograft error distributions. For q = 0.01 and N = 1000 (right), we
get better estimates of the underlying error rates and a tighter distribution of Bayes
factors. In this case, we get 204 instances out of 10000 with log1 0 Bayes factor > 0,
i.e. (marginally) favouring the wrong hypothesis.

against the transcript being graft-mobile. We can demonstrate this effect by show-
ing how the distribution of Bayes factors for mobile and non-mobile populations
changes as we sum across all of the SNPs in a transcript, Figure 6.8 and Figure
6.9. Interestingly, for anything other than borderline cases of low read depth, this
improvement saturates in the simulated data and little is to be gained beyond a
SNP number of approximately 3, Figure 6.10.

6.3 Comparison to other methods

One key advantage of using Bayes factors is that we are not classifying transcripts
per se but instead evaluating the evidence for them being graft-mobile, or not. The
Bayes factors are thus used to rank our confidence in a transcript being graft-mobile
given the data. The strength of the evidence can be assessed using well-established
ranges [1], [5], [7], Figure 1.12 in the Introduction.

To compare the presented Bayesian approach with alternative criteria for defin-
ing mobile mRNA, we defined and implemented two approaches, Method A and
Method B, inspired by previous publications [98], [117]. Method A determines a
transcript as graft-mobile based on the number of reads mapping to genotype 2
being above a predefined threshold of 3, in two out of three replicates. Method B
filters out SNPs with reads mapping to genotype 2 in data from genotype 1 homo-
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Figure 6.8: The Bayes factors for simulated data with added reads, N2, from the other
genotype (graft-mobile) are mostly positive but depend on how well the homograft
error rates are defined. Simulated data from homograft data following a binomial
distribution for a given error rate, q, and read depth, N , were generated and compared
against other such datasets with added reads from the other genotype to represent
heterograft data. Both plots show the results from 10000 stochastic simulations. For
q = 0.01, Nhom = 100 and 5 added reads from the other genotype (left), there were
several instances that marginally support the incorrect hypothesis (log1 0 Bayes factor
< 0) but these vanish for higher read depths and therefore better defined error rate
distributions (right). As shown in Figure 6.5, the more reads from the other genotype
we have, the higher the Bayes factors.
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Figure 6.9: The inclusion of data from multiple SNPs per transcript enhances the
distinction between likely errors and graft-mobile transcripts. Each plot shows the
result of 10000 stochastic simulations with a different number of SNPs each with
q = 0.01, Nhom = 100, N = 100, N2 = 5.

grafts and then assigns SNPs as being graft-mobile when reads in the heterograft
data are above 3 in two replicates [117]. So, Method B corresponds to Method A
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Figure 6.10: Combining data covering multiple SNPs per transcript enhances the clas-
sification accuracy. Each plot shows the result of 10000 stochastic simulations with a
different number of SNPs each with q = 0.01, Nhom = 100, N = 100, N2 = 5. We
assign a transcript as being graft-mobile if log10 Bayes factor ≥ 1 and say the data
are consistent with errors otherwise. TPR is the true positive rate, FPR is the false
positive rate (see Methods).

using only pre-filtered SNPs. Figure 6.11 show a comparison of the different meth-
ods. We find that as the read depth increases, more and more false positives occur
using Method A, which leads to a drop in accuracy, Figure 6.11. This is because
if every nucleotide has an error rate, then higher read depths will result in higher
absolute numbers of errors. The conservative nature of Method B means that it
has a low rate of false positives, but it is unable to detect graft-mobile transcripts
when sequencing errors are present, as they always are, in the homograft data.
Method B is thus unable to detect graft-mobile transcripts, unless the error rates
are very low, Figure 6.11.

Confidently inferring a low error rate per SNP from RNA-Seq data requires a high
read depth. Consequently, SNPs with both low read depths and low error rates
were not detected in real RNA-Seq data [98], Figure 6.14, 6.15. The classification
found in the simulated data is also observed using artificial data (see Methods) gen-
erated from published RNA-Seq data from Thieme et al. [98], Figure 6.12. Using
a log10 Bayes factor ≥ 1 (see Methods) to classify transcripts as graft-mobile and
analysing the same dataset with the Bayesian method delivers both high TPRs and
low FPRs, reflected in high accuracy (Figures 6.11, 6.12, and 6.13). The approxi-
mately equal read depths between the homograft data and the blended heterograft
data reduces the difference in performance between the Bayesian approach and
Methods A and B (Methods A and B don’t take read-depths into account which
leads to a higher mis-classification rate when differences are present). Consistent
with the observations made above, the Bayesian approach shows an excellent TPR
(and accuracy) for simulations with reads from genotype 2 that exceed the ex-
pected number of errors in genotype 1, Figure 6.13. The analysis of existing data
in terms of sequencing depth and error rate per SNP, Figures 6.14 and 6.15, shows
that experimental data falls into a parameter regime where mis-classifications of
Method A and B can be expected. We conclude that the Bayes factors perform
well and significantly better than our implementation of Method A and Method B.
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Figure 6.11: Filtering SNPs based on observed errors or determining mobile transcripts
based on absolute read counts leads to poor classification accuracy for simulated data.
Using our Bayesian approach (Bayes, red curves) we assign a transcript as being graft-
mobile if log10 Bayes factor ≥ 1. Methods A and B are explained in the main text.
Here we have three replicates per transcript. The Bayesian approach sums the evidence
over replicates whereas Methods A (magenta) and B (green) require that two out of
three replicates show evidence for mobility. Both plots shows the accuracy, (TP + TN)
/ (TP + TN + FP + FN), of each method over 1000 simulated datasets for different
read depths, N , for an error rate of q = 0.01. The left plot shows how the accuracy
varies for different values of N for homograft read depths equal to N . The right
plot shows how the accuracy varies for different values of N for fixed homograft read
depths of 1000. The convergence of Method A and B towards ≈0.5 is a consequence
of the balanced dataset with a 1:1 ratio of transcripts from one genotype (i.e. not
graft-mobile) and two genotypes (i.e. graft-mobile), meaning that their performance
is essentially little better than random for data similar to the simulated datasets. For
an unbalanced dataset the accuracy could drop below 0.5 for Method A and B. An
analogous analysis for true and false positive rates using data from published RNA-Seq
studies is shown in Figure 6.12.

6.4 Methods

6.4.1 Dataset generation

We used two approaches for generating test data, simulation and blending. The
first uses purely simulated data based on the underlying statistical model described
below. The second mixes RNA-Seq data from existing homograft experiments to
generate an artificial heterograft dataset. Neither approach is likely to capture the
full variation and noise inherent in real datasets but have the advantage of having
known labels that allow us to evaluate our method in a controlled manner.

