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Abstract

With the increasing availability of genomic data, biologists aim to find more accurate descriptions of evolutionary
histories influenced by secondary contact, where diverging lineages reconnect before diverging again. Such reticulate
evolutionary events can be more accurately represented in phylogenetic networks than in phylogenetic trees. Since
the root location of phylogenetic networks can not be inferred from biological data under several evolutionary
models, we consider semi-directed (phylogenetic) networks: partially directed graphs without a root in which the
directed edges represent reticulate evolutionary events. By specifying a known outgroup, the rooted topology can be
recovered from such networks. We introduce the algorithm SQUIRREL (Semi-directed Quarnet-based Inference to
Reconstruct Level-1 Networks) which constructs a semi-directed level-1 network from a full set of quarnets (four-leaf
semi-directed networks). Our method also includes a heuristic to construct such a quarnet set directly from sequence
alignments. We demonstrate SQUIRREL’s performance through simulations and on real sequence data sets, the largest
of which contains 29 aligned sequences close to 1.7 Mbp long. The resulting networks are obtained on a standard
laptop within a few minutes. Lastly, we prove that SQUIRREL is combinatorially consistent: given a full set of quarnets
coming from a triangle-free semi-directed level-1 network, it is guaranteed to reconstruct the original network.
SQUIRREL is implemented in Python, has an easy-to-use graphical user-interface that takes sequence alignments or
quarnets as input, and is freely available at https://github.com/nholtgrefe/squirrel.

Keywords: semi-directed phylogenetic network, rooted phylogenetic network, quarnet, travelling salesman
problem, sequence alignment, network reconstruction

Introduction

Secondary contact, where diverging lineages come into
contact and hybridize before continuing to diverge, is com-
monplace in evolution. This process is poorly described
by most phylogenetic reconstruction methods which gen-
erally assume a bifurcating tree model. Secondary contact
has been widely documented for diverse sets of taxa, in-
cluding viruses (e.g. HIV and SARS-CoV-2, see Worobey
et al. 2008; Pekar et al. 2021; Jiao et al. 2024), bacte-
ria (e.g. Diop et al. 2022), plants (e.g. Ehrendorfer 1959;
Rieseberg et al. 2003), birds (e.g. Taylor and Larson 2019),
fish (e.g. Meier et al. 2019; Du et al. 2024), invertebrates
(e.g. Zhang et al. 2016) and primates, including humans
(e.g. Patterson et al. 2006; Green et al. 2010). Through
secondary contact, introgression — the exchange of ge-
netic material between hybridizing lineages — may occur
by means of complex processes, often involving multiple
rounds of backcrossing.

Evolutionary histories shaped by secondary contact can
be more accurately represented by rooted phylogenetic
level-1 networks than by strictly bifurcating rooted phylo-
genetic trees. Rooted phylogenetic level-1 networks are di-

rected acyclic graphs that are largely tree-like in structure,
describing patterns of divergence, but include localized
reticulations where lineages have merged through retic-
ulate events (see e.g. Figure 1(a) and see the Materials
and Methods for a more formal definition). Application of
these networks is highly desirable, but their construction
is computationally intensive, and their use has remained
out of reach for most biologists. Results reported here,
including an efficient algorithm and software, address
the challenge of building phylogenetic level-1 networks,
thus offering the possibility of finding a more realistic
description of biological diversity.

Our results are achieved by considering semi-directed
(phylogenetic) networks (Solís-Lemus and Ané 2016), in
which there is no root and only branches representing
reticulate events carry information about direction (see
the Materials and Methods for a more formal definition).
These networks have gained considerable interest recently
(see e.g. Solís-Lemus and Ané 2016; Allman et al. 2019;
Kong et al. 2024; Warnow et al. 2024; Wu and Solís-Lemus
2024; Frohn et al. 2025), as it has been shown that un-
der certain models of evolution it is theoretically impos-
sible to infer the root of a rooted phylogenetic network
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Figure 1: (a): A rooted phylogenetic level-1 network on 12 taxa represented by numbers 1− 12, with the dashed reticulation edges pointing
towards reticulation vertices which represent reticulate events. (b): The semi-directed topology of the rooted network, which is a triangle-free
semi-directed level-1 network on 12 leaves, again with the reticulation edges dashed. This network uniquely determines the rooted network by
specifying leaf 1 as an outgroup. (c): Some of the quarnets induced by the semi-directed network. When ignoring the leaf labels, these are all six
possible level-1 quarnet shapes. The top left quarnet is a quartet tree, the bottom right quarnet is the only one that contains a cycle of length 4
(4-cycle), and the other four quarnets contain one or two triangles (3-cycles). The tf-quarnets (triangle-free quarnets) can be obtained from the
quarnets by contracting each of the triangles to a single node. The quartet tree and quarnet with a 4-cycle are both already triangle-free.

directly from data (Baños 2019; Gross et al. 2021; Xu
and Ané 2023). For an example of a semi-directed level-1
network see Figure 1(b). In case an outgroup is avail-
able, this can be used to root the semi-directed network
(Solís-Lemus and Ané 2016), as illustrated in Figure 1(a)
and (b). Several identifiability results have been recently
proven for semi-directed level-1 networks. In particular, it
was shown that such networks can be theoretically recov-
ered from data under various models of evolution (Baños
2019; Gross et al. 2021; Xu and Ané 2023). By focusing
on semi-directed networks, we offer a tractable way for
reconstructing phylogenetic level-1 networks.

Recently, two algebraic approaches have been intro-
duced to construct semi-directed level-1, four-leaved net-
works, or quarnets (see Figure 1(c)): QNR-SVM (Barton
et al. 2022) and an algorithm in Martin et al. (2023).
These methods take as input sequence data and both em-
ploy algebraic invariants to infer quarnets under the Jukes-
Cantor model (Barton et al. 2022; Martin et al. 2023) and
the Kimura 2-parameter model (Martin et al. 2023). To in-
fer evolutionary relationships for larger data sets, methods
are therefore required to puzzle together such quarnets
into larger networks (see e.g. Schmidt et al. (2002) and
Oldman et al. (2016) for two of the earliest algorithms
where this approach was used for trees and rooted net-
works, respectively). It is known that the quarnets coming
from a semi-directed level-1 network uniquely character-
ize the network (Huber et al. 2024) and that theoretically
they can be puzzled together efficiently to reconstruct the
network (Frohn et al. 2025). However, a set of quarnets
stemming from real data will unavoidably contain erro-
neous quarnets, thus creating the need for a more robust
algorithm.

In this paper we introduce SQUIRREL (Semi-directed
Quarnet-based Inference to Reconstruct Level-1 Net-
works): an efficient software tool and algorithm that
builds a semi-directed level-1 network from a given full set
of quarnets (that is, a dense set that contains one quarnet
for each subset of four taxa). We complement SQUIR-

REL with a fast heuristic method to construct quarnets
from sequence data: the δ-heuristic (see the Materials
and Methods for a formal description). Note that var-
ious existing algorithms and programs can be used to
infer level-1 networks (both rooted and semi-directed)
from biological data that are based on alternative ap-
proaches. For example, PHYLONET (Than et al. 2008;
Yu and Nakhleh 2015), SNAQ (Solís-Lemus and Ané 2016;
Solís-Lemus et al. 2017) and PHYNEST (Kong et al. 2024)
are all software tools using likelihood-based algorithms
operating under a coalescent model. SNAQ builds semi-
directed networks, whereas both PHYNEST and PHYLONET

focus on rooted networks. These methods assume an up-
per bound on the number of reticulate events and either
take gene trees (PHYLONET and SNAQ) or sequence data
(PHYNEST) as input, after which they perform a poten-
tially time-consuming search through the space of net-
works to optimize a likelihood criterion. On the other
hand, NANUQ (Allman et al. 2019) and the recent ex-
tension NANUQ+ (Allman et al. 2024a) do not employ a
likelihood-framework and instead use concordance factors
on four-taxon subsets to produce a semi-directed level-1
network up to contracting triangles (3-cycles) and identify-
ing the locations of reticulations in 4-cycles. This approach
is faster but requires other methods to compute the in-
put gene trees first, which itself can be a challenging step
(Chifman and Kubatko 2014; Simmons and Gatesy 2015;
Zhang and Mirarab 2022; Steenwyk et al. 2023). Other
approaches use Bayesian methodology to construct rooted
networks (e.g. SPECIESNETWORK (Zhang et al. 2018a))
but are not yet able to scale to larger data sets. Lastly,
LEV1ATHAN (Huber et al. 2010) and TRILONET (Oldman
et al. 2016) take a combinatorial stance towards the net-
work construction problem; they take as input a set of
rooted three-leaf trees (LEV1ATHAN) or rooted three-leaf
networks (TRILONET) and output a rooted level-1 net-
work, with TRILONET including a heuristic to generate
rooted three-leaf networks from sequence data.