6.4.2 Simulation of RNA-Seq data

Simulated datasets are generated based on a binomial distribution with an error
rate q for each SNP. A random number generator is used to provide stochasticity
in line with the expected variance of a binomial distribution. For the homograft
datasets, each SNP is assigned a number of reads (N) and a value for q. A range
of values for N and q were used and are given in the individual figures. For each
read, from 1 to N , a uniform random number is drawn and if this number is
greater than q then the read is assigned to genotype 1, otherwise to genotype 2.
The generated reads per SNP thus represent a discrete realization of a stochastic
process with a defined error rate, q, with N reads assigned to genotype 1 and
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Figure 6.12: A comparison of methods on artificially generated heterograft data from
real RNA-Seq data shows a similar trend in performance to the simulated datasets. The
Bayesian approach (top), Method A (middle) and Method B (bottom) are evaluated
in terms of their true (TPR) and false positive rates (FPR) for blended real data using
a blend factor of p = 0.1 (see Methods). Only SNPs of comparable read depths
between datasets were used and the data were binned for N (see Methods). TPR
and FPR are shown per SNP. Note that for similar read depths at each SNP location
between homografts and heterografts, Method A and B make less mis-classifications
than they would for different read depths. Without prior knowledge of the error rates,
the Bayesian approach requires sufficient sequencing read depth to build an accurate
error model.

n reads assigned to genotype 2. The heterograft data are generated using the
same process but with the addition of further reads, N2, from genotype 2 that
represent mobile transcripts. Different numbers of added mobile transcripts, N2,
are used to evaluate the sensitivity of the method. For measuring the classification
accuracy (see below) we use balanced datasets throughout to not distort any of the
performance metrics.
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Figure 6.13: The classification performance of graft-mobile mRNAs depends on the
error rates (q) and the read depths (N) of the RNA-Seq data. The simulation conditions
are the same as in Figure 6.11. N is the same homograft and heterograft data. The
numbers of transcripts correctly labelled (TP and TN) based on Bayes factors (BF)
increases with read depth (left). Higher read depths capture the error rates from
the homograft data, resulting in clearer separation based on Bayes factors between
hypothesis 2 (graft-mobile) and hypothesis 1 (errors). However, as sequencing errors
in heterograft data are more likely to arise with higher read depths, we see a rise in
false positives (transcripts with errors being incorrectly labelled as being graft-mobile,
FP) for Method A (middle). Conversely, the increase in errors in the homograft data
with read depth, leads to an increase in false negatives (graft-mobile transcripts being
incorrectly labelled as non-graft-mobile, FN) in Method B (right). Therefore, both
Methods A and B display decreasing classification performance with increasing read
depth. Graft-mobile transcripts have been shown to be present in low numbers [106],
therefore requiring high sequencing depths in order to detect them and necessitating
methods able to distinguish between errors and graft-mobile transcripts.

Figure 6.14: Sequencing read depth N and inferred error rate ⟨θ⟩ per SNP can vary
significantly over a broad range. The distribution of the sequencing depths per SNP
(left) and inferred error rates per SNP (right) from homograft RNA-Seq data from
Thieme et al. [98]. The genotypes used in this experiment were Arabidopsis Col-0
and Ped-0. The best estimate of the error rate is ⟨θ⟩ = (n + 1)/(N + 2), with n the
number of reads carrying the SNP of genotype of the non-sampled tissue and N the
sequencing depth, i.e. number of RNA-Seq reads mapping to a SNP position.
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6.4.3 Blending real RNA-Seq data

Whilst the simulated data are inherently noisy, they follow an underlying statistical
model that may not capture the variability inherent in experimental data. We
therefore generated labelled data based on existing RNA-Seq datasets. We took
RNA-Seq homograft data from the Arabidopsis Col-0 and Ped-0 accessions [98]. We
then ‘titrated’ one dataset into the other to create a labelled heterograft dataset,
following

(1 − p) × Col − 0 + p× Ped − 0 , (6.46)

where p is the blending proportion. For instance p=0.1 would include 10% of the
RNA-Seq reads for each SNP from Ped-0 and add them to the reduced (1 − p)
reads in Col-0. If a SNP in the Ped-0 dataset had 100 reads assigned to the Ped-0
genotype then for p=0.1 we would add 10 of these reads to create a graft-mobile
transcript. We selected SNPs that had a comparable read depth in Col-0 and Ped-
0. Note that this approach creates data homo- and heterograft data of similar read
depths, providing favourable conditions for Method A and B. Given the spread
and limited data compared to the simulations we used adaptive binning to provide
approximately equal-sized sets to evaluate the performance of the method as a
function of read depth N .

6.4.4 Bayesian classification criterion

The Bayes factor denotes the evidence provided by the data that supports one
hypothesis over another [1], [5]. We use these Bayes factors to rank our confidence
in a transcript being graft-mobile, however, to evaluate our approach against ex-
isting methods that classify into mobile and non-mobile, we need a binary output.
Following standard practice [5], [7], we use a value log10 Bayes factor ≥ 1 to select
hypothesis 2 over hypothesis 1. It is worth noting that we could also determine
transcripts for which there is strong evidence for them not being graft-mobile (e.g.
those with log10 Bayes factor ≤ −1). This latter point is important for curating
high-confidence datasets for training using positive and negative examples.

6.4.5 True and false positive rates

The classification performance is evaluated using accuracy, and true and false pos-
itive rates. Each mRNA is given one of four different labels: an mRNA that is
correctly classified as graft-mobile is a true positive (TP); an mRNA incorrectly
classified as graft-mobile is a false positive (FP); an mRNA correctly classified as
non-graft-mobile is a true negative (TN); an mRNA that is incorrectly determined
to be non-graft-mobile is a false negative (FN). From this, we can compute the
true positive rate (TPR) as the proportion of the graft-mobile mRNAs that are
classified correctly from all the graft-mobile mRNAs, (TP / (TP + FN)), and the
false positive rate (FPR) is the proportion of the non-graft-mobile mRNAs that are
incorrectly assigned out of all of the non-graft-mobile mRNAs (FP / (FP + TN)).
The accuracy is calculated as (TP + TN) / (TP + TN + FP + FN). The accu-
racy is 0 if no classes are identified correctly (TP=0, TN=0) and 1.0 for error-free
classification (FP=0, FN=0).
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6.4.6 Availability of code, data and materials

A detailed tutorial with test data and results for the statistics and simulation
package baymobil can be found on our Github. It is licensed under a MIT software
license.

6.5 Discussion

Long-distance transport of mRNAs has been shown to be important for plant de-
velopment, and recently also in mammalian systems [133]. A popular method
for detecting transported mRNAs in plants involves grafting plants with different
genetic backgrounds and using RNA-sequencing techniques to determine whether
transcripts have traversed the graft junction. To do so robustly requires consider-
ation of the associated sequencing and alignment errors that are known to occur.

Here, we have presented an approach for distinguishing between expected variation
(e.g. biological variation, RNA-Seq errors, processing errors) in RNA-Seq pipelines
and putative graft-mobile transcripts. We set up the problem as an hypothesis-
testing framework founded in Bayesian inference for which we derived an exact
analytical solution. A key, yet unverified, assumption inherent to the method and
other approaches that compare to homograft data is that the biological and techni-
cal variance of the RNA-Seq analysis in homografts and heterografts will be similar.

For equal prior probabilities for hypotheses 1 and 2, the posterior probabilities
ratios are equivalent to Bayes factors. Bayes factors are computed for each SNP
position based on the associated read counts and then combined into a Bayes factor
per transcript. Replicates can be handled analogously. Bayes factors allow tran-
scripts to be ranked based on data supporting their graft-mobility. Higher Bayes
factors are indicative of more translocated individual transcripts (the expectation
value of which can be computed separately).

We show that RNA-Seq error rates can be accurately estimated using the presented
methodology (Figure 6.6) and how the read depth influences the precision (Figure
5.2, Table 5.1, and Figures 6.5, 6.3, 6.6) and the inferred number of graft-mobile
transcripts (Figure 6.5). Multiple SNPs and replicates can be readily accounted
for by summing their contributions (Equation 6.9, Figures 6.10, 6.4, 6.8). We val-
idated our approach extensively with simulations (Figures 6.9, 6.7, 6.8, 6.9). We
used simulated RNA-Seq data to allow for accurate quantification of the perfor-
mance of the method, avoiding the uncertainties inherent in previously published
graft-mobile mRNA labels. An additional advantage is that the use of simulated
RNA-Seq data allows us to evaluate the performance over a range of parameters.
Further validation was carried out using datasets derived from published homograft
data [98], Figure 6.12.

The evaluation of different mobile mRNA detection methods showed that ap-
proaches using absolute number thresholds of reads per SNP on selected positions
lead to high rates of mis-classified transcripts, Figures 6.11, 6.12 and 6.13. Classify-
ing graft-mobile transcripts based on absolute read numbers without consideration
of error rates and read depths (Method A) leads to the assignment of mobility to
many transcripts for which statistical support is not present (high false positive
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rate).

On the other hand, filtering SNPs with errors in the homograft data (Method B),
results in a reduction in the number of detected mobile transcripts (low true pos-
itive rate), Figures 6.11, 6.12 and 6.13. The Bayesian method relies on reference
data for the estimation of error rates and the quality and quantity of this data
influences its performance. Here, we used a non-informative uniform prior to eval-
uate the method but a more suitable choice of prior for the error rates based on
existing experimental data and RNA-Seq error analyses [134] would help overcome
the limitations arising from low read depths (Figure 6.3).

The approach could be extended in several ways. We have simplified the outcome at
each SNP position to map to the two genetic backgrounds used for grafting, result-
ing in a binomial likelihood. Including errors for all four nucleotides could provide
a better description of the overall nucleotide variability, leading to a replacement
of the bionomial likelihood by a multinomial distribution. The conjugate prior of
the multinomial distribution is the Dirichlet distribution, however, we have not
explored how tractable this approach would be to solve analytically in full. A key
assumption of the presented approach is that the error rates per SNP are compa-
rable between experiments. This assumption will need to be checked for real data.
If necessary the inferred error rate distributions may need to be adjusted to take
large deviations into account (for instance, by increasing the spread by reducing
the Beta function parameters). Another addition would be to include sequencing
quality scores within the framework. These extensions will be the subject of future
developments after the careful analysis of existing datasets to assess shortcomings
in the presented developments.

To summarise, this contribution presents a Bayesian framework that takes account
of read depths, error rates, replicates, and multiple SNPs per transcript, providing
a powerful means for distinguishing graft-mobile mRNAs from RNA-Seq errors.
As graft-mobile mRNAs are often rare compared to endogeneous mRNAs [106],
RNA-Seq read depths needs to be sufficiently high [117] and chosen with care and
every effort should be made to reduce the risk of contamination [89]. Detecting
rare events can be statistically challenging. Error rates from either non-grafted
plants or homografts provide useful reference values for the number of sequencing
errors to expect for different genomic locations. The higher the read depth of the
reference dataset, the better the error rates can be inferred.
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Figure 6.15: Real RNA-Seq data does not fall into parameter regimes that are
favourable for Method A and B. Sequencing depths per SNP vs. inferred error rates
per SNP from homograft data (4 samples from top to bottom: Col-Col root, Col-Col
shoot, Ped-Ped root, and Ped-Ped shoot) from Thieme et al. [98]. The left hand side
plots show the relationship across the whole dataset on log-log scales. In the right hand
side plots we zoom into the marked window of the left plot and lose the log-log scale
(compare to Figure 6.13). Each intersection in the grid marks one of the pie plots in
Figure 6.13. N is the number of reads mapping to a SNP position. The best estimate
of the error rate q is ⟨θ⟩ = (n + 1)/(N + 2), with n the number of reads carrying the
SNP of the genotype of the non-sampled tissue, and N number of all reads mapping
to the SNP position. The colour indicates the number of SNPs for each pair of ⟨θ⟩
and N .
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The adventurous endeavors
of applying Bayes factors in
the detection of mobile
mRNAs on real RNA-Seq
data

Transparency Note — The learnings uncovered during our efforts to apply Bayes
factors on real RNA-Seq data to detect mobile mRNAs are documented in a re-analysis
study carried out by Pirita Paajanen, Melissa Tomkins, Ruth Veevers, Michelle Heeney,
Hannah Rae Thomas, Federico Apelt, Eleftheria Saplaoura, Saurabh Gupta, Margaret
Frank, Dirk Walther, Christine Faulkner, Julia Kehr, Friedrich Kragler, Richard J. Mor-
ris and myself [63].