We now present a brief overview of how SQUIRREL
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works; a formal description of the algorithm (plus support-
ing figures) is given in the Materials and Methods section.
As with NANUQ and to a lesser extent SNAQ, SQUIRREL

constructs networks up to the contraction of triangles (see
Figure 1(b)), thus resulting in a binary triangle-free semi-
directed level-1 network (i.e. a network with no cycles that
contain just three vertices). Since triangles are relatively
difficult to infer correctly (Gross et al. 2021), SQUIRREL

does not use the location of any triangles in the quarnets
and instead only employs tf-quarnets (triangle-free quar-
nets; see Figure 1(c)). As shown in Frohn et al. (2025), by
considering tf-quarnets, we still maintain enough informa-
tion to theoretically construct the complete semi-directed
level-1 network up to contracting its triangles. If quarnets
with triangles are given in the input, tf-quarnets are ob-
tained by contracting the triangles. Hence, each tf-quarnet
is either a quartet tree or contains a 4-cycle.

Given a dense set of weighted tf-quarnets, SQUIRREL

first uses all of the tf-quarnets that are quartet trees to
build a sequence of non-binary phylogenetic trees, using
an algorithm from Berry and Gascuel (2000) and em-
ploying techniques from the QUARTETJOINING algorithm
(Grünewald et al. 2009) that constructs phylogenetic trees
from quartet trees. Within each of the non-binary phylo-
genetic trees in the sequence, the internal vertices with
high degree are replaced by a suitable cycle. In particular,
SQUIRREL repeatedly solves the TRAVELLING SALESMAN

PROBLEM (TSP, see e.g. Bellman 1962; Held and Karp
1962) with suitably defined distances to create a cyclic or-
dering of the subnetworks around the cycles. This results
in a sequence of candidate level-1 networks, from which
SQUIRREL returns the one that agrees, in a well-defined
sense, with most of the original tf-quarnets. If an outgroup
is specified, this network can in turn be transformed into
a rooted network.

We emphasize that any method that is able to create
a dense set of tf-quarnets from biological data (possibly
incorporating e.g. incomplete lineage sorting) could be
used to generate input for SQUIRREL. Furthermore, SQUIR-
REL takes into account weights the tf-quarnets might have,
which can be used to model confidence or bootstrap sup-
port. Reassuringly, SQUIRREL is consistent in the sense that
it will reconstruct the correct network if all tf-quarnets are
derived from a triangle-free semi-directed level-1 network,
a fact that we prove in Theorem 1 in the Materials and
Methods section.

Results

Simulation study

Following the simulation studies for LEV1ATHAN (Huber
et al. 2010) and TRILONET (Oldman et al. 2016), we an-
alyze what effect noise in a set of tf-quarnets has on the
performance of SQUIRREL. To this end, we generate 100
random triangle-free semi-directed level-1 networks for
every number n ∈ {10,15,20,25,30,35} of leaves (see
Section B of the Supplementary Material for the gener-
ating algorithm). For each network N , the reticulation
number r(N ) (i.e. the number of reticulations) is cho-

sen uniformly at random from {0, . . . , ⌊n/3⌋}. This results
in a set of 600 random networks N , each inducing a set
Q(N ) of tf-quarnets. For each network N and each pertur-
bation ratio ϵ ∈ {0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5},
we create a noisy set of tf-quarnets Qϵ(N ) by changing
the undirected underlying topology of a fraction of the tf-
quarnets uniformly at random which is given by ϵ. Then,
if this creates a 4-cycle, we pick a random location for the
reticulation. We use this scheme for the creation of noise
to prevent 4-cycles from only changing their reticulation
and keeping their circular ordering. Such a perturbation
will barely influence the output of the algorithm, since
reticulations of 4-cycle tf-quarnets are only used to deter-
mine the location of reticulations in 4-cycles of the final
networks. The resulting 5400 = 600 ·9 sets of unweighted
tf-quarnets Qϵ(N ) are used as input for SQUIRREL. The av-
erage computation times ranged from below a second for
the networks with the fewest leaves to below two minutes
for the networks with 35 leaves.

To measure how well SQUIRREL reconstructs the original
networks from these noisy tf-quarnet sets we compute two
similarity scores for every input network N and output
network M. The first score is the tf-quarnet consistency
score (modeled after a similar score in Huber et al. (2010)
and Oldman et al. (2016)) which is defined as

C(N ,M) =
|Q(N )∩Q(M)|
|Q(N )| . (1)

This score measures what fraction of the tf-quarnets in-
duced by N are also induced by the constructed net-
work M. We also consider its symmetric counterpart:
the tf-quarnet symmetric consistency score, defined as

S(N ,M) =
|Q(N )∩Q(M)|
|Q(N )∪Q(M)| . (2)

Both scores are always in the interval [0,1] and attain
a value of 1 if and only if N =M, which follows from
Frohn et al. (2025). The boxplots in Figure 2 show the
distribution of the two scores for different perturbation
ratios ϵ and leaf set sizes n. As expected, both scores
decrease for larger values of ϵ. However, the decrease
seems fairly limited, with both consistency scores averag-
ing above 0.91 even for sets containing only 50% of the
original tf-quarnets.

To investigate in what way noise in a set of tf-quarnets
influences the structure of the reconstructed networks,
we compute the difference in the reticulation numbers
r(N )− r(M) between the input networks N and output
networks M. The boxplots in Figure 3 show the result of
this experiment, again for different values of ϵ and n. Up
to a value of ϵ = 0.1, SQUIRREL reconstructs networks with
the correct reticulation number in almost all cases. For
higher values, the differences are more spread out, while
the average difference slowly becomes positive. Thus, it
seems that SQUIRREL slightly favors networks with fewer
reticulations for high values of ϵ, although the average
absolute differences remain below a reasonably small 1.5.
A possible explanation could be that by not considering
triangles in the quarnets, the signal in the data indicating
reticulate events is weakened.
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Figure 2: Boxplots showing the spread of C- and S-scores between the input network N and output network M, when applying SQUIRREL to sets
of tf-quarnets with leaf set sizes n and perturbation ratios ϵ. The boxplots show the quartiles of the data and its outliers. A single outlier in the case
of n= 10 and ϵ = 0.5 has a C- and S-score below 0.6 and is omitted from the figure for clarity.
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Figure 3: Boxplots showing the variation of the difference in reticulation number r(N )− r(M) of the input network N and output network M,
when applying SQUIRREL to sets of tf-quarnets with leaf set sizes n and perturbation ratios ϵ. The boxplots show the quartiles of the data, its
outliers and the averages in red.

We also perform a study with simulated nucleotide
sequences to test the performance of the δ-heuristic
combined with SQUIRREL, using a similar approach to
the simulations presented in Holland et al. (2002) and
Oldman et al. (2016). For each of our 600 previ-
ously generated networks, we simulate one multiple se-
quence alignment (MSA) for every sequence length k ∈
{1 kbp, 10 kbp, 100 kbp, 1 Mbp} as follows. Briefly, we first
root every semi-directed network N uniformly at random
on some edge (making sure that it is a valid root-location)
to create a rooted phylogenetic network. We then use
the software tool SEQ-GEN (Rambaut and Grass 1997) to
simulate MSAs of equal length along all displayed trees
of the rooted phylogenetic network under the K2P model
with transition-transversion bias 4 (as in Holland et al.
2002; Oldman et al. 2016). The MSAs of the displayed
trees are then concatenated to create one MSA with the
desired length k. Since our δ-heuristic treats every site
of the MSA independently, this way of generating MSAs
is asymptotically equivalent to generating MSAs under
the K2P network-based Markov model with reticulation
parameters of 0.5 (see e.g. Gross et al. 2021).