Summary — After demonstrating how we can improve the detection accuracy for
mobile mRNA in RNA-Seq data using Bayesian inference we couldn’t wait to see the
improvements when applying it to real data. We started re-analysing several published
data sets with the aim to establish a high-confidence dataset of mobile mRNAs. Our
results suggest that previously reported variability between experiments can also be
explained by a lack of detection accuracy, which has implications for existing mobile
mRNA annotations and challenges current views on long-distance mRNA communica-
tion. We could confirm our concern about sequencing errors and detection criteria,
but found further analysis problems that we couldn’t resolve yet. Therefore, this chap-
ter does not present the obvious results that we and the community had so eagerly
awaited (Bayes factors for all genes, high-confidence mobile lists, ...), but we discuss
why cannot present them. We hope that the uncovered issues are not only appreciated
by the mobile mRNA community but also travel further into other areas in genomics.
In particular studies using single nucleotide polymorphisms (SNPs) to detect variants
may be affected by similar problems.
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7.1 Proud and oblivious, we set off on our journey
...

In 2023, equipped with our new statistical analysis, we sought to establish a high-
confidence dataset of mobile mRNAs. We had the goal of using this dataset for
learning the determinants of mobility, and to develop and train predictive models.
We planned on using 7 data sets for the meta-study: A study on the parasitic
plant Cuscuta pentagona feeding on Arabidopsis [69], a study using Arabidopsis
thaliana (grafting the ecotypes Col and Ped) [98], a grapevine study using Vitis
palmata, Vitis girdiana, Vitis hybrid C3309, and Vitis vinifera cultivar Riesling
[106], and studies using watermelon (Citrullus lanatus) [117], Nicotiana bethami-
ana [105], Solanum lycopersicum and Nicotiana benthamiana [120], and cucumber
[107]. In the following sections of this thesis, we will summarise the relevant re-
sults for mobile mRNA detection using SNP-based approaches. In the paper we
also inspected a second detection strategy, grafting two different species followed
by RNA-Sequencing, so that the genome differences are bigger than SNPs only.

Our re-analysis efforts have implications for existing mobile mRNA annotations
and challenge current views on the extent of long-distance mRNA communication.
To this date, we have not yet found a way to robustly detect mobile mRNAs from
RNA-Seq data, which makes us question whether this popular experimental setup
is suitable for high-throughput identification of mobile mRNAs at this point in time.

Looking in detail into the data supporting the annotation revealed several con-
founding problems in current methods for detecting mobile mRNAs that have not
been considered in prior analyses to our knowledge. The re-analysis results sug-
gest that the reported variability between experiments [67] is partly a consequence
of the criteria that have been employed to classify mRNAs as being mobile, and
partly a bioinformatical data processing problem, of which parts cannot be solved
with a noise filter only. We have shown earlier in Chapter 5 and 6 that criteria
based on absolute read counts lead to a dependence on read-depth for simulated
data [64]. In this later work, we could confirm this dependency for real data, but
found more issues. We show that criteria based on mapping to genomes depend on
genome assembly completeness and quality. Furthermore, we identify other sources
of variation, such as gene copies, that can bias the analysis.

7.2 ... and all we found were rocks along the way

7.2.1 Issue 1: Can we find co-occurring SNPs acting as a
positive control?

In the last chapter, we investigated the impact of sequencing noise at the individual
SNP level. During the re-analysis we had the idea to search for the strongest pieces
of evidence we can find for mRNA mobility. If SNPs are located closely together,
a single RNA-Seq read may cover more than one SNP (we will refer to these as
co-occurring SNPs). Requiring RNA-Seq reads to cover co-occurring SNPs that
support the alternate allele results in a less pronounced read-depth dependence
than single SNP criteria. We therefore investigated RNA-Seq reads that cover
multiple SNPs, Figure 7.1 (a). We did find such reads in the data, and they were
particularly easy to find in two samples from one, single replicate, experiment.
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(a) (b)

Figure 7.1: Allelic differenes in multiple SNPs per read and the appearance of heterozy-
gosity (in homozygous species) can be used to check the viability of SNPs and exclude
potentially problematic transcripts from the analysis. (a) SNPs can be in close proxim-
ity, and therefore it can happen that several SNPs are recorded in the same RNA-Seq
read. In this example, genotype 1 has three SNPs very close to each other: A, G and
A (yellow bar). In genotype 2, we find G, T, A (magenta bar) in those positions. In
this schematic example, reads from the shoot of Genotype 1 are mapped to Genotype
2. If all covered loci carry the allele of Genotype 2, we are observing evidence for the
read being from Genotype 2 and the associated transcript being potentially mobile.
On the other hand, if only one locus carries the allele of Genotype 2, the outcome is
inconclusive. (b) Arabidopsis thaliana is a selfing species, so we expect homozygocity
at all positions for all reads mapping to the genome at all positions. However, for du-
plicated genes (magenta) in Genotype 1, which may be single copy genes in Genotype
2 (yellow), short read sequencing and mapping to Genotype 2, can give rise to what
appears to be heterozygocity. When there are two alleles present in the homograft data
(magenta and yellow), we may be observing pseudo-heterozygocity. As the identifica-
tion of such pseudo-SNPs depends on read-depth, it is important to exclude the full
gene, rather than only the seemingly heterozygous SNPs. For deeper explanations and
examples in the data, see full manuscript [63].

Currently, we are looking into quantifying the occurrences.

7.2.2 Issue 2: Are Pseudo-SNPs and Pseudo-heterozygosity
affecting the data processing?

The examination of reads over multiple SNPs revealed another confounding factor
in the identification of mobile mRNA; several loci showed apparent heterozygosity
in the homograft data, Figure 7.1 (b). While the Arabidopsis thaliana ecotype
Columbia (Col-0) assembly is of excellent quality, the genome assemblies of other
Arabidopsis ecotypes are not all of the same quality. For instance, a recent study
of the Landsberg erecta (Ler-1) ecotype [135] of Arabidopsis thaliana identified 105
single copy genes present only in Ler-1 but not in Col-0, and 334 single copy or-
thologs that had an additional copy in only one of the genome assemblies. It has
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been estimated that 10% of the annotated genes in Arabidopsis have copy-number
variation [135], [136]. Differences in gene copy numbers can lead to reads not map-
ping correctly, which gives rise to pseudo-SNPs and pseudo-heterozygosity [135],
[136]. Whilst challenging to quantify, a high fraction of reads with variation at spe-
cific positions within a single genome can be indicative of pseudo-heterozygosity
[135], [136]. Meaning, in addition to technological noise, there are also biological
causes that could be interpreted as SNPs of an alternate allele. This is an issue we
haven’t found a solution for yet.