The branch lengths (i.e. the expected number of substi-
tutions along each edge) that are used for the simulations
are determined as follows. Given an edge (u, v) of one of
the rooted phylogenetic networks, we let p(u,v) be the av-

erage length (in terms of number of edges) of all unique
paths from the root to any leaf that contain the edge
(u, v). Then, we assign the edge (u, v) a branch length of
0.3/p(u,v), which ensures that every path in the network
from a root to a leaf roughly has a total length of 0.3, as
is the case in the simulations by Holland et al. (2002) and
Oldman et al. (2016).

We then use the 2400 = 600 ·4 simulated MSAs as input
for our δ-heuristic to construct dense sets of weighted tf-
quarnets, which are in turn used to construct semi-directed
networks with SQUIRREL. As before, we compare every
constructed semi-directed network M with the original
semi-directed network N in terms of C-score, S-score and
difference in reticulation number r(N )− r(M). The re-
sults are depicted in Figure 4 and Figure 5, respectively.
We observe that both consistency scores increase as the se-
quence length changes from 1 kbp to 10 kbp. Additionally,
both the average and the variation of the difference in
reticulation number decrease. Interestingly, the increase
of the sequence length from 10 kbp to 100 kbp or 1 Mbp
does not seem to have much further effect. As was the case
in our previous experiment, an increase in the number of
leaves n of the original semi-directed network improves
the two considered consistency scores, yet also results in
a greater spread of the difference in reticulation number
between the original and constructed network. The latter
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point can be explained by the fact that smaller networks
simply allow for fewer reticulations, thus also bounding
the largest possible difference in reticulation number.

Biological data

To illustrate the applicability of SQUIRREL to biological
data, we consider three data sets on groups of taxa with
evidence of secondary contact in their evolutionary histo-
ries: a large set of tf-quarnets generated with the MML
algorithm from Martin et al. (2023) (named after the au-
thors), a short multiple sequence alignment on few taxa
from Salemi and Vandamme (2003), and a long multiple
sequence alignment on many taxa from Vanderpool et al.
(2020).

Xiphophorus We first test the applicability of SQUIRREL

to a set of tf-quarnets that was generated with the MML
algorithm (Martin et al. 2023). For each four-taxon subset,
this algorithm creates a ranking of the possible 4-cycles
according to some scoring criterion (with the lowest score
being the best). Based on the scores it either detects a
quartet tree (which we give a weight of 1), or it chooses the
best 4-cycle, which we give a weight of min(1, s2/s1 − 1),
where s1, s2 are the two lowest (and thus best) scores. In
this manner we take into account how close the scores for
the two best scoring 4-cycles are.

The data set we consider contains 14,950 weighted tf-
quarnets on a set of 25 swordtail fish and platyfish (genus
Xiphophorus) and the single outgroup Pseudoxiphophorus
jonesii. This genus has been widely studied and much
evidence has been presented for widespread hybridization
within the genus (see e.g. Rosenthal et al. 2003; Culumber
et al. 2011; Cui et al. 2013; Kang et al. 2013; Schumer
et al. 2013; Solís-Lemus and Ané 2016, and the references
therein), making it difficult to capture the full evolution-
ary history. Traditionally, the genus is divided into four
major lineages: northern swordtails, southern swordtails,
northern platyfishes and southern platyfishes (Meyer et al.
2006; Cui et al. 2013). The best network generated by
SQUIRREL (taking less than two minutes) had a weighted
tf-quarnet consistency score of 0.974 and is shown in Fig-
ure 6. However, many of the other candidate networks
had scores that were very close to the score of the best
scoring network.

Since the weighted tf-quarnet consistency score mea-
sures how consistent the network is with the tf-quarnets,
taking their weights into account (see eq. (3) in the Ma-
terials and Methods), it should be noted that a weighted
consistency score close to 1 does not necessarily imply
a close to 100% level of confidence that the network is
correct. Instead, it reflects whether the quarnets with
high weight (i.e. high confidence in their correctness) are
consistent with the constructed network, making it most
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Figure 6: Phylogenetic network inferred by SQUIRREL from a dense set of weighted tf-quarnets on the genus Xiphophorus (generated from a multiple
sequence alignment with the MML algorithm from Martin et al. (2023)). The four major lineages are indicated by the different shaded areas. The
reticulation edges are curved, while the edges leading to the outgroup Pseudoxiphophorus jonesii are in grey.

useful as a relative measure to assess if there is a clear best
network or if multiple networks perform similarly well. In
contrast, the unweighted consistency score (see eq. (1))
can be more easily interpreted as an absolute measure of
performance, but it may discard useful information about
quarnet confidence if such information is available. A
more statistically sound way to generate weights for the
tf-quarnets inferred with the MML algorithm from Martin
et al. (2023) (similar to the bootstrap support in Barton
et al. (2022)) would possibly increase the confidence of
SQUIRREL in a single best network. Hence, we would wel-
come further research efforts into computing confidence
scores for inferred tf-quarnets which can be used as input
weights for SQUIRREL.

The constructed network clearly divides the three ma-
jor Xiphophorus clades (northern swordtails, southern
swordtails and platyfishes) but similar to other studies
(Meyer et al. 2006; Cui et al. 2013) intertwines northern
and southern platyfishes. Our network has one reticu-
lation edge involving an ancestor of both the northern
and the southern swordtails. Another reticulate event
places the northern swordtail X.cortezi both as a sib-
ling of X.nezahualcoyotl and of the clade (X.malinche,
X.birchmanni). This reticulate event aligns with previous
work in Cui et al. (2013), where the precise placement
of X.cortezi within this subset of the species (including
X.montezumae) was also uncertain and depended on the
inference methods used. Furthermore, one of the subtrees
displayed in our network for this subset of the species (i.e.
the subtree that includes X.montezumae) is the same as
the subtree of the network inferred by SNAQ (Solís-Lemus
and Ané 2016; Solís-Lemus et al. 2017). The last reticu-
late event involves the southern platyfish X.maculatus, for
which Cui et al. (2013) report difficulties placing it in the

mitochondrial DNA tree. Judging from the many differ-
ent inferred networks and possible reticulate events (see
again Rosenthal et al. 2003; Culumber et al. 2011; Cui
et al. 2013; Kang et al. 2013; Schumer et al. 2013; Solís-
Lemus and Ané 2016), capturing the evolutionary history
of the complete genus as a level-1 network might be too
much to ask for because the truth may not be level-1. As
an example, evolutionary histories containing many hy-
bridization events between more distantly related species
(such as horizontal gene transfer) can not always be cap-
tured well by a level-1 network, since such events often
result in complex networks with many nested reticulation
events (see e.g. Soucy et al. 2015, Fig. 5).

HIV We now consider a multiple sequence alignment
(MSA) of the HIV-1 virus data set containing 9 sequences
of length 9,953 bp which first appeared in Salemi and Van-
damme (2003). This data set is well-studied (Lemey et al.
2009; Huber et al. 2010; Oldman et al. 2016) and contains
sequences of the HIV-1 M-group subtypes A, B, C, D, F, G,
H and J as well as a sequence for KAL153 which is believed
to be a recombinant of subtypes A and B (see Lemey et al.
2009, Ch. 16). We use our δ-heuristic (formally described
in the Materials and Methods) to obtain a weighted set
of tf-quarnets from the MSA and then apply SQUIRREL to
construct a network, which we root using the outgroup C
(as in Salemi and Vandamme 2003; Huber et al. 2010).
The δ-heuristic and SQUIRREL constructed a clear best
scoring network (shown in Figure 7(a)) with a weighted
tf-quarnet consistency of 0.58 within one second.

Indeed, SQUIRREL, combined with the δ-heuristic, is
able to identify KAL153 as a recombinant of subtypes A
and B, agreeing with the analysis in (Lemey et al. 2009,
Ch. 16). This compares favourably to TRILONET (Old-
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Figure 7: (a): Phylogenetic network inferred by SQUIRREL (using the δ-heuristic to create tf-quarnets) from a multiple sequence alignment of the
HIV-1 data set under consideration. The reticulation edges are curved, while the edges leading to the outgroup C are in grey. (b): Phylogenetic
network inferred by TRILONET (Oldman et al. 2016) on the same HIV-1 data set (without the outgroup C), again with curved reticulation edges.

man et al. 2016), where the subtype H was identified
as a recombinant (see the constructed network in Fig-
ure 7(b)). LEV1ATHAN (Huber et al. 2010) was able to
identify KAL153 as a recombinant, but it relies on other
algorithms to make the step from sequences to gene trees.