7.2.3 Issue 3: How do we handle outlier samples?

We mentioned above how one experiment (flowering Ped/Col) contained a sig-
nificant number of reads covering multiple SNPs from the other genotype. Two
samples from this experiment accounted for 1373 and 577 of the annotated mo-
bile mRNAs from the root and rosette, respectively, recall Figure 5.3 and Table
5.2 [98]. This prompted questions about when a sample should be considered an
outlier with technical origin.

7.2.4 Issue 4: How informative are the SNP-positions we
are looking at?

To investigate the differences between SNPs and non-SNPs, we computed the nu-
cleotide distributions at different positions as a negative control. Given the ex-
pected low numbers of mobile mRNAs relative to local transcripts, most SNPs in
mobile mRNAs will not have sufficient coverage to detect foreign alleles, Figure 7.3.
Those SNPs that have reads matching the alternate allele may provide evidence
in support of the associated mRNA being from another genotype and potentially
being trafficked into the sampled tissue. Figure 7.2 shows the distribution of reads
that match to the alternate allele, n, over the total number of reads, N , for each
SNP in the mobile population of two example datasets [98], [106]. We can see that
several SNPs have support for the alternate allele. We would expect these distribu-
tions to be different from another, non-SNP, positions in the sequence. However,
looking at all neighbouring positions of SNPs in the mobile population and com-
puting the number of reads with second most frequent nucleotide, m, over the most
frequent and second most frequent nucleotides, M , we find little difference between
SNPs and non-SNPs. More reads with nucleotides from the alternate allele at a
SNP position should lead to a shift in the distribution towards higher n/N values,
i.e. n/N > m/M , but this is not observed. This is in line with prior results that
suggest that many reads that have been interpreted as supporting the alternate
allele are actually consistent with sequencing noise.

7.3 Conclusion

In plants, local cell-to-cell transport of mRNA occurs via plasmodesmata [75], [91],
and long-distance translocation is thought to be facilitated by the phloem [99]. The
transport of several mRNAs, both cell-to-cell and over long distances, has been ex-
perimentally validated by methods that include the detection of the mobile mRNA
via qRT-PCR, a translated protein, or a phenotypic change distal to the site of tran-
scription of either an endogenous or transgene-derived sequence. The evidence for
transport and translation of selected mRNAs is compelling [137], [138] and several
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Figure 7.2: The distributions of nucleotides at SNP and non-SNP positions can be
informative for evaluating the evidence for the alternate allele. Top (red): Histograms
of the ratio of the number reads that match to the alternate allele, n, over the number
of reads of local and foreign reads, N , for each SNP position in the mobile population on
examples from Arabidopsis [98] and grapevine [106] on the left and right, respectively.
Several SNPs have reads that match to the alternate allele. The full distributions
are depicted in Figure 7.3. Bottom (blue): Histograms of the ratio of the number
reads that match to the second most frequent nucleotide, m, over the sum of the
number of reads over the most frequent and second most frequent nucleotide, M ,
for neighbouring positions to SNPs. An overlay of the distributions is given in Figure
7.4. In these examples, the SNP distributions are similar to non-SNP distributions,
suggesting that both may be a consequence of the same technological noise.
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Figure 7.3: Most SNPs in mobile mRNAs do not have evidence for the alternate allele.
Histograms of the ratio of the number of reads that match to the alternate allele, n,
over the number of reads of local and foreign reads, N , for each SNP position in the
mobile population on examples from Arabidopsis [98] and grapevine [106].

mobile mRNAs have been experimentally confirmed. Based on former RNA-Seq
studies, several thousand transcripts have been reported to be transported over
long-distances in plants [69], [98], [105]–[107], [117], [120]. The potential for sig-
naling and the possibility of finding mobility motifs that would greatly enhance
our ability to engineer designed constructs for transgene-free genome editing [138],
make the study of mobile mRNAs particularly important.
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Figure 7.4: Overlay of the ratios of nucleotides at SNP and non-SNP position. His-
tograms of the ratio of the number reads that match to the alternate allele, n, over
the number of reads of local and foreign reads, N , for each SNP position in the mobile
population on examples from Arabidopsis [98] and grapevine [106] on the left and right,
respectively. For non-SNP positions the ratio of the number reads that match to the
second most frequent nucleotide, m, over the sum of the number of reads over the
most frequent and second most frequent nucleotide, M , is depicted. The frequencies
are somewhat different but the actual values of n/N are similar for SNP and non-SNP
positions.

Despite significant recent progress in the elucidation of mechanisms underlying
long-distance mRNA movement, many key questions remain. Why are so many
transcripts transported? What is their function? How are they transported? In
particular, bi-directional transport and movement against the presumed direction
of phloem flow seems puzzling. Why are the numbers and identity of mobile mR-
NAs so variable between experiments?

In this recent work, we re-analysed RNA-Seq data and critically reviewed asso-
ciated bioinformatic pipelines from several key publications on mobile mRNAs.
Identifying putative mobile mRNAs relies on distinguishing from which of the two
genomes of the grafted plants an RNA-Seq read arose. As shown, this step is far
from trivial. Once a transcript has been identified as foreign to the sampled tissue
and likely to be from the other grafted genotype, then a common hypothesis is
that it may have been transported from the grafted tissue into the sampled tissue,
i.e. the transcript is a mobile mRNA. However, even after stringent controls, con-
tamination can rarely be excluded. Strictly speaking, the current criteria used to
define a transcript as being mobile should rather, therefore, be for a transcript to
be from a foreign genotype. Furthermore, the detection accuracy can be debated
after taking into account newly uncovered issues.

Our re-analysis of grafting data suggests that the evidence from RNA-seq data
supporting many candidate mobile mRNAs cannot be discerned from technologi-
cal noise, genome assembly issues, and associated subtleties in data processing. In
fact, our negative controls concern us: In those cases where homograft data was
available, we found little difference between homograft and heterograft or between
SNPs and neighbouring positions. If this is the case and the current mobile mRNA
detection methods based on RNA-Seq are susceptible to technical and biological
noise, then we can make several predictions.
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For transcripts from the alternate allele, we would expect RNA-Seq reads that cover
multiple SNPs to have all SNPs corresponding to a specific genotype, whereas for
technological sequencing noise, such as base-calling errors or reverse transcriptase
errors, this co-occurrence is statistically highly improbable and would not be ex-
pected. We point out that both non-selective mRNA transport and contamination
would be expected to give rise to high numbers of transcripts from the alternate
allele that correlate with the read depth in the source tissue and are therefore chal-
lenging to distinguish.

In the extreme case of technological noise inadvertently being a main contributor
to the SNP-based classification of mobile mRNAs (by defining a transcript as being
mobile based on absolute read counts), we would expect that mainly endogenously-
expressed transcripts are found to be mobile. We would therefore not expect to
find an mRNA which was over-expressed in a source tissue but which is not ex-
pressed in the sampled tissue to be identified as mobile. Furthermore, we would
expect a pronounced read-depth dependence and considerable variation between
experiments due to the nature of sequencing associated errors. This read-depth
dependence (arising from previously used criteria to define mobile mRNAs and
potentially also from contamination) is likely to be the underlying cause for the
observed dependence on abundance [110], i.e. abundance is causative for mobility
but not in the way we had envisioned and does not have a mechanistic explanation
but is rather a consequence of how mobile mRNAs had been defined. Interestingly,
in mammalian systems, mRNA transport was also found to be pervasive across the
genome, in a non-selective and expression dependent manner [139].

Base-calling errors, reverse transcriptase errors, differences in coverage, batch ef-
fects, potential contamination, copy number variation and genome reference quality
all represent alternate hypotheses that also explain data for current mobile mRNA
assignments from RNA-Seq experiments. Overall, it is not clear whether short-read
RNA-Seq is a viable technique for identifying mobile mRNAs when the transported
numbers are so low and below the typical noise levels of this technology. It thus be-
comes important to evaluate different hypotheses rather than to define transcripts
as mobile based on chosen criteria. Although several mRNAs that were identified
as being mobile based on RNA-Seq data have been experimentally validated, we
cannot rule out that others might be false positives.

We have a lot to learn about the phenomenon of long-distance mRNA transport
and its function. This re-analysis of available RNA-seq datasets highlights the
complexity of identifying mobile mRNAs and raises questions about the extent of
mRNA communication in plants. We hope that the presented considerations and
analyses will contribute to driving this exciting field forward.

7.4 Methods

The study summarised in this chapter was led by Pirita Paajanen, and is docu-
mented in further detail in a recent preprint [63]. Briefly, we used the following
published datasets, including the archived reads from NCBI.
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Cuscuta pentagona [69]: PRJNA257158 (incomplete and partly corrupt);
Vitis vinifera [106]: SRP058158 and SRP058157;
Solanum lycopersicum, Nicotiana benthamiana [120]: SRP111187;
Arabidopsis thaliana [98]: PRJNA271927;
Citrullus lanatus L. [117]: PRJNA553072.

We also used the deposited Supplementary datasets to obtain the numbers of identi-
fied mRNAs. For each of the grafting studies, we downloaded the reference genome
sequence that matched the one that was used in the original paper with the same an-
notations; these were all publicly available on Ensembl plants. The raw reads were
mapped to the references using hisat2 (v.2.1.0) [140], and processed by samtools
(v1.9) [141], the expression levels were quantified with stringtie (v1.3.5) [142]. The
variants were called with bcftools (v1.10.2) [141]. The NCBI nucleotide database
was downloaded on (21/Oct/2022) and blast+ v2.9.0 [143] was used for alignments.
The error-rate corrected evaluation of evidence for mobility was performed using
the baymobil python package, the method introduced in Chapter 6 [64], [65].
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Discussion

8.1 What we have learned in this thesis

In Chapter 1, we gently revisited the fundamental reasons behind our pursuit of
science and how we derive knowledge from data. We brought to our awareness how
we learn and update our beliefs, and that we can mathematically articulate this
process using probability theory. As science is all about learning and updating our
knowledge through observations and experiments, we elucidated the rationale for
employing probability theory in and on science throughout the thesis. We explored
the human intuition of this mathematical and philosophical framework which of-
fers concise and beautiful solutions to the example problems in the Introduction
and the real-world applications discussed in subsequent chapters. Already in the
explanatory problems we uncovered what solutions Bayesian statistics can provide,
and where limitations of extrinsic nature lie. Examples of upper boundaries may
be set by available data which can be only giving limited information and, there-
fore, restricting inference we can draw from them. This exploration sets the stage
for the discussions that follow. We hope to have conveyed the utility of Bayesian
approaches in scientific inquiry and generated appetite to learn more by pointing
out its elegance.

In Chapter 2, we acquainted ourselves with the prominent data type of this the-
sis: RNA-Sequencing data. We found out how it helps us to learn about RNA
populations in tissues, how experiments are set up to investigate changes in RNA
populations, and how the data is traditionally processed and analysed. We have
prepared ourselves for diving into the work presented in this thesis. We are merging
what we have learned in Chapter 1 and Chapter 2 and bring Bayesian inference
into the analysis of RNA-Seq data.

In Chapter 3, we introduced the application of Bayes factors in the analysis of
RNA-Seq data for identifying gene expression changes. In the Introduction we
were observing the advantages of using a single Bayes factor to describe medical
test statistics, instead of relying on multiple conventional accuracy indices. In
Chapter 3 we calculate Bayes factor which allow us to quantify the evidence for
changes in gene expression between two samples. Similar to the example in the
Introduction we observe the beauty of the method and its ability to condense the
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communication of results into a single value. This enhances clarity and allows us to
rank (instead of classify) genes according to evidence for expression change. With
this, we are opening new avenues to communicate our confidence in hypotheses and
avoid arbitrary cutoffs that are often applied in traditional analyses using p-values,
log2 fold change, and such.

In Chapter 4, we examined the variability inherent to RNA-Seq data and dis-
cussed how this variability, when combined with data sparsity, can lead to pitfalls in
the interpretation. While RNA-Seq data holds substantial potential for uncovering
biological insights, its effectiveness is contingent upon a thorough understanding of
both biological and technical fluctuations that may influence the results. Properly
accounting for these variations is essential to harness the full power of RNA-Seq
analyses and avoid common traps that can misguide conclusions.

In Chapter 5, we learned about the fascinating phenomenon of mobile mRNAs in
plants and the inventive efforts to develop a high-throughput detection technique
that merges ancient grafting methods with cutting-edge sequencing technologies. In
Chapter 6, we employed Bayes factors to assess the evidence for mRNA mobility
using RNA-Seq data from grafted plants. While we were once again impressed by
the performance of the Bayesian approach, we have recently encountered additional
issues that have raised concerns about the reliability of this detection method. In
Chapter 7 we summarised the recently uncovered structural problems underlying
the usage of RNA-Seq data from grafted plants that must be addressed to achieve
successful detection of mobile mRNA.