Primates To investigate the performance of SQUIRREL

and the δ-heuristic on data sets with many taxa and long
sequences, we consider an MSA from Vanderpool et al.
(2020) of length 1,761,114 bp that contains concatenated
sequences for 26 primate species, 2 closely related non-
primate species and the outgroup Mus musculus. We first
apply the δ-heuristic to the MSA to obtain a set of 23,751
weighted tf-quarnets. Subsequently, we use SQUIRREL

(specifying Mus musculus as the outgroup to root it) and
obtain the tree in Figure 8(a) after a few minutes on
a standard laptop. The tree coincides exactly with the
species tree obtained in Vanderpool et al. (2020) using
the gene tree based algorithm ASTRAL III (Zhang et al.
2018b), while largely agreeing with two previously in-
ferred phylogenies (Perelman et al. 2011; Springer et al.
2012). The weighted tf-quarnet consistency score of the
tree is 0.995, but some of the other generated candi-
date networks (which contain reticulations) have scores
within 0.003 from this best value, suggesting that reticu-
late events might have occurred.

We investigate this further by looking only at the 8 pri-
mates in the Cercopithecinae subfamily, for which Vander-
pool et al. (2020) have demonstrated possible reticulate
events. Combining the δ-heuristic and SQUIRREL we gen-
erated a set of candidate networks for these 8 species and
the outgroup Colobus angolensis pallatus. Two of the net-
works had a much higher score than the others and they
only differed from each other by the addition of a reticula-
tion edge. In particular, the second best scoring network
(shown in Figure 8(b)) had a score of 0.956, while the best
scoring network was the subtree of the original network
with score 0.974 (also shown in Figure 8(b), by ignoring
the curved reticulation edge). The blobtree of the network
(obtained by contracting the cycle into a single node) ex-
actly matches one of the blobtrees inferred with TINNIK
(Allman et al. 2024b). The particular reticulate event we
found was not reported in Vanderpool et al. (2020). How-
ever, our reticulate event might be more probable since it

is between species in the same continent (Africa), while
the study by Vanderpool et al. (2020) mentions possible
reticulate events between species on different continents
(Asia and Africa). Lastly, Vanderpool et al. (2020) found
evidence for a “complex pattern of ancient introgression”
(p. 14) within the subfamily and state that roughly 40% of
the species within the subfamily are known to hybridize
(Tung and Barreiro 2017), which suggests that the true
nature of the subfamily might not be well-represented
by a level-1 network. This is further supported by the
fact that the analysis done in Vanderpool et al. (2020)
with PHYLONET (Than et al. 2008; Yu and Nakhleh 2015)
and SNAQ (Solís-Lemus and Ané 2016; Solís-Lemus et al.
2017) also gave ambiguous results, while PHYNEST (Kong
et al. 2024) yet again concludes with a different network.

The Cercopithecinae subfamily (again with outgroup
Colobus angolensis pallatus) also featured in Barton et al.
(2022) in the context of using the QNR-SVM algorithm
for inferring quarnets from a data set. The reason for
restricting to a subset was stated as the lack of an algo-
rithm that puzzles together many quarnets. Instead, the
authors puzzle them together by hand to obtain a net-
work with a single reticulation that induces 81% of the
well-supported quarnets. Using their quarnet weighting
scheme, SQUIRREL was able to identify a tree inducing
85% of the well-supported quarnets. (Here, we used a
variation of SQUIRREL that takes into account the triangles
of the quarnets to choose the best scoring network, instead
of the default of just focusing on the tf-quarnets). There-
fore, SQUIRREL might be a viable tool to puzzle together
quarnets obtained with an algorithm such as QNR-SVM,
while still being able to scale to larger data sets unfit for
resolving conflicting quarnets by hand.

Discussion

We have introduced SQUIRREL: a combinatorially consis-
tent algorithm that can puzzle together a dense set of
quarnets to create a semi-directed level-1 network. In
addition, when combined with the model-based method
QNR-SVM (Barton et al. 2022) or the MML algorithm
(Martin et al. 2023) for inferring quarnets, SQUIRREL pro-
vides a method to create a level-1 network directly from
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Scandentia
Dermoptera
Lorisiformes

Lemuriformes

Tarsiiformes

Cebidae

Colobinae

Cercopithecinae

Hylobatidae

Hominidae

Tupaia chinensis
Galeopterus variegatus
Otolemur garnettii
Propithecus coquereli
Microcebus murinus
Carlito syrichta
Callithrix jacchus
Aotus nancymaae
Cebus capucinus imitator
Saimiri boliviensis
Rhinopithecus roxellana
Rhinopithecus bieti
Piliocolobus tephrosceles
Colobus angolensis palliatus
Chlorocebus sabaeus
Cercocebus atys
Mandrillus leucophaeus
Papio anubis
Theropithecus gelada
Macaca nemestrina
Macaca fascicularis
Macaca mulatta
Nomascus leucogenys
Pongo abelii
Gorilla gorilla
Homo sapiens
Pan paniscus
Pan troglodytes
Mus musculus

Colobus angolensis palliatus

Chlorocebus sabaeus

Macaca nemestrina

Macaca fascicularis

Macaca mulatta

Theropithecus gelada

Papio anubis

Mandrillus leucophaeus

Cercocebus atys

(a) (b)

Figure 8: (a): Phylogenetic tree inferred by SQUIRREL (using the δ-heuristic to create tf-quarnets) from a multiple sequence alignment of the
primate data set under consideration, with the edges leading to the outgroup Mus musculus in grey. The different shaded areas indicate different
taxonomical groups as they appear in Vanderpool et al. (2020). The two non-primate species are Tupaia Chinensis and Galeopterus variegatus. (b):
In conjunction with the δ-heuristic to create tf-quarnets, SQUIRREL inferred two networks with very close weighted tf-quarnet consistency scores
from the considered multiple sequence alignment of the subfamily of Cercopithecinae (using Colobus angolensis palliatus as outgroup). One of them
is the depicted network and the other is the phylogenetic tree obtained from that network by ignoring the curved reticulation edge.

sequence data. To the best of our knowledge, SQUIRREL

is one of the first methods that allows the construction of
semi-directed level-1 networks from biological data using
collections of quarnets. The only other approaches we
are aware of that use quarnet information are NANUQ
(Allman et al. 2019) and the recently presented NANUQ+

(Allman et al. 2024a). Although NANUQ+ uses a similar
distance-based strategy to SQUIRREL to expand the cycles
in a network, both NANUQ and NANUQ+ take as input a
collection of gene trees, rather than a dense set of quarnets
or a sequence alignment.

Any method that creates a dense set of quarnets from
biological data could be used as input for SQUIRREL. In
particular, if such a method is statistically consistent under
some model (possibly incorporating e.g. incomplete lin-
eage sorting), the combinatorial consistency of SQUIRREL

ensures that the combined inference is consistent as well.
Furthermore, SQUIRREL could in principle be combined
with methods that may not scale well to larger taxa sets
but are still able to construct partial semi-directed level-1
networks (containing some but not all of the studied taxa)
from biological data. Indeed, as with supertree methods,
partial networks on larger sets of taxa could be converted
to quarnets for SQUIRREL by restricting those partial net-
works to four taxa. This would require a rule to decide
what to do in case partial networks overlap on more than
four taxa and they induce conflicting quarnets. Hence, a
possible direction for future research would be adapting
SQUIRREL to work with non-dense sets of quarnets which
could contain any number of quarnets for each subset of
four taxa.

Using the δ-heuristic, SQUIRREL is able to quickly con-
struct a level-1 network directly from sequence data. Our
sequence simulations show that the δ-heuristic is likely not
statistically consistent under the tested K2P model. In par-
ticular, an increase in sequence length beyond 10 kbp does
not give a visible improvement under our simulation set-
tings, which one would expect for a statistically consistent
quarnet inference method. Despite the lack of a statistical
basis of the δ-heuristic, it already shows promising similar-
ity scores for multiple sequence alignments with a length
of 1 kbp when combined with SQUIRREL. Furthermore,
a major advantage is its speed. As an example, this ap-
proach was able to construct a network with 29 taxa from
a multiple sequence alignment of length 1.7 Mbp within
a few minutes on a standard laptop (see the Results sec-
tion). Hence, we do not see the δ-heuristic (combined
with SQUIRREL) as an alternative for known model-based
methods, but rather as a complementary tool. For one,
this approach can be used to generate reasonable start-
ing networks for the time-intensive search through the
network-space of likelihood-based methods (such as PHY-
LONET (Than et al. 2008; Yu and Nakhleh 2015), SNAQ
(Solís-Lemus and Ané 2016; Solís-Lemus et al. 2017) and
PHYNEST (Kong et al. 2024)). On the other hand, it can
be used to quickly gain insight into sequence data without
the need to first infer gene trees with a different tool, as is
the case for NANUQ (Allman et al. 2019), which requires
many accurate gene trees to make a good estimate of the
concordance factors.