8.2 What more is there to say?

I am absolutely stunned by what we can do in science in 2024. Advances in
sequencing technologies allow us to get insights into molecular processes within
tissues and cells, offering tremendous opportunities to unravel how gene regulation
orchestrates development and responses to the environment [9]–[11]. Furthermore,
we have found countless creative applications of the technology in research and
medicine (e.g. detecting mobile mRNA in plants). The impact of RNA-Sequencing
is, nevertheless, tightly linked to our ability to handle the data. And I am surprised
by how much more there is for us to do to improve this.

RNA-Sequencing data comes with measuring uncertainties that have been chal-
lenging the statistics community already for a while [12], [14]–[19], [28]–[35]. Given
variability is the big challenge this data exposes us to, it does surprise me, that
not more efforts have been put into finding solutions in the Bayesian universe for
these problems – so far. In this thesis, I have presented my work as part of a team
of curious, eager and fun scientists, full of determination to do this. We started
our journey with the challenge of detecting mobile mRNA in plants, from where
we moved to the popular search for differential gene expression. We have found
beautiful analytical solutions to calculate Bayes factors in both cases, showing con-
vincing performance and providing a more intuitive solution. Despite discussions
for, against or how to exactly use Bayes factors [144]–[146] and hypothesis testing in
general [147]–[150], we found the quantification and ranking solutions a compelling
first step, aside from the analysis being fast (concomitant of the exact solutions
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given) and the circumvention of arbitrary cutoffs. It is somewhat delusive to com-
pare the methods presented in this thesis to existing methods in the field, seeing
the fundamental differences in mathematics and philosophy. Bayesian statistics
provide opportunities to communicate and interpret research results in a different
way – framed in a world view of ever-updating knowledge. Of course, we still did
do our best to show with simulated and real data how our methods provide sensible
results which are in some cases more and in some cases less compatible with the re-
sults from other analyses. Comparing methods without a ground-truth will always
end up in circular arguments, as the absence of an objective standard makes it im-
possible to definitively assess which method yields more accurate or reliable results.

Overall and nevertheless, we have also learned about problems where Bayes factors
and Bayesian inference can not solve the issue.

8.3 Why Bayes factors cannot solve all our prob-
lems

Critical voices (like certain parts of my own brain) will push this discussion in the
direction of whether or how to exactly use Bayes factors [144]–[146] and hypothesis
tests [147]–[151]. I agree that this is a fair point to raise. Using Bayes factors
in the analysis the way we did it is still an employment of a hypothesis test, and
we have not put forward a sophisticated process model for the high-throughput
analysis we do. We are using Bayes factors for asking a simple question, far from
the search for mechanisms of the phenomena we are investigating. Of course, this
would ultimately be the goal and the most effective way to learn from our data. I
am curious and excited about the efforts that are made to do exactly that, and in
what other ways we can make use of the huge, growing amounts of RNA-Seq data
around us. For the moment, however, we see our coherent and clear approach as
an educational chance for the field, introducing knowledge updating and ranking
methods. Calculating Bayes factors and ranking our results may in some places
be the best we can do with existing data right now. It should be straightforward
since the medical test paradox story in the Introduction, that there are certainly
use cases of Bayes factor that are worthwhile. The methods we presented can be
seen as a first step towards establishing Bayesian methodology that can grow far
beyond this initial work, now that we have shown it to be worth further exploration.

In the future we can build up on that, moving towards more complex Bayesian
and Causal inference problems. Furthermore, the data accumulation around us
is also not happening without our involvement. For future experiments, we can
upgrade our strategy. We can do fewer experiments but make sure we have enough
information in our data per experiment to produce reproducible results. This is
(as we have explored in Chapter 4) in RNA-Seq often bound to a higher number
of replicates. We can explore the use of Causal inference for our experiments and
make efforts to find mechanistic models while learning about the powers and limi-
tations of all statistics.
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8.3.1 Improvements ready to be explored

In the Introduction I bravely stated, that statistics can help us to make informed
decisions from limited data. Of course, there is still a lower limit to that. If we
remind ourselves of the card game between the kid and the adult, we recall that for
data from only a limited number of rounds, we did not get very strong Bayes factors
(Figure 1.11) and we could only get a clearer picture after our players played 100
games (Figure 1.13). Now in the analysis of RNA-Seq data: Do we have limited
data or limited information in our data?

An open discussion for me is, whether the numbers we get in processed RNA-Seq
data are deceptive or not. We are producing many, and huge numbers in RNA-
Seq (compare Figures 3.2, 3.3, 3.4 and 6.15) which lead to very sharply defined
likelihood functions in our Bayes factor calculations. The process to get these
high numbers may, however, not fully be reflected in our simple binomial model.
This leads to very extreme Bayes factors that are arguably justifiable, but given
the variability of some genes (deeply explored in Chapter 4) also a risk for over-
interpretation. Surely, this is only a problem when considering absolute Bayes
factors – as opposed to ranking. Furthermore, often we can learn about specific
genes of interest and their expression patterns a priori from existing data (bases).
In the same way, that a medical test updates our prior odds of having a disease,
the Bayes factor for a gene updates our belief about a gene’s expression changes
upon a stimulus.

Needless to say, we did consider choosing other process models, trying to encounter
this issue by taking amplification steps into account, for example. There is potential
for expanding to a multinomial, instead of a bionomial framework, considering that
we may want to look at whole gene regulatory networks instead of single genes.
Finally, we decided to stick with the simplest model as a first step, as we get
sensible results. For educational purposes simplicity is a well-advised start, and
from here: may it grow, expand, and thrive.

8.4 Why Bayesian statistics cannot solve all our
problems

It’s often said, but one of the most noteworthy lessons I (re-)learned during my
PhD is the importance of allowing yourself to ask big questions. What are we
searching for? — is potentially the most frequent sentence in my notebook. In
my feeling, embracing these fundamental inquiries is what truly propels us forward
in our research and understanding. In retrospect, asking this question in the light
of mobile mRNA detection using RNA-Seq reveals a potential flaw in the whole
approach. If we iterate back to our entrance example of a cancer screening in the
Introduction and how much we learn from doing a certain medical test, it may
occur to us, that calculating a Bayes factor for mobile mRNA detection is a task
that can hardly be accomplished. I do not mean calculating a Bayes factor for
transcript mobility, but for the test itself. The difficulty is, that no no ground
truth exists to date, due to limited validation. A second issue is, that, as far as we
now, the prevalence of mobile mRNAs is very low. This means, we are applying a
test of unknown accuracy for a low-prevalence event to a big population. It could
be, that the underlying structure of our problem makes it practically impossible to
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find mobile mRNAs in RNA-Seq data without a lot of false positives. To use an
analogy, it is like we are fishing for a rare, small fish with a fishing net; if we want
to catch any of them we need a fine net, resulting in a lot of bycatch, Figure 8.1.