With the increasing availability of genome and transcrip-
tome data, biologists are also likely to explore the recon-
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struction of separate phylogenetic networks for multiple
sets of short orthologous sequences. Rapid construction of
such networks for the same set of taxa across different sets
of orthologues opens up the possibility for comparative
analyses. A possible research direction in this area would
be to combine SQUIRREL’s speed for constructing semi-
directed level-1 networks with the tf-quarnet consistency
score or the recently introduced dissimilarity measure for
semi-directed networks that generalizes the widely-used
Robinson-Foulds distance for phylogenetic trees (Maxfield
et al. 2024), which would permit the rapid comparison
of networks computed for different sets of orthologues.
It also leads to the interesting problem of finding a con-
sensus of a collection of semi-directed networks, which
to our best knowledge has not yet been addressed in the
literature. One approach to this problem could be to treat
it as a supernetwork question where all input networks
have the same leaf set, and use the approach suggested
earlier in this section.

Our simulations indicate that SQUIRREL can construct
networks closely resembling an underlying network in
terms of tf-quarnets, even if many of the tf-quarnets are
wrongly inferred. In particular, both of the considered
consistency scores average above 0.91 even for sets con-
taining only 50% of the original tf-quarnets. This is a sig-
nificant improvement compared to a similar experiment
to the triplet/trinet-based LEV1ATHAN and TRILONET al-
gorithms, where the trinet consistency score (the rooted
three-leaf network analogue of our tf-quarnet consistency
score) dropped below 0.5 for sets still containing 75% of
the trinets (Oldman et al. 2016). These results can be
considered as evidence that SQUIRREL is able to construct
networks with a high topological resemblance to the orig-
inal network in terms of tf-quarnets, even for a high per-
centage of incorrect tf-quarnets. As mentioned in the Re-
sults section, even though the tf-quarnets are theoretically
enough to construct a triangle-free semi-directed level-1
network, in practice, contracting the triangles might some-
what weaken the signal of reticulation events. Note that
theoretically (that is, when all quarnets come from a sin-
gle network with n leaves) only O(n log n) tf-quarnets are
required to reconstruct the network, instead of the full set
of O(n4) tf-quarnets (Frohn et al. 2025). Thus, even sets
with many incorrect tf-quarnets might still hold enough in-
formation to reconstruct the original network. This could
also explain why a higher number of leaves seems to have
a positive effect on the similarity score: O(n log n) grows
slower than O(n4), so the fraction of tf-quarnets necessary
to reconstruct a network decreases when n grows.

Although several methods can construct semi-directed
level-1 networks, the assumption that a network is level-1
might be too restrictive in many cases for biological data.
A major breakthrough would be to develop a practical
algorithm that is able to construct networks that are more
complex than level-1 networks. Some theoretical results
have already appeared towards tackling this problem. For
example, it is known that semi-directed level-2 networks
are uniquely encoded by the quarnets they induce (Hu-
ber et al. 2024). In addition, under several models, the
circular ordering around the blobs of outerlabeled planar
networks (a class of semi-directed networks more general

than semi-directed level-1 networks) is also shown to be
identifiable (Rhodes et al. 2025). Furthermore, the re-
cently introduced TINNIK algorithm (Allman et al. 2024b)
uses concordance factors computed from gene trees to
construct the blobtree of networks with arbitrary level un-
der the network multispecies coalescent model. Although
such a blobtree still remains a tree, it does indicate in what
areas of the underlying network reticulations may have
occurred. It might also be worth looking for an extension
of SQUIRREL to non-binary networks, where high-degree
vertices are allowed which do not necessarily represent
reticulate events.

In conclusion, SQUIRREL provides an efficient and
combinatorially sound approach for reconstructing semi-
directed level-1 networks from dense sets of quarnets. The
promising consistency scores achieved in our tests under-
score SQUIRREL’s ability to retain network topology even
when faced with noisy data. Together with our δ-heuristic,
SQUIRREL allows rapid insight into large-scale sequence
data. Looking forward, we hope that this approach can
complement more time-intensive methods and support
the preliminary exploration of network hypotheses.

Materials and Methods

We start this section by presenting formal definitions sur-
rounding phylogenetic networks and quarnets in the first
subsection. The high level idea of SQUIRREL is described
in the second subsection, while its subroutines are formal-
ized in the third and fourth subsection. We end with the
description of the δ-heuristic in the fifth subsection, and a
brief description of the consistency and implementation of
SQUIRREL in the sixth and seventh subsection, respectively.

Phylogenetic networks and quarnets

Phylogenetic networks A rooted phylogenetic network
on a set of at least four leaves X (representing a set of
taxa) is a directed acyclic graph with a single root, no
parallel edges and no directed cycles such that (i): the
root has two children; (ii): each leaf (i.e. a vertex with
no children) has one parent and is uniquely labeled by an
element from X ; (iii): all other vertices either have one
parent and two children, or two parents and one child.
A vertex of the latter type is a reticulation (vertex), and
the two edges directed towards it are reticulation edges.
See Figure 9(a) for an example. Semi-directed phylogenetic
networks, the type of network this paper is concerned with,
can be obtained from a rooted phylogenetic network by
suppressing its root and undirecting all edges except for
the reticulation edges. For the sake of brevity, we refer to
these networks simply as semi-directed networks. Since the
reticulation edges remain directed, we can still refer to the
reticulation vertices and edges of a semi-directed network
(see Figure 9(b)). We call a semi-directed network triangle-
free if it does not contain any triangles (3-cycles). Note
that a semi-directed network without any reticulations is
an (unrooted) phylogenetic tree in the usual sense.

In this paper, we consider semi-directed networks which
are level-1 (again see Figure 9(b)), meaning that every
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Figure 9: (a): A rooted phylogenetic level-1 network N ′ on leaf set X = {1, . . . , 8}, with the dashed reticulation edges pointing towards its
reticulation vertices. (b): The triangle-free semi-directed level-1 network N which can be obtained from N ′ by suppressing its root and keeping
only the dashed reticulation edges directed. (c): The blobtree T of the semi-directed network N , obtained by collapsing all cycles into single
vertices. (d): Two of the tf-quarnets induced by N . When ignoring the leaf labels, these are the two possible tf-quarnet shapes. The top tf-quarnet
is a quartet tree and the bottom tf-quarnet is a 4-cycle.

reticulation is part of exactly one undirected cycle (ignor-
ing the directions of the reticulation edges). The (possibly
non-binary) phylogenetic tree obtained by collapsing every
such cycle into a single vertex is called the blobtree (or tree
of blobs) of the semi-directed network (see Figure 9(c)).

Given a semi-directed network N on X , a partition A|B
of X (with A and B both non-empty) is a split of N if
there exists an edge of N whose removal disconnects the
leaves in A from those in B. Such a split is non-trivial if the
corresponding partition is non-trivial, that is, if |A|, |B| ≥ 2.
As an example, {1, 2, 3, 4, 8}|{5, 6, 7} is a non-trivial split
of the network from Figure 9(b). We sometimes omit the
set notation for splits with few elements, meaning that
we write ab|cd instead of the split {a, b}|{c, d} of the set
{a, b, c, d}.

Quarnets A semi-directed network q on a set of four
leaves L(q) = {a, b, c, d} is called a (semi-directed) quar-
net. Recall that up to relabeling the leaves, there are six
different level-1 quarnets (see Figure 1(c)). Here, we
mostly focus on tf-quarnets: triangle-free level-1 quarnets.
For a given leaf set X = {a, b, c, d} and up to relabeling of
the leaves, there are only two such tf-quarnets on X : the
quartet tree and the 4-cycle (see Figure 9(d)). We often
denote a quartet tree by its induced split (e.g. ab|cd),
while we describe a 4-cycle by its circular ordering (e.g.
(a, b, c, d)) and mention the leaf below the reticulation
separately. Note that tf-quarnets either have no non-trivial
split at all, or they have exactly one non-trivial split (e.g.
for X = {a, b, c, d} the splits ab|cd, ac|bd, or ad|bc).

SQUIRREL: main algorithm

SQUIRREL uses as input a set Q of tf-quarnets on some leaf
set X with n = |X | ≥ 4. In particular, this set needs to
be dense, meaning that it contains exactly one tf-quarnet
for each subset of four leaves of X (see also the Introduc-
tion). Such a set can be created from a multiple sequence
alignment using QNR-SVM (Barton et al. 2022), the MML
algorithm (Martin et al. 2023) or our own δ-heuristic (see

the fifth subsection of this section). We also allow for a
function w : Q→ [0, 1] to give weights to the tf-quarnets,
which can e.g. be used to model confidence or bootstrap
support. Unweighted tf-quarnets are assumed to have unit
weights.

The main idea behind the SQUIRREL algorithm is to first
build a sequence of n−3 phylogenetic trees on the given n
leaves, each one less refined than the other (see Algo-
rithm 2). These trees will function as candidate blobtrees.
By expanding all the high degree nodes in these trees into
cycles (and introducing reticulations), we obtain a set
of semi-directed candidate networks (see Algorithm 3).
Finally, out of these networks, we choose the network
N with the highest weighted tf-quarnet consistency score,
defined as

C ′(Q,N ) =
w(Q∩Q(N ))

w(Q)
. (3)

Here, Q is the input set of tf-quarnets and Q(N ) is the
set of tf-quarnets which are induced by the output net-
work N . A tf-quarnet q is induced by the network N if it is
the restriction of N to L(q), which is formally defined as
the network obtained from N by deleting all leaves not in
L(q) and exhaustively applying the following operations:
deleting unlabeled leaves, deleting degree-2 reticulations,
suppressing non-reticulate degree-2 vertices, suppressing
parallel edges, and suppressing triangles. For complete-
ness, we mention that an induced quarnet can be defined
similarly but without suppressing the triangles.

The pseudo-code of SQUIRREL is shown as Algorithm 1.
The blobtree construction algorithm (Algorithm 2) and the
cycle expansion algorithm (Algorithm 3) are explained in
detail in the following two subsections. Even though this
is not specified in the pseudo-code, SQUIRREL does allow
the user to specify an outgroup as input. Then, it makes
sure that all candidate networks can be rooted using this
outgroup (see also the fourth subsection of this section).
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Algorithm 1: SQUIRREL

Input: dense set Q of weighted tf-quarnets on
X = {x1, . . . , xn}

Output: triangle-free semi-directed level-1 network
on X

1 (T1, . . . ,Tn−3)← candidate blobtrees, using
Algorithm 2

2 (N1, . . . ,Nn−3)← semi-directed candidate
networks obtained from the candidate blobtrees
Ti , using Algorithm 3

3 return network Ni with highest weighted tf-quarnet
consistency score

SQUIRREL: constructing candidate blobtrees

In the following three steps, we describe how SQUIRREL

creates the sequence of candidate blobtrees on leaf set X
from the dense set Q of tf-quarnets. The pseudocode of
this procedure is shown as Algorithm 2 at the end of this
subsection.

Step A1: We first create a phylogenetic tree T ∗ on X as
described in Berry and Gascuel (2000). Their algorithm
takes as input a (possibly non-dense) set Q′ of quartet
trees and returns as T ∗ the unique most refined phyloge-
netic tree on X which does not induce a quartet with a
different non-trivial split than one of the quartets in Q′
(see Section A of the Supplementary Material for a more
formal definition). By taking Q′ to be the subset of quar-
tet trees in our set of dense tf-quarnets Q (see line 1 of
Algorithm 2) we can employ the algorithm from Berry and
Gascuel (2000) to obtain T ∗ (see line 2 of Algorithm 2).
As we show in Lemma A.2 of the Supplementary Mate-
rial, in the case all tf-quarnets are induced by a unique
network, T ∗ coincides with the blobtree of that network.

Step A2: Since the set Q (and thus Q′) is constructed
from real data, we expect there to be a fair amount of quar-
tets that contradict each other. Hence, in practice, the tree
T ∗ constructed in Step A1 will be highly unresolved. To
remedy this problem, we use a method to refine the tree
T ∗, specifically, an adapted version of the QUARTETJOIN-
ING algorithm (Grünewald et al. 2009). QUARTETJOINING

takes as input a function ω that assigns a non-negative
real number to each possible non-trivial split of four leaves
in X . Starting with the star-tree with central vertex v and
leaf set X , QUARTETJOINING sequentially introduces edges
between v and two of its neighbours (according to some
criterion involving the function ω) until the tree is fully
resolved.

In our case, we instead start with the tree T ∗ (which
might already be partially resolved) and adapt QUAR-
TETJOINING to resolve T ∗ further. This eventually leads to
a fully resolved phylogenetic tree T1 on X , which functions
as the first tree in our sequence of candidate blobtrees
(see line 3 of Algorithm 2). In our adaptation, instead of
considering all combinations of neighbours of the central
vertex v, we consider all such combinations of neighbours
of any of the internal (i.e. non-leaf) vertices with degree

at least 4. We construct the function ω used as input to
QUARTETJOINING as follows. For any tf-quarnet q ∈ Q
with leaf set L(q) = {a, b, c, d} such that q is a quartet
tree (say with split ab|cd), we set ω(ab|cd) = w(q) for
the input weight function w mentioned at the beginning
of the previous subsection. All other non-trivial splits of
four leaves of X are assigned an ω-value of 0.

Step A3: Finally, we explain how we create the full
sequence of candidate blobtrees from the phylogenetic
tree T1. Given an edge uv of the tree T1 that induces
a non-trivial split A|B, we collect all the quartet trees
in Q for which their induced splits restrict to quartet
splits of A|B in a set Q′(A|B) by first defining Q(A|B) =
{q ∈ Q : |A ∩ L(q)| = 2, |B ∩ L(q)| = 2} and then
Q′(A|B) = {q ∈ Q(A|B) : q has split A∩ L(q)|B ∩ L(q)}.
This allows us to define the split-support of uv as

supp(uv) =
w(Q′(A|B))
w(Q(A|B)) , (4)

i.e. as the weighted ratio of the tf-quarnets in Q that sup-
port the split induced by the edge uv. For each of the n−3
edges of the tree T1 we then compute this split-support
(see line 4 of Algorithm 2). Afterwards, we sort the edges
of T1 in increasing order, according to their split-support.
To create the trees (T2, . . . ,Tn−3), we keep contracting the
least supported edge (see line 6 of Algorithm 2). In other
words, the tree Ti is obtained from T1 by contracting the
i − 1 least supported edges. Crucial for our consistency
proof in Section A of the Supplementary Material is that
T1 is a refinement of T ∗, and therefore one of the trees in
the sequence (T1, . . . ,Tn−3) will be the tree T ∗.

Algorithm 2: Constructing candidate blobtrees
Input: dense set Q of weighted tf-quarnets on

X = {x1, . . . , xn}
Output: sequence of candidate blobtrees

(T1, . . . ,Tn−3) on X
/* Step A1 */

1 Q′← set of all quartet trees in Q
2 T ∗← phylogenetic tree on X obtained from Q′, as

described in Berry and Gascuel (2000)
/* Step A2 */

3 T1← phylogenetic tree on X obtained by applying
the adapted QUARTETJOINING algorithm to T ∗
and Q

/* Step A3 */
4 compute the split-support for every edge in T1
5 for i ∈ {2, . . . , n− 3} do
6 Ti is constructed from Ti−1 by contracting the

least supported edge
7 end
8 return (T1, . . . ,Tn−3)

SQUIRREL: expanding cycles in a tree

Once SQUIRREL has constructed the sequence of candi-
date blobtrees using Algorithm 2, we transform them
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Figure 10: (a): A blobtree on some leaf set X with an internal vertex v inducing the partition Y1| . . . |Ys of X . (b): Illustration of the mapping f
which maps every leaf x of X to a leaf in {y1, . . . , ys}, depending on which set Yi contains x . (c): Illustration of Step B2 and B3 of SQUIRREL,
where the single internal vertex is replaced by a cycle. (d): Illustration of how the cycle on the leaves yi is mapped back to a cycle on the sets Yi
with the inverse function f −1.

into triangle-free semi-directed level-1 networks using the
dense set of tf-quarnets Q. In this subsection we describe
how we transform a phylogenetic tree T - representing
one of our candidate blobtrees - into such a network N .
In particular, we replace every internal vertex of the given
tree by a suitable cycle. Since our aim is to build triangle-
free networks, we replace vertices incident to s ≥ 4 edges
by an s-cycle with a reticulation (see also the illustration
in Figure 10). To this end, we repeat the following three
steps for every such internal vertex v (starting with the
ones with the highest degree). The corresponding high-
level pseudo-code is shown as Algorithm 3.