Figure 8.1: Catching mobile mRNAs, differentially expressed genes, or tuna requires
making a decision about the coarseness of a fishing net, or a detection criterion. Tweak-
ing the coarseness changes the outcome, the ratio of target hits to bycatch, or shuffling
around true positives, true negatives, false positives, and false negatives. For RNA-
Sequencing in molecular biology we do not have information on the accuracy of the
test. Neither do we know about the coarseness of the net. In our work (Chapter 6)
we introduced Bayes factors into the analysis. We enabled the incorporation of prior
knowledge in the analysis, with the goal to make the fishing net adjustable and avoid
bycatch. However, the cues we intended to use for adjusting coarseness turned out to
be unreliable, Figures 7.2, 7.3, 7.4.

What probability theory can help us with, are any problems that require inference.
For example, we can estimate how much noise there is in the data (as we did in
Chapter 5). What probability theory cannot do, of course, is distill information
and further knowledge from data, that is not given in the data (Chapter 4 and
7, or the card game example in the introduction with 10 vs. 100 rounds, Figures
1.11 and 1.13). Given the insights we learned about in Chapter 5 about how rare
we think the phenomenon of macromolecular long-distance traveling is, if we do a
test (let’s for now ignore the fact that we are screening with unknown accuracy),
our posterior knowledge will not grow a lot by employing a test with big bycatch.
Just like in the medical test paradox study mentioned in the Introduction [4], the
common cognitive bias known as the base rate fallacy strikes again, Figure 1.6.
Theoretically, as we have seen for simulated data, introducing Bayes factors and
prior knowledge drastically improves the detection. In practice, just like in medical
tests, it is hard to find reliable prior information. Only a second source of unrelated
evidence may help us.

8.4.1 Forever trapped in the accuracy-error dilemma

Research methodologist and transparency activist Vera Wilde works with signal
detection problems or mass screenings for low-prevalence problems across diverse
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domains [152], [153]. She has made the effort to collect problematic cases from a
broad range of disciplines to raise awareness for the limitations of mass screenings,
which can cause negative side effects even if the screenings are done with good
intentions, Table 8.1.

Application Target Bycatch

Trawling Tuna Dolphin

Polygraph Spies, Terrorists Non-spies, non-terrorists

iBorderCtrl Bad crossings Innocent crossings

ChatControl CSAM Innocent coms

Asymptomatic cancer screenings Deaths Healthy people

Lifestyle diseases Big problems Mild cases

Advanced medical imaging See problems Harmless anomalies

Educational ethics Plagiarism and AI use in writing Innocent students

Misinformation Provably wrong Ambiguity, dissent

Disinformation Hostile propaganda Ambiguity, dissent

Long-distance travelling molecules mobile mRNA in plants Sequencing and bioinformatics issues

Table 8.1: A list of mass-screenings for low-prevalence problems that all run into the
same issues with bycatch. The list was collected by Vera Wilde [152], [153], we have
added the detection of mobile mRNA. No matter what exactly we are searching for,
maximizing true-positive rates and minimizing false-positive rates are in tension. A
reliable second stream of evidence may drastically change this picture by providing
solid prior knowledge to build upon.

In the detection of mobile mRNAs it is on us to decide now how we want to
confront the puzzle. One approach is to keep pushing technology and analysis
forward and, hence, find more accurate detectors for this mass detection. Given
that mRNA mobility is considered a rare event, however, we might want to put
our efforts into investigating the phenomenon from a different angle, the search for
mechanistic details. An important message in Vera Wilde’s work is the criticism
of tech-solutionism, which is often employed when limitations of a technique are
visible, while the low probabilities of the events keep being neglected. In tech-
solutionism, the focus of solving a problem (from health care, and security to
researching scientific phenomena) lies in finding a technical solution for it. Huge
efforts are put into improving the detection methods of the mass screenings in Ta-
ble 8.1. Visions of how these improvements are happening often involve the newest
innovations, like artificial intelligence, or in our case potentially single-cell sequenc-
ing. A similar experience has occurred to our research project during the last few
years. Of course, we are investing all of our energies to learn how we can use RNA-
Sequencing data to detect mobile mRNAs. I was myself certainly drawn towards
this birds-eye perspective on the phenomenon, and very curious about these big
data sets when I started. The biological research question is incredibly fascinating
and the data has been collected by our collaborators in hours and hours of tedious
lab work, after refining protocols for years. We didn’t want to give up on finding
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evidence for mobile mRNA in the sequencing data. You do not want to give up
too early; What is science without believing in finding solutions for all problems?
Given the problems about mass screenings I have touched on now, however, do we
still think the potential lies in high-throughput detection?

8.5 How Bayesian statistics can help us accept our
problems

Bayesian statistics may not be able to provide us with a technical solution for im-
proving the mobile mRNA detection accuracy with current data and methodology
(what we initially thought when we started introducing Bayes factors in the anal-
ysis). But probabilistic thinking provides us with a philosophy and mathematical
framework to go far beyond that. We can identify the underlying limitations of
high-throughput detection given by the phenomenon we are investigating.

We can argue we always should think about a net harm/benefit analysis to know
which tests or screenings help us in science and society, and which ones hurt us.
Thankfully, false positive hits in mobile mRNA detection are certainly not as harm-
ful as some other problematic mass screening examples mentioned in Table 8.1.
Still, there are vast amounts of human time and resources put into hypotheses
and further research, formulated on potential false positive hits or based on thin
evidence. Initially, investigation of all avenues is equally valuable in science. After
everything we have learned in our research project in the last years, we started to
ask ourselves whether we want to keep focusing on finding technological solutions
for our mass detection problem. Building knowledge from a strong evidence base
would be what probabilistic thinking advises us.

In science, at least the way I understand it, we want to systematically and empiri-
cally acquire knowledge about the natural world. So we are measuring things, even
though this can be hard. We still want to try recording observations, because we
are curious. We can see afterwards, whether there is information in our data that
we can deduce knowledge from. This process is where probabilistic thinking comes
in with a huge potential. The questions Bernoulli was pondering over, the use of
the mathematics of probability for inference problems that are appearing in life
and science, are just as relevant as ever. We are dealing with inherently complex
data, because life is complex and the world is complex. Probability theory, how-
ever, can help us to articulate this complexity and communicate the uncertainty
of our understanding of life and the world. Our observations require this kind of
description because we have probabilistic associations of imperfectly recorded cues
that we wish to understand. Technological solutions often only provide us with
ways to categorise our seemingly probabilistic world. Probably.
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