Step B1: The first step in our approach is to assign a
dense set of representative tf-quarnets Q̃v to each internal
vertex v of T with degree s ≥ 4. In particular, the set
Q̃v will be a dense set of tf-quarnets on the leaf set Y =
{y1, . . . , ys}, where each yi represents the set Yi which
is part of the partition Y1| . . . |Ys of X induced by v (see
Figure 10(a) and (b)). In the next step, these sets will
then be used to determine by what cycle to replace v.

First, let f : X → Y be the function that maps every
leaf x ∈ X , with x being in some set Yi , to the leaf yi (see
line 3 of Algorithm 3). To construct the tf-quarnets in Q̃v
(see line 4 of Algorithm 3), we repeat the following pro-
cedure for every subset {yi , y j , yk, yl} of four leaves in Y.
Let Q{i, j,k,l} = {q ∈ Q : L(q) = {x i , x j , xk, x l} with xp ∈
Yp for all p ∈ {i, j, k, l}} be the subset of Q containing
only tf-quarnets with one leaf in each of the four sets
Yi , Yj , Yk and Yl . By relabeling the leaves of all tf-quarnets
in Q{i, j,k,l} with the function f , we obtain a multiset of
tf-quarnets which all have the same leaf set {yi , y j , yk, yl}.
With slight abuse of notation, we denote this multiset by
f (Q{i, j,k,l}). Then, we choose one of the tf-quarnets in
the multiset f (Q{i, j,k,l}) to assign to Q̃v as the tf-quarnet
on the four-leaf set {yi , y j , yk, yl} (see next paragraph).
As mentioned before, this is repeated for every subset
{yi , y j , yk, yl} of four leaves in Y, resulting in a dense set
of tf-quarnets on Y.

To choose a tf-quarnet from the multiset f (Q{i, j,k,l}), we
first choose its skeleton: its underlying undirected graph.
In particular, for each of the six possible skeletons t (three
quartet trees and three undirected 4-cycles) we let w(t)
be the sum of weights of all tf-quarnets in f (Q{i, j,k,l}) with
the given skeleton t. We then choose the skeleton t with

the highest weight (with ties resolved randomly) and as-
sign it a new weight of w(t)/w( f (Q{i, j,k,l})). Note that in
the unweighted case this simply means that we choose the
skeleton that appears most in the multiset. We first choose
the skeleton since determining the location of the reticula-
tion in a quarnet from data seems especially hard (Martin
et al. 2023). If our chosen skeleton is one of the quartet
trees, we assign that as our tf-quarnet on {yi , y j , yk, yl}.
On the other hand, if one of the undirected 4-cycles ap-
pears most, we still need to determine the location of the
reticulation. This is done by checking which leaf appears
most often below the reticulation in all 4-cycles with the
chosen skeleton.

As an example of this voting procedure to choose a
tf-quarnet from the multiset f (Q{i, j,k,l}), suppose our mul-
tiset f (Q{i, j,k,l}) contains only tf-quarnets with weight 1
and is as in Figure 11.

a b

c d

a b

c d

a b

c d

a b

c d

, , , ,

, ,









a b

c d

a b

c d

a b

c d

Figure 11: A multiset of 7 tf-quarnets on leaf set {a, b, c, d}.

Then, we choose the 4-cycle with circular ordering
(a, b, c, d) as our skeleton, after which we assign a to
be the leaf below the reticulation. The new tf-quarnet is
then a 4-cycle with a weight of 4/7 because that 4-cycle
appears 4 times out of a total of 7 tf-quarnets.

Step B2: The next step of our approach is to determine
a circular ordering of the leaves in the set Y based on
the tf-quarnets in Q̃v . Note that we repeat this for every
internal vertex v of T with degree at least 4. First, we use
the set Q̃v to create a distance DQ̃v

between every pair of
leaves in Y (see line 5 of Algorithm 3). Formally, given
two leaves a and b in Y, we define the distance DQ̃v

as
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follows:

DQ̃v
(a, b) =

¨
0 if a = b,∑

q∈Q̃v :a,b∈L(q) τq(a, b) if a ̸= b.
(5)

For every tf-quarnet q ∈ Q̃v the exact value of τ depends
on the weight of q and the position of the leaves a and
b within it. In particular, the values are defined on the
skeleton of the tf-quarnets and hence do not depend on
the position of the reticulations. Given two leaves a and
b of a tf-quarnet q (with weight w(q) ∈ [0, 1]), we define
τq as follows:

τq(a, b) =




(3−w(q))/2

if q is the quartet tree ab|cd

or if q is a 4-cycle with a, b

as neighbours,
(3+w(q))/2 otherwise.

(6)
Here, we say that two leaves of a 4-cycle are neighbours if
they are not on opposite sides of the cycle. The τq-values
reduce to 1 or 2 for tf-quarnets q with a weight of 1. Specif-
ically, two leaves on the same side of a split in a quartet
tree q have a τq-value of 1, otherwise they have a τq-value
of 2. Similarly, two neighbouring leaves in a 4-cycle q have
a τq-value of 1, while two opposite leaves have a τq-value
of 2. See Figure 12 for an illustration of these values. Note
that these pairwise distances between leaves resemble the
quartet distances used in NANUQ (Allman et al. 2019) and
NANUQ+ (Allman et al. 2024a).

a b

d c

a b

d c

2

1a b

d c

2

1

2

2

2

1a b

d c

1

1

1

2

(a) (b)

Figure 12: Two tf-quarnets q with leaf set {a, b, c, d}: a quartet tree (a)
and 4-cycle (b). The values τq (as defined by eq. (6), assuming the
quarnets have weight 1) between any two leaves are illustrated by the
two complete graphs, where the thin grey edges have length 1 and the
thick black length 2.

Once the distances DQ̃v
are computed, we create a com-

plete graph G with vertex set Y, where the distances be-
tween the vertices are given by DQ̃v

. By solving the TRAV-
ELLING SALESMAN PROBLEM (TSP) on this graph we obtain
a circular ordering of the elements in Y (see line 6 of Al-
gorithm 3). The goal of a TSP instance is to find a shortest
Hamiltonian cycle (or TSP-tour): a cycle that visits each
vertex exactly once. The default setting for SQUIRREL is
to use the Held-Karp algorithm (Bellman 1962; Held and
Karp 1962) for up to and including 13 leaves and to use
simulated annealing to heuristically solve instances with
more leaves. To obtain true consistency (see Section A of
the Supplementary Material) this setting can be changed
to always solve TSP to optimality, at the cost of a longer
running time.

Step B3: After solving TSP, SQUIRREL obtains a circular
ordering θ of the leaves in Y. It remains to determine

which leaf yi needs to be the leaf below the reticulation in
the resulting cycle. To ensure SQUIRREL always returns a
valid (that is, rootable) semi-directed network, we create a
reticulation ranking ρ of the leaves in Y instead of picking
a single leaf (see line 7 of Algorithm 3). If the set Y
contains at least five elements, we order them according
to how often they appear in a 4-cycle of Q̃v (as defined in
Step B1). That is, the first leaf in our ranking ρ appears
most often in a 4-cycle and is our first option to be the leaf
below the reticulation. The case where |Y|= 4 is special,
since Q̃v then only contains a single quarnet. If this is a
4-cycle, then the leaf below the reticulation of that 4-cycle
is the first leaf in our ranking ρ. The other three leaves
(or in the case that the single tf-quarnet is a quartet tree:
all four leaves) are ordered randomly.

Finally, we map every leaf yi back to the corresponding
leaf set Yi of the original tree T with the inverse function
f −1. While slightly abusing notation, this results in an or-
dering f −1(θ ) of the sets Yi . Then, we replace the internal
vertex v in the tree T by a cycle that follows this ordering
f −1(θ ) (see line 9 of Algorithm 3 and Figure 10(b) and (c)
for an illustration). We determine the location of the retic-
ulation by looking at the first elementρ1 of the reticulation
ranking ρ. In particular, we let the leaf set in f −1(ρ1) be
below the reticulation (again see line 9 of Algorithm 3).
This could possibly create a partially constructed network
that is invalid: one without a valid root location (e.g. if
two reticulations are oriented towards each other). Hence,
if this is the case we instead pick the leaves in f −1(ρ2). If
this is still an invalid option, we keep iterating through
the ranking ρ until we find a valid partial network (see
line 10 of Algorithm 3). Note that This procedure ensures
that we always return a valid semi-directed network at
the end of Algorithm 3. Our implementation of SQUIRREL

also allows the user to specify a known outgroup. Then,
a (partially constructed) semi-directed network is only
valid if it is not only rootable, but if it can also be rooted
at the edge incident to the outgroup. Iterating through
the reticulation ranking ensures that we always return
a valid semi-directed network at the end of Algorithm 3,
even in the case of a specified outgroup (see Lemma A.6
in Section A of the Supplementary Material for a proof).

δ-heuristic: inferring quarnets from sequence
data

As explained before, two model-based methods that use
algebraic invariants exist to generate tf-quarnets (Barton
et al. 2022; Martin et al. 2023). To allow SQUIRREL to
function as a stand-alone tool, we also include a method
to infer weighted tf-quarnets from a multiple sequence
alignment (MSA) on a set of taxa X : the δ-heuristic. Our
δ-heuristic is based on the concept of δ-plots, which func-
tion as a measure of treelikeness for sets of four taxa and
which were able to pick out recombinants in many simula-
tions (Holland et al. 2002). The algorithm also resembles
some aspects of the heuristic to generate trinets from
sequences in Oldman et al. (2016). We are now ready
to present the steps to create a dense set of weighted
tf-quarnets from an MSA on leaf set X .
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Algorithm 3: Expanding cycles in a tree
Input: dense set Q of weighted tf-quarnets on

X = {x1, . . . , xn}, phylogenetic tree T on X
Output: triangle-free semi-directed level-1 network

on X
1 for internal vertex v of T with degree ≥ 4 do // in

decreasing order of degree
/* Step B1 */

2 Y1| . . . |Ys ← partition of X induced by v
3 f ← function that maps a leaf x ∈ X to a leaf

yi , depending on the set Yi that contains x
4 Q̃v ← set of representative quarnets of v on leaf

set Y = {y1, . . . , ys}
/* Step B2 */

5 compute the distances DQv
(yi , y j) for all

i, j ∈ {1, . . . , s}
6 θ ← optimal TSP-tour on {y1, . . . , yk} with

respect to distances DQv

/* Step B3 */
7 ρ← reticulation ranking of the leaves in Y
8 for j ∈ {1, . . . , s} do
9 replace v in T by a cycle C with ordering

f −1(θ ) and with f −1(ρ j) below the
reticulation

10 if T has a valid root location then
11 break
12 end
13 end
14 end
15 return T

Step I: For each pair of taxa {a, b} we consider the gap-
free subalignment of the MSA on {a, b}. That is, we con-
sider only the columns where both taxon a and b contain
no gaps. Using this subalignment, we assign a distance
value hab to the pair {a, b}. In particular, hab is the nor-
malized Hamming distance: the number of columns of the
subalignment where taxon a and b differ, divided by the
total length of the subalignment. Recall that if a tf-quarnet
on {a, b, c, d} has a non-trivial split, it has one of the three
splits ab|cd, ac|bd or ad|bc. For each four taxon subset
and for each of these three splits, say ab|cd, we then let
hab|cd = hab + hcd .

The δ-value (introduced in Holland et al. 2002) of such
a subset {a, b, c, d} of X is now defined as follows (assum-
ing we have that hab|cd ≥ hac|bd ≥ had|bc):

δ{a,b,c,d} =
hab|cd − hac|bd

hab|cd − had|bc
, (7)

where δ{a,b,c,d} = 0 if hab|cd = hac|bd = had|bc . Intuitively,
the δ-value indicates how much support there is from the
subalignment that the tf-quarnet on {a, b, c, d} has a split.
That is, if the value of δ{a,b,c,d} is close to 1, we expect the
split ab|cd to be present.

Step II: With the δ-values computed for each subset of
four taxa, we partition the 4-taxa sets into two subsets Sλ
and Fλ for a predefined threshold value λ ∈ (0, 1). The set

Sλ will contain all 4-taxa subsets for which the δ-value is at
leastλ, while the set Fλ contains those sets with an δ-value
smaller than λ. We then expect the sets in Sλ to come from
a tf-quarnet with a non-trivial split, while those in Fλ are
likely to have come from 4-cycle tf-quarnets. Experiments
from Holland et al. (2002) show that an average δ-value
higher than 0.3 is often enough to determine whether
recombination was present (or equivalently, whether a
tf-quarnet has a non-trivial split). Hence, we settle for a
value of λ= 0.3.

Step III: Every 4-taxa set {a, b, c, d} in Sλ is assigned
a quartet tree. Its split is simply determined by the split
s ∈ {ab|cd, ac|bd, ad|bc} for which hs is the highest. On
the other hand, the sets in Fλ will be assigned a 4-cycle.
Observe that any 4-cycle tf-quarnet with circular ordering
(a, c, b, d) (irrespective of the position of the reticulation)
can be turned into the quartet trees with splits ac|bd or
ad|bc by deleting exactly one reticulation edge, while
this is not possible for the quartet tree with split ab|cd.
Assuming that the taxa set {a, b, c, d} is in the set Fλ and
that hab|cd ≥ hac|bd ≥ had|cb, we therefore assign a 4-cycle
with circular ordering (a, c, b, d) to the taxa set. This
aligns with the group-based models (see e.g. Gross et al.
2021; Barton et al. 2022) which also assume that DNA
independently evolves along the trees that can be obtained
from a network by deleting reticulation edges.

We also assign a weight w(q) to each tf-quarnet q, cor-
responding to the difference its δ-value has from λ. In
some sense, this weight signifies the confidence we have
in having estimated the correct tf-quarnet. In particular,

w(q) =

¨ |δq−λ|
λ if δq ≤ λ,

|δq−λ|
1−λ if δq > λ.

(8)

Step IV: It remains to determine where to place the retic-
ulations in the 4-cycles obtained from the set Fλ. Taking
inspiration from Holland et al. (2002) and Oldman et al.
(2016), we first compute the value δ(x) for each taxon x ,
defined as the mean value of all δ-values for four-taxon
sets containing x . For each 4-cycle, we then let the leaf x
with the highest δ(x)-value be below the reticulation.

Consistency of SQUIRREL

In Section A of the Supplementary Material we prove
that SQUIRREL is combinatorially consistent given an un-
weighted dense set of tf-quarnets. We use the word ‘com-
binatorially’ to emphasize that we do not make any claims
regarding statistical consistency. More formally, we prove
the following theorem.

Theorem 1. Let N be a triangle-free semi-directed level-
1 network and let Q be the set of unweighted tf-quarnets
induced by N , then SQUIRREL applied to Q reconstructs N .

The first ingredient of the proof is the fact that if a set of
tf-quarnets is induced by a network, the tree T ∗ is equal
to the blobtree of that network. The other important step
of the proof is to show that in this case the distances D (as
defined in eq. (6)) form a Kalmanson metric (Kalmanson
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1975), which have nice properties with respect to the
TRAVELLING SALESMAN PROBLEM.

Implementation

A graphical user interface (implemented in Python)
of SQUIRREL and the δ-heuristic is freely available at
https://github.com/nholtgrefe/squirrel. The
program takes as input a sequence alignment in NEXUS or
FASTA format, or a file specifying a dense set of tf-quarnets
(e.g. coming from QNR-SVM (Barton et al. 2022) or the
MML algorithm (Martin et al. 2023)). The interface al-
lows the user to specify an optional outgroup, view the
different generated candidate networks, and export them
in the eNewick file-format (Cardona et al. 2008) (with an
arbitrary rooting if no outgroup was specified).

Supplementary Material

Supplementary material is available at Molecular
Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).

Data availability statement: The generated networks,
Python scripts, sequence alignments and numerical results
of the experiments in this paper are available at https:
//github.com/nholtgrefe/squirrel.
